GRB PRODUCTION & SN SIGNATURES IN SLOWLY ROTATING COLLAPSARS. Diego Lopez-Camara Instituto de Astronomía (UNAM), Mexico City. In collaboration with William

Embed Size (px)

Citation preview

  • Slide 1

GRB PRODUCTION & SN SIGNATURES IN SLOWLY ROTATING COLLAPSARS. Diego Lopez-Camara Instituto de Astronoma (UNAM), Mexico City. In collaboration with William Lee & Enrico Ramirez-Ruiz (Lopez-Camara et al., 2009 ApJ) NS & GRBs, Cairo & Alexandria, Egypt 3 rd of April, 2009. Slide 2 GRB characteristics Cosmological distances (Metzger, 1997) L LGRB 10 49 erg s -1 - 10 52 erg s -1 GRB SN connection: 1.GRB980425 con SN1998bw (Galama et al., 1998) 2.XRF020903 (Soderberg et al., 2004) 3.GRB021211 con SN2002lt (Della Valle et al., 2003) 4.GRB030329 con SN2003dh (Stanek et al., 2003) 5.GRB031203 con SN2003lw (Malesani et al.,2004) 6.GRB050525A con SN2005nc (Della Valle et al., 2006a) 7.GRB060218 con SN2006aj (Campana et al., 2006). COLLAPSAR COLLAPSAR 1 / 11 LGRBs Slide 3 If J < J crit quasi-radial acretion onto the CO J crit = 2 r s c ~ 10 16 cm 2 s -1 (for a 1 M O BH) J J crit requires further investigation. Previous studies have assumed J > J crit If J J crit accretion disk is formed.Accretion 2 / 11 Slide 4 t = 0 Rout V R (R) = V collapsar (R) = collapsar T(R) = T collapsar J(R) = J(R) collapsar BH M dot (t) = ? V R (R) = ? (R) = ? T(R) = ? J(R) = ? t > 0 ? ? ? ? ? ? ? ? Rout BH L(t) = ? Objective: To study the evolution, morphology, and energy output within the collapsar scenario using the best physics possible, in the J J crit limit. Initial conditions: Woosley & Hegers (2006) 1D pre-SN 16TI model for a rapidly rotating, 16M O WR star of low metallicity. 3 / 11 more Slide 5 In order to understand the J effects J(R, ) = J(R) J( ) = J(R) sin 2 4 / 11 J(R) (cm 2 s -1 ) J(R) J crit J(R) < J crit R (cm) J(R) (cm 2 s -1 ) J(R) > J crit J(R) < J crit R (cm) Stellar rotation rate in pre-SN cores is not fully determined. It is important to determine under which conditions the progenitor can produce a LGRB. Slide 6 t = 0.2 s v max = 8 x10 7 cm s -1 J(R) < J crit v 1.8x10 8 1.4x10 8 1.0x10 8 0.6x10 8 0.2x10 8 1.2x10 9 1.0x10 9 0.8x10 9 0.6x10 9 0.4x10 9 0.2x10 9v Results 5 / 11 J(R) J crit = 0.1 Slide 7 J(R) J crit J(R) < J crit Clear difference between both regimes!!! 6 / 11 t = 0.2 s = 0.1 Equatorial profiles: Slide 8 q q .. cap ann disp ann cap t = 0.2 s = 0.1 7 / 11 Energy emission? Equatorial profiles: Slide 9 IsothermalAdiabatic How efficient was the neutrino cooling? 8 / 11 t = 0.2 s = 0.1 J(R) J crit more Slide 10 Luminosity = 0.1 < J < J crit L 10 51 erg s -1 L grb 10 48 erg s -1 J J crit L 10 52 erg s -1 L grb 10 49 erg s -1 = 0.1% for e - e + (Birkl et al., 2007) 10 52 10 53 10 51 10 50 t(s) 0.00 0.100.15 0.200.25 0.300.35 0.40 0.05 9 / 11 J(R) < J crit J(R) J crit Slide 11 t = 0.2 s GRB - SN J(R) J crit = 0.1 Winds expected in collapsar disks = viscous + + B (MacFadyen & Woosley, 1999) We inferred the expected nucleosynthesis of 56 Ni in the wind outows (Pruet et al., 2004) J(R) < J crit J(R) J crit substantial 56 Ni synthesis. (1M O of 56 Ni in 10s) GRB + SN J(R) < J crit J(R) < J crit no 56 Ni synthesis. GRB w/o SN (GRB060505 ?) 10 / 11 Slide 12 Conclusions 1.Clear difference between J J crit and J < J crit. 2.Flow properties lie between the isothermal and adiabatic regimes. 3.Good thermodynamics and neutrino treatment are necessary. 4.Even J < J crit could power a low energetic GRB. 5.GRB SN connection J(R) J crit GRB + SN. J(R) < J crit GRB w/o SN 11 / 11 Slide 13 Slide 14 The end Slide 15 is between the two regimes! J ~ J crit is between the two regimes! (thus cooling can not be ignored) (thus cooling can not be ignored) Adiabatic Isothermal Our case back even more Slide 16 t cool / t dyn t cool >> t dyn cooling is inefficient. (but necesary) how efficient was the cooling? back Slide 17 Best physics Good EOS Neutrino optical depth ( ) two stream approximation. Neutrino cooling and heating. Variable electronic fraction (Y e ). Self gravity (assuming sherical symetry). Turbulent viscosity Shakura & Sunyaevs recipe (1973). Relativistic effects Paczynski & Wiitas potential (1980). backEOS Slide 18 EOS ideal gas of + free nucleons (NSE) blackbody radiation (fully trapped) neutrino radiation relativistic e pairs (arbitrary degeneracy) cap q cap ( Langanke & Martinez-Pinedo, 2001) ann q ann ( Itoh et al., 1996) ann Shapiro & Teukolski (1983)