33
Gravitational Waves from Rotational Instabilities of Compact Stars Kostas Kokkotas Theoretical Astrophysics Eberhard Karls University of Tübingen 18.12.2015 Lisbon 1

Gravitational Waves - ULisboa

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gravitational Waves - ULisboa

Gravitational Waves from Rotational Instabilities of Compact Stars

Kostas KokkotasTheoretical Astrophysics

Eberhard Karls University of Tübingen

18.12.2015 Lisbon 1

Page 2: Gravitational Waves - ULisboa

Neutron Stars

• Conjectured 1931• Discovered 1967

• Known 2500+• Mass 1.2–2Μ¤

• Radius 8-14 km

• Density 1015g/cm3

• In our Galaxy ~108

Ø Neutronstarsarestellarremnantsresultingfromthegravitationalcollapseofmassivestarsinsupernovaevents.

Ø Theyarethemostcompactstarsknowntoexistintheuniverse.Ø Theyhavedensitiesequaltothatoftheearlyuniverseand gravitysimilar

tothatofablackhole.

2

Page 3: Gravitational Waves - ULisboa

18.12.2015 Lisbon

Demorestetal 2010

3

StaticModels RotatingModels

supramassive

Neutron Stars: Mass vs Radius

𝑀"#$ ≃ 1.20271𝑀+,-

Breu-Rezzolla 2015

Page 4: Gravitational Waves - ULisboa

Neutron Stars & “universal relations”

18.12.2015 Lisbon 4

Average Density

Compactness

Moment of Inertia

Quadrupole Moment

Tidal Love Numbers

ρ ~ M / R3

z ~ M R

I ∼ MR2

Q ~ R5Ω2

λ ~ I 2Q

η = M 3 / I

I ∼ J /Ω

Need for relations between the “observables” and the “fundamentals” of NS physics

Page 5: Gravitational Waves - ULisboa

18.12.2015 Lisbon 5

EOSindependent relationswerederivedbyYagi &Yunes(2013) fornon-magnetizedstarsintheslow-rotationandsmalltidaldeformationapproximations.

…therelationsprovedtobevalid(withappropriatenormalizations) evenforfastrotatingandmagnetized stars

I-Love-Q relations

Page 6: Gravitational Waves - ULisboa

STT of gravity – Neutron Stars

18.12.2015 Lisbon 6

Spontaneous Scalarizarion is possible for β<-4.35 (Damour+Esposito-Farese 1993)

The solutions with nontrivial scalar field are energetically more favorable than their GR counterpart (Harada 1997, Harada 1998, Sotani+Kokkotas 2004).

Properties of the static scalarized neutron stars

Page 7: Gravitational Waves - ULisboa

STT of gravity – Fast Rotating Stars

18.12.2015 Lisbon 7

• The effect of scalarization is much stronger for fast rotation.

• Scalarized solutions exist for a much larger range of parameters than in the static case

Doneva,Yazadjiev,Stergioulas, Kokkotas2013

Page 8: Gravitational Waves - ULisboa

NSs in f(R)-gravity: Static Models

18.12.2015 Lisbon 8

Yazadjiev,Doneva,Kokkotas, Staykov (2014)

f (R) = R + aR2

• ThedifferencesbetweentheR2andGRarecomparablewiththeuncertaintiesinthenuclearmatterequationsofstate.

• ThecurrentobservationsoftheNSmassesandradiialonecannotputconstraintsonthevalueoftheparametersa,unlesstheEoS isbetterconstrainedinthefuture.

Page 9: Gravitational Waves - ULisboa

NSs in f(R)-gravity: Fast Rotation

18.12.2015 Lisbon 9

Yazadjiev,Doneva,Kokkotas, (2015)

Mass of radius diagrams for two realistic EOSf (R) = R + aR2

Difficult tosetconstraintson thef(R)theoriesusingmeasurementoftheneutronstarMandR alone,untiltheEOScanbedeterminedwithsmalleruncertainty.

Page 10: Gravitational Waves - ULisboa

Neutron Star: “ringing”

18.12.2015 Lisbon

σ ≈ GMR3

p-modes: main restoring force is the pressure (f-mode) (>1.5 kHz)

Inertial modes: (r-modes) main restoring force is the Coriolis force

Torsional modes (t-modes) (>20 Hz) shear deformations. Restoring force, the weak Coulomb force of the crystal ions.

w-modes: pure space-time modes (only in GR) (>5kHz) €

σ ≈Ω

σ ≈ 1R

GMRc2

⎛⎝⎜

⎞⎠⎟

σ ≈ vS

R~ 16 ℓ Hz

…andmanymore

10

shear, g-, Alfven, interface, … modes

Page 11: Gravitational Waves - ULisboa

f-modes: AsteroseismologyWe can produce empirical relation relating the parameters of the

rotating neutron stars to the observed frequencies.

Gaertig-Kokkotas2008,2010,2011Frequency

18.12.2015 Lisbon 11

Co

wlin

g A

pp

roxim

atio

n

Damping/Growth time

Page 12: Gravitational Waves - ULisboa

Asteroseismology: Realistic EoSDoneva, Gaertig, KK, Krüger (2013)

18.12.2015 Lisbon 12

Nearly “universal” fitting formulae for :• the frequencies • the damping times• Independent of GR or Cowling

ω c

ω 0

⎛⎝⎜

⎞⎠⎟ ℓ=2,3,4

≈ f ΩΩK

⎛⎝⎜

⎞⎠⎟

τ 0τ

⎛⎝⎜

⎞⎠⎟1/2

≈ f ω i

ω 0

⎛⎝⎜

⎞⎠⎟

Oscillationfrequencies Damping/Growth Times

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

ω/ω

0

Ω/Ωk

l=m=2 l=m=3 l=m=4 l=-m=2, 3, 4

l=2 Full GR, C and S models l=3 Full GR, C and S models

unstable branch (l=m)

stable branch (l=-m)

Page 13: Gravitational Waves - ULisboa

Asteroseismology

18.12.2015 Lisbon 13

Stable Branch

Unstable Branch

Unstable Branch

Doneva, Gaertig, KK, Krüger (2013)

ℓ = 2, 3,4

Page 14: Gravitational Waves - ULisboa

Asteroseismology: alternative scalings

18.12.2015 Lisbon 14

Mσ iunst = (0.56 − 0.94ℓ)+ (0.08 − 0.19ℓ)MΩ +1.2(ℓ+1)η[ ]

The l = 2 f-mode oscillation frequencies as functions of the parameter η

Doneva-Kokkotas2015

1.2 1.4 1.6 1.8 2.0 2.2

4

6

8

10

12

14

l=m=2 l=m=3 l=m=4

- b(

M)

𝜂 = 𝑀4/𝐼 ≈ 𝑀/𝑅

Page 15: Gravitational Waves - ULisboa

Asteroseismology: alternative scalings

18.12.2015 Lisbon 15

Thenormalizeddampingtime

asafunctionofthenormalizedoscillation frequency Mσ forl=m=2&l=m=4 f-modes.

η M

τη2⎛⎝⎜

⎞⎠⎟

(1/2ℓ)

Doneva-KK2015

η = M 3 / I

Page 16: Gravitational Waves - ULisboa

Asteroseismology:Alternative Theories of Gravity

18.12.2015 Lisbon 16

• The maximum deviation between the f-mode frequencies in GR and R2 gravity is up to 10% and depends on the value of the R2 gravity parameter a.

• Alternative normalizations show nicer relations

η = M 3 / I

Page 17: Gravitational Waves - ULisboa

The CFS instability

rotin

m mωω

= − +Ω

18.12.2015 Lisbon

Chandrasekhar 1970: Gravitational waves lead to a secular instability

Friedman & Schutz 1978: The instability is generic, modes with sufficiently large m are unstable.

ü Radiation drives a mode unstable if the mode pattern moves backwards according to an observer on the star (Jrot<0), but forwards according to someone far away (Jrot>0).

ü They radiate positive angular momentum, thus in the rotating frame the angular momentum of the mode increases leading to an increase in mode’s amplitude.

A neutral mode of oscillation signals the onset of CFS instability.

LIGO/Virgo/GEO/KAGRA/ET band

Gaertig+Kokkotas 2008

17

Page 18: Gravitational Waves - ULisboa

Instability Window

18.12.2015 Lisbon Gaertig, Glampedakis, Kokkotas, Zink (2011)

ü For the 1st time we have the window of f-mode instability in GRü Newtonian: (l=m=4) Ipser-Lindblom (1991)

Mutual friction

>30 min

N=0.66

18

Page 19: Gravitational Waves - ULisboa

Saturation of the InstabilityParametric Resonance

18.12.2015 Lisbon Pnigouras, Kokkotas (2015) 19

Page 20: Gravitational Waves - ULisboa

Saturation of the InstabilityParametric Resonance

18.12.2015 Lisbon Pnigouras, Kokkotas (2015) 20

Page 21: Gravitational Waves - ULisboa

Saturation of the InstabilityParametric Resonance

18.12.2015 Lisbon Pnigouras, Kokkotas (2015) 21

Page 22: Gravitational Waves - ULisboa

Evolution of a nascent (unstable) NS

18.12.2015 Lisbon

Passamonti-Gaertig-KK-Doneva (2013)

Mutual Friction plays NO ROLE for the f-mode instability

ProcedureasdescribedinOwenetal 1998&Anderson,Jones,KK2002

22

Page 23: Gravitational Waves - ULisboa

Evolution of a nascent (unstable) NS

18.12.2015 Lisbon

Passamonti-Gaertig-Kokkotas-Doneva (2013)

The instability can be potentially observed by events in Virgo cluster

BUT• Event rate is unknown • Competiton with r-mode and magnetic field slow-down• Saturation amplitude is varying during the procces

23

1010 1011 1012 1013 10140.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

f=10-6, l=m=3d = 10 Mpc

aLIGO ET

B

S/N

: aL

IGO

0

5

10

15

20

25

30

35

40

45

S/N

: Ei

nste

in T

eles

copeWFF2 Mb= 1.8

1010 1011 1012 1013 10140.0

0.5

1.0

1.5

2.0f=10-7, l=m=3d = 10 Mpc

aLIGO ET

B

S/N

: aL

IGO

0

5

10

15

20

S/N

: Ei

nste

in T

eles

copeWFF2 Mb= 1.8

Page 24: Gravitational Waves - ULisboa

AGRAVITATIONALWAVEAFTERGLOWINBINARYNEUTRONSTARMERGERS

18.12.2015 Lisbon 24

Page 25: Gravitational Waves - ULisboa

Binary Neutron Star Mergersthe standard scenario

I. After the merging the final body most probably will be a supramassive NS (2.5-3 M¤)

II. The body will be differentially rotating

III. The “averaged” magnetic field will amplified due to MRI (up to 3-4 orders of magnitude)

IV. The strong magnetic field and the emission of GWs will drain rotational energy

V. This phase will last only a few tenths of msecs and can potentially provide information for the Equation of State (EOS)

18.12.2015 Lisbon 25

-2

-1

0

1

2

h+,×

[10-2

2 ]

(c) H15

-2

-1

0

1

2

-5 0 5 10 15

h+,×

[10-2

2 ]

tret - tmerge [ms]

(d) S15

Kiuchi,Sekiguchi,Kyutoku,Shibata2012

-2

-1

0

1

2

h+,×

[10-2

2 ]

(a) H135

-2

-1

0

1

2

-5 0 5 10 15 h

+,×

[10-2

2 ]

tret - tmerge [ms]

(b) S135

Page 26: Gravitational Waves - ULisboa

Post-Merger Scenario

18.12.2015 Lisbon 26

ü Theoutcome isdependentupon themass(M)ofthecentralobjectformedandthemaximumpossiblemassofaneutronstar(Mmax).

ü Ontherightaresketchesoftheexpectedlight-curvesifastable(top)oranunstablemagnetar (bottom) isformed.

Rowlinson 2013

Three different outcomes of the merger of a BNS merger

Page 27: Gravitational Waves - ULisboa

Short γ-ray light curves§ The favored progenitor model for SGRBs is the merger of two NSs that triggers an explosion

with a burst of collimated γ-rays.

§ Following the initial prompt emission, some SGRBs exhibit a plateau phase in their X-ray light curves that indicates additional energy injection from a central engine, believed to be a rapidly rotating, highly magnetized neutron star.

§ The collapse of this “protomagnetar” to a black hole is likely to be responsible for a steep decay in X-ray flux observed at the end of the plateau.

18.12.2015 Lisbon 27

Rowlinson,O’Brien,Metger,Tanvir,Levan 2013

Page 28: Gravitational Waves - ULisboa

Pnigouras-KK2015

18.12.2015 Lisbon

Thepost-mergerobjectisstillstableandrotatesatnearlyKepler periods<1ms

28

Theevolution intotheinstabilitywindow

The detailed evolution depends:a) Strengthofthemagneticfield(averagedmay

reach1015-16G!)b) Equationofstateofthepost-mergerneutronstarc) Finedetailsofthenon-lineardynamics (three

modecoupling,shockwaves,wavebreaking)

α (Mc2)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Black&Hole*Limit*

NS*evolu3

onary*pa

th*

Post-Merger NS: secular instabilityDoneva-KK-Pnigouras 2015

Page 29: Gravitational Waves - ULisboa

F-mode instability: Detectability

18.12.2015 Lisbon

10Hz 100Hz 1000Hz

Onsetofinstability

29

GW frequencies:• WW2a: 920-1000 Hz• APR: 370–810 Hz• WFF2b: 600–780 Hz

Page 30: Gravitational Waves - ULisboa

Post-Merger NS: GW Afterglow

18.12.2015 Lisbon 30

1012 1013 1014 10150.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f=10-6, l=m=2d = 50 Mpc

aLIGO ET

B

S/N

: aL

IGO

0

5

10

15

20

25

30

35

40

WFF2 Mb= 3.0

APR Mb= 3.2

S/N

: Ei

nste

in T

eles

copeWFF2 Mb= 2.9

1012 1013 1014 10150.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f=10-5, l=m=2d = 50 Mpc

aLIGO ET

B

S/N

: aL

IGO

0

5

10

15

20

25

30

35

40

WFF2 Mb= 3.0

APR Mb= 3.2

S/N

: Ei

nste

in T

eles

copeWFF2 Mb= 2.9

1012 1013 1014 10150.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f=10-7, l=m=2d = 50 Mpc

aLIGO ET

B

S/N

: aL

IGO

0

5

10

15

20

25

30

35

40

WFF2 Mb= 3.0

APR Mb= 3.2

S/N

: Ei

nste

in T

eles

cope

WFF2 Mb= 2.9CompetitionbetweentheB-fieldandthesecularinstability

GW frequencies:WW2a: 920-1000 HzAPR: 370–810 HzWFF2b: 600–780 Hz

Doneva-KK-Pnigouras 2015

Page 31: Gravitational Waves - ULisboa

Conclusions

18.12.2015 Lisbon 31

ü The influence of alternative/extended theories of gravity on NS parameters is much more pronounced for fast rotation.

ü Difficult to set constraints on theories using measurement of the neutron star M and R alone, until the EOS can be determined with smaller uncertainty.

Page 32: Gravitational Waves - ULisboa

Conclusions

18.12.2015 Lisbon 32

ü Asteroseismology for fast rotating stars is possible

ü Asteroseismology for magnetars is promising (!)

ü The influence of alternative/extended theories of gravity on NS parameters is much more pronounced for fast rotation.

ü Difficult to set constraints on theories using measurement of the neutron star M and R alone, until the EOS can be determined with smaller uncertainty.

Page 33: Gravitational Waves - ULisboa

Conclusions

18.12.2015 Lisbon 33

ü f-mode instability can be potentially a good source for GWs for supramassive NS

ü The efficincy depends on the saturation amplitude and strength of B-field.

ü The influence of alternative/extended theories of gravity on NS parameters is much more pronounced for fast rotation.

ü Difficult to set constraints on theories using measurement of the neutron star M and R alone, until the EOS can be determined with smaller uncertainty.

ü Asteroseismology for fast rotating stars is possible

ü Asteroseismology for magnetars is promising