50
1 Gromov-Hausdorstable signatures for shapes using persistence joint with F. Chazal, D. Cohen-Steiner, L. Guibas and S. Oudot Facundo M´ emoli [email protected] ABabcdfghiejkl

Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

1

Gromov-Hausdor! stable signatures forshapes using persistence

joint with F. Chazal, D. Cohen-Steiner, L. Guibas and S. Oudot

Facundo Memoli

[email protected]

ABabcdfghiejkl

Page 2: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

2

Goal

• Shape discrimination is a very important problem in several fields.

• Isometry invariant shape discrimination has been approached with dif-ferent tools, mostly via computation and comparison of invariant signa-tures, [HK03,Osada-02,Fro90,SC-00].

• The Gromov-Hausdor! distance (and certain variants) provides a rig-orous and well motivated framework for studying shape matching underinvariances [MS04,MS05,M07,M08].

• However, its direct computation leads to NP hard problems (BQAP:bottleneck quadratic assignment problems).

Page 3: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

3

• Most of the e!ort has gone into finding lower bounds for the GH distancethat use informative invariant signatures and lead to easier optimizationproblems [M07,M08].

• Using persistent topology [ELZ00], we obtain a new family of sig-natures and prove that they are stable w.r.t the GH distance: i.e., weobtain lower bounds for the GH distance!

• These lower bounds:

– perform very well in practical application of shape discrimination.

– lead to BAPs (bottleneck assignment problems) which can be solvedin polynomial time.

Page 4: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

!

"""""#

0 d12 d13 d14 . . .d12 0 d23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&

visual summary

Page 5: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

!

"""""#

0 d12 d13 d14 . . .d12 0 d23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&

!

0

0

1

!

0

0

1

visual summary

Page 6: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

!

"""""#

0 d12 d13 d14 . . .d12 0 d23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&

!

0

0

1

!

0

0

1

?visual summary

Page 7: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

!

"""""#

0 d12 d13 d14 . . .d12 0 d23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&

!

0

0

1

!

0

0

1

?

visual summary

Page 8: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

• M: collection of all shapes (finite metric spaces).

• D: collection of all signatures (persistence diagrams).

Dh, h H

Page 9: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

• M: collection of all shapes (finite metric spaces).

• D: collection of all signatures (persistence diagrams).

Dh, h H

Page 10: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

• M: collection of all shapes (finite metric spaces).

• D: collection of all signatures (persistence diagrams).

h HDh X , Dh Y

Dh, h H

Page 11: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

dGH X, Y

• M: collection of all shapes (finite metric spaces).

• D: collection of all signatures (persistence diagrams).

h HDh X , Dh Y

Dh, h H

Page 12: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

dGH X, Y

• M: collection of all shapes (finite metric spaces).

• D: collection of all signatures (persistence diagrams).

h HDh X , Dh Y

Dh, h H

Page 13: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

dGH X, Y

• M: collection of all shapes (finite metric spaces).

• D: collection of all signatures (persistence diagrams).

h HDh X , Dh Y

dB Dh X , Dh Y

Dh, h H

Page 14: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

dGH X, Y

• M: collection of all shapes (finite metric spaces).

• D: collection of all signatures (persistence diagrams).

h HDh X , Dh Y

dB Dh X , Dh Y

Dh, h H

Page 15: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d12 d13 d14 . . .d12 0 d23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

Shapes as metric spaces

Page 16: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d12 d13 d14 . . .d12 0 d23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

Shapes as metric spaces

then use Gromov-Hausdor! distance..

Page 17: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Choice of the metric: geodesic vs Euclidean

Page 18: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d12 d13 d14 . . .d12 0 d!

23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&!

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

8

Invariance to isometric deformations (change in pose)

Page 19: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d12 d13 d14 . . .d12 0 d!

23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&!

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

8

Invariance to isometric deformations (change in pose)

geodesic distance remains approximately constant

Page 20: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

!

"""""#

0 d12 d13 d14 . . .d12 0 d!

23 d24 . . .d13 d23 0 d34 . . .d14 d24 d34 0 . . ....

......

.... . .

$

%%%%%&!

!

"""""#

0 d!12 d!

13 d!14 . . .

d!12 0 d!

23 d!24 . . .

d!13 d!

23 0 d!34 . . .

d!14 d!

24 d!34 0 . . .

......

......

. . .

$

%%%%%&

8

Invariance to isometric deformations (change in pose)

geodesic distance remains approximately constant

Page 21: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

9

Definition [Correspondences]

For finite sets A and B, a subset C ! A " B is a correspondence (between Aand B) if and and only if

• # a $ A, there exists b $ B s.t. (a, b) $ R

• # b $ B, there exists a $ A s.t. (a, b) $ R

Let C(A, B) denote all possible correspondences between sets A and B.

Page 22: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

9

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 0 1 0

0 1 0 1 1 0 1

1 0 1 1 0 1 0

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

A

B

Definition [Correspondences]

For finite sets A and B, a subset C ! A " B is a correspondence (between Aand B) if and and only if

• # a $ A, there exists b $ B s.t. (a, b) $ R

• # b $ B, there exists a $ A s.t. (a, b) $ R

Let C(A, B) denote all possible correspondences between sets A and B.

Page 23: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

9

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 0 1 0

0 1 0 1 1 0 1

1 0 1 1 0 1 0

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

A

B

Definition [Correspondences]

For finite sets A and B, a subset C ! A " B is a correspondence (between Aand B) if and and only if

• # a $ A, there exists b $ B s.t. (a, b) $ R

• # b $ B, there exists a $ A s.t. (a, b) $ R

Let C(A, B) denote all possible correspondences between sets A and B.

Page 24: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

9

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 0 1 0

0 1 0 1 1 0 1

1 0 1 1 0 1 0

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

A

B

Definition [Correspondences]

For finite sets A and B, a subset C ! A " B is a correspondence (between Aand B) if and and only if

• # a $ A, there exists b $ B s.t. (a, b) $ R

• # b $ B, there exists a $ A s.t. (a, b) $ R

Let C(A, B) denote all possible correspondences between sets A and B.

Page 25: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Definition. [BBI] For finite metric spaces X, dX and Y, dY , define theGromov-Hausdor! distance between them by

dGH X,Y12

minC

maxx,y , x ,y C

dX x, x dY y, y

Page 26: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Definition. [BBI] For finite metric spaces X, dX and Y, dY , define theGromov-Hausdor! distance between them by

dGH X,Y12

minC

maxx,y , x ,y C

dX x, x dY y, y

Page 27: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

11

Construction of our signatures

• Our signatures take the form of persistence diagrams: we capture cer-tain topological and metric information from the shape.

• First example: construction based on Rips filtrations: Let X, dX be ashape.

– Let Kd X be the d-dimensional full simplicial complex on X.

– To each ! x0, x1, . . . , xk Kd X assign its filtration time

F ! :12

maxi,j

dX xi, xj

– This gives rise to a filtration Kd X , F .

– Apply persistence algorithm [ELZ00] to summarize topologicalinformation in the filtration and obtain persistence diagram.

Page 28: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

12

!

0

0

1

• Persistence diagrams are colored multi-subsets of the extended realplane.. can also be represented as barcodes.

• Let D denote the collection of all persistence diagrams. Compare two dif-ferent persistence diagrams with bottleneck distance view D, dBas a metric space.

Page 29: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

12

!

0

0

1

• Persistence diagrams are colored multi-subsets of the extended realplane.. can also be represented as barcodes.

• Let D denote the collection of all persistence diagrams. Compare two dif-ferent persistence diagrams with bottleneck distance view D, dBas a metric space.

Page 30: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

13

Example: Rips filtration on a torus

Page 31: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

13

Example: Rips filtration on a torus

Page 32: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

14

Our signatures: more richness

• Let’s assume that in there is also a function defined on the shape: X, dX , fX .Then, we redefine the filtration values of ! x0, x1, . . . , xk

F ! max12

maxi,j

dX xi, xj ,maxi

fX xi

• Again, this gives rise to a filtration: Kd X , F use persistencealgorithm to obtain a persistence diagram.

• This increases discrimination power!

• We denote by H a family of maps that attach a function to a given finitemetric space.

• Then, for each h H, we denote by Dh X the persistence diagram arisingfrom the filtration above. This constitutes our family projection onto D.

Page 33: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

15

Example (Eccentricity). To each finite metric space X, dX one can assignthe eccentricity function:

eccX x maxx X

dX x, x .

Page 34: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

h H

Page 35: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

h H

Page 36: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

h H

Dh X , Dh Y

Page 37: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

dGH X, Y

h H

Dh X , Dh Y

Page 38: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

dGH X, Y

h H

Dh X , Dh Y

Page 39: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

shapes/spaces signatures (persistence diagrams)

M, dGH D, dB

X, Y

dGH X, Y

h H

Dh X , Dh Y

dB Dh X , Dh Y

Page 40: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Theorem (stability of our signatures). For all X, Y M,

dGH X, Y suph H

C h dB Dh X , Dh Y .

Remark.

• Proof relies on properties of the GH distance and new results on the sta-bility of persistence diagrams [CCGGO09].

• For a given h, the computation leads to a BAP which can be solved inpolynomial time.

• There are adaptations one can do in practice to speed up, see paper.

• One can obtain more generality and discrimination power by working inthe class of mm-spaces: shapes are represented as triples X, dX , µX

where µX are weights assigned to each point see [M07] and paper.

• Our results include stability of Rips persistence diagrams.

17

Page 41: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Theorem (stability of our signatures). For all X, Y M,

dGH X, Y suph H

C h dB Dh X , Dh Y .

Remark.

• Proof relies on properties of the GH distance and new results on the sta-bility of persistence diagrams [CCGGO09].

• For a given h, the computation leads to a BAP which can be solved inpolynomial time.

• There are adaptations one can do in practice to speed up, see paper.

• One can obtain more generality and discrimination power by working inthe class of mm-spaces: shapes are represented as triples X, dX , µX

where µX are weights assigned to each point see [M07] and paper.

• Our results include stability of Rips persistence diagrams.

17

Page 42: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Theorem (stability of our signatures). For all X, Y M,

dGH X, Y suph H

C h dB Dh X , Dh Y .

Remark.

• Proof relies on properties of the GH distance and new results on the sta-bility of persistence diagrams [CCGGO09].

• For a given h, the computation leads to a BAP which can be solved inpolynomial time.

• There are adaptations one can do in practice to speed up, see paper.

• One can obtain more generality and discrimination power by working inthe class of mm-spaces: shapes are represented as triples X, dX , µX

where µX are weights assigned to each point see [M07] and paper.

• Our results include stability of Rips persistence diagrams.

17

Page 43: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Theorem (stability of our signatures). For all X, Y M,

dGH X, Y suph H

C h dB Dh X , Dh Y .

Remark.

• Proof relies on properties of the GH distance and new results on the sta-bility of persistence diagrams [CCGGO09].

• For a given h, the computation leads to a BAP which can be solved inpolynomial time.

• There are adaptations one can do in practice to speed up, see paper.

• One can obtain more generality and discrimination power by working inthe class of mm-spaces: shapes are represented as triples X, dX , µX

where µX are weights assigned to each point see [M07] and paper.

• Our results include stability of Rips persistence diagrams.

17

Page 44: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Some experiments

• Sumner database: 62 shapes total, 6 classes. Used graph estimate of thegeodesic distance. Number of vertices ranged from 7K to 30K.

• Subsampled shapes and retained subsets of 300 points (farthest point sam-pling). Normalized distance matrices.

• Used the mm-space representation of shapes: weights were based on Voronoiregions.

• Used several functions ! h for ! in a finite subset of scales.

• Obtained 4% (or 2%) classification error in a 1-nn classification problem.

Page 45: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

Some experiments

• Sumner database: 62 shapes total, 6 classes. Used graph estimate of thegeodesic distance. Number of vertices ranged from 7K to 30K.

• Subsampled shapes and retained subsets of 300 points (farthest point sam-pling). Normalized distance matrices.

• Used the mm-space representation of shapes: weights were based on Voronoiregions.

• Used several functions ! h for ! in a finite subset of scales.

• Obtained 4% (or 2%) classification error in a 1-nn classification problem.

Page 46: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

19

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04MDSCALE with M

camelcatelephant

faceheadhorse

C

10 20 30 40 50 60

10

20

30

40

50

60

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Page 47: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

20

Discussion

• Summary of our proposal:

– Use the metric (or mm-space) representation of shapes.– Formulate the shape matching problem using the Gromov-Hausdor!

distance.– Compute our signatures for shapes.– Solve the BAP lower bounds: computationally easy! By our theorem,

the computed quantities give lower bounds for the GH distance.

• Implications and Future directions:

– We do not need a mesh– general: can be applied to any dataset.– We obtain stability of Rips persistence diagrams.– Richness of the family H? how close can I get to the GH distance?– Local signatures: more discrimination.– Extension to partial shape matching: which (local) signatures are

useful for this?

Page 48: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

21

Acknowledgements

• ONR through grant N00014-09-1-0783

• NSF through grants ITR 0205671, FRG 0354543 and FODAVA 808515

• NIH through grant GM- 072970,

• DARPA through grant HR0011-05-1-0007.

• INRIA-Stanford associated TGDA team.

Page 49: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

http://math.stanford.edu/~memoli

Bibliography

[BBI] Burago, Burago and Ivanov. A course on Metric Geometry. AMS, 2001

[HK-03] A. Ben Hamza, Hamid Krim: Probabilistic shape descriptor for tri-angulated surfaces. ICIP (1) 2005: 1041-1044

[Osada-02] Robert Osada, Thomas A. Funkhouser, Bernard Chazelle, DavidP. Dobkin: Matching 3D Models with Shape Distributions. Shape Mod-eling International 2001: 154-166

[SC-00] S. Belongie and J. Malik (2000). ”Matching with Shape Contexts”.IEEE Workshop on Contentbased Access of Image and Video Libraries(CBAIVL-2000).

[CCGMO09] Chazal, Cohen-Steiner, Guibas, Memoli, Oudot. Gromov-Hausdor!stable signatures for shapes using persistence. SGP 2009.

[CCGGO09] Chazal, Cohen-Steiner, Guibas, Glissee, Oudot. Proximity ofpersistence modules and their diagrams. Proc. 25th ACM Symp. Comp.Geom., 2009.

[M08] F. Memoli. Gromov-Hausdor! distances in Euclidean spaces. NORDIA-CVPR-2008.

[M07] F.Memoli. On the use of gromov-hausdor! distances for shape compar-ison. In Proceedings of PBG 2007, Prague, Czech Republic, 2007.

[MS04] F. Memoli and G. Sapiro. Comparing point clouds. In SGP ’04:Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium onGeometry processing, pages 32–40, New York, NY, USA, 2004. ACM.

[MS05] F. Memoli and G. Sapiro. A theoretical and computational frameworkfor isometry invariant recognition of point cloud data. Found. Comput.Math., 5(3):313–347, 2005.

Page 50: Gromov-Hausdorff stable signatures for shapes using persistence · d X ,F use persistence algorithm to obtain a persistence diagram. • This increases discrimination power! •

23

Let X1, X2 Z be two di!erent samples of the same shape Z, and Y anothershape then

dGH X1, Y dGH X2, Y dGH X1, X2 r1 r2