26
Groups and Symmetries in Numerical Linear Algebra Part 3 Integration on Lie groups and related linear algebra problems Hans Munthe-Kaas 1 Department of Mathematics University of Bergen Norway http://hans.munthe-kaas.no mailto:[email protected] CIME-EMS Cetraro 2015 Hans Munthe-Kaas (Univ. of Bergen) Groups Num. Lin. Algebra CIME-EMS ’15 1 / 16

Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Groups and Symmetries in Numerical Linear AlgebraPart 3

Integration on Lie groups and related linear algebra problems

Hans Munthe-Kaas

1Department of MathematicsUniversity of Bergen

Norwayhttp://hans.munthe-kaas.nomailto:[email protected]

CIME-EMS Cetraro 2015

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 1 / 16

Page 2: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Lie group integration (LGI): WHAT, WHY and HOW?

What?LGI generalizes classical ODE integrators (Runge–Kutta, Multistep, ..),based on the commutative action of translations on Rn

yn+1 = yn + Φ(h,F , yn, . . .),

to methods based on Lie group actions on a manifoldM

yn+1 = g(h, f , yn, . . .)·yn, g ∈ G, y ∈M.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 2 / 16

Page 3: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

LGI - brief history

P. Crouch & R. Grossman: Numerical integration of ordinarydifferential equations on manifolds, J. Nonlinear Sci. 1993.Bergen-Cambridge-Trondheim(Celledoni, Iserles, MK, Nørsett, Owren, Zanna) 1995-...today:

I MK: Lie–Butcher theory for Runge–Kutta methods, BiT 1995.

I · · ·I Iserles, MK, Nørsett, Zanna: Lie group methods, Acta Numerica 2000.

I · · ·I Celledoni, Marthinsen, Owren: An introduction to Lie group integrators –

basics, new developments and applications, J. Comp. Phys., 2014.

I · · ·

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 3 / 16

Page 4: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Why? "Coordinate–Free numerics"

Object orientation:Programming is specification + implementation.

Can this dichotomy be pursued in computational mathematics/numerical algorithms?Coordinate–Free numerics:SOPHUS Library (MK+Haveraaen 1992-1995) pursued this ideafor tensor computations.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 4 / 16

Page 5: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

(Don’t read this!)

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 5 / 16

Page 6: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Numerical integration (ODEs), abstract view.

Differential equations in ’pure’ math:Domain: Differential manifoldM. Has points (positions p ∈M)and tangents (velocities in v ∈ TpM at each base point).ODE: y ′ = F (y , t), where F : M→ TM specifies the velocity.

Numerical integration needs more information:Domain: Differential manifold: position + tangents (M and TM).Computable motions: given by Lie group action : G ×M→M.Rule for transport of tangents from one point to another.

Surprise!A full theory of numerical integration, including analysis (order theory,structure preservation), and implementation can be developed fromthese building blocks.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 6 / 16

Page 7: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

(Matrix) Lie groups. Basic structures.Examples:

GL(n) (general linear)SL(n) (special linear)O(n) (orthogonal)SO(n) (special orthogonal)Sp(n) (symplectic)T (n) (triangular)E(n) (euclidean motion group).Aff(n) (affine group).Note: Important Lie groups are not naturally described bymatrices (some cannot).

Basic building blocks:Tangents, Lie algebra, exponential map and commutators,homogeneous manifolds. (Explained at blackboard.)

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 7 / 16

Page 8: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Numerical integration

ODE: y ′(t) = f (y), y(0) = y0

Analytical: y(t) = Φtf (y0), where Φtf (y0) denotes the exact solution.Numerical: yn+1 = Ψh,f (yn), where Ψh,f is numerical integrator.

Order theory: Find Ψh,f s.t. |Ψh,f (y0)− Φtf (y0)| = O(hp+1).

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 8 / 16

Page 9: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Numerical integration

ODE: y ′(t) = f (y), y(0) = y0

Analytical: y(t) = Φtf (y0), where Φtf (y0) denotes the exact solution.Numerical: yn+1 = Ψh,f (yn), where Ψh,f is numerical integrator.

Structure preservation (Geometric integration): Given f withcertain geometric properties, find Ψh,f exactly preserving thisproperty.

I Symplectic structure.I Energy preservation and other first integrals.I Volume preservation.I Lyapunov functions.I Equations on manifolds.I Equivariance and symmetriesI FixpointsI Correct linearization near fixpointsI . . .

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 8 / 16

Page 10: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Numerical integration

ODE: y ′(t) = f (y), y(0) = y0

Analytical: y(t) = Φtf (y0), where Φtf (y0) denotes the exact solution.Numerical: yn+1 = Ψh,f (yn), where Ψh,f is numerical integrator.

Construction of numerical integrators.I Classical methods: Runge-Kutta, Multistep, General Linear.I Exponential integrators.I Lie group integrators.I Taylor series and modified vector field methods.I Methods built from simpler: Composition methods, partitioned

methods.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 8 / 16

Page 11: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

... Lie Group Integrators (How?)

Example: Geometrization of Runge-Kutta methods:Classic RK solves: y ′ = F (y), y ,F ∈ Rn

Given yn ≈ y(tn) and a stepsize h.We compute yn+1 ≈ y(tn + h) as:

for i = 1, sui =

∑sj=1 ai,jKj

Ki = h·F (ui + yn)

endu =

∑sj=1 bjKj

yn+1 = u + yn

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 9 / 16

Page 12: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

... Lie Group Integrators (How?)Example: Geometrization of Runge-Kutta methods:LGI solves: y ′ = f (y)·y , y ∈M, f :M→ gwhere · : g×M→ TM denotes infinitesimal group action

Given yn ≈ y(tn) and a stepsize h.We compute yn+1 ≈ y(tn + h) as:

for i = 1, sui =

∑sj=1 ai,jKj

Ki = h·F (exp(ui)·yn)

endu =

∑sj=1 bjKj

yn+1 = exp(u)·yn

where exp : g→ G, and · : G×M→M.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 9 / 16

Page 13: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

... Lie Group Integrators (How?)Example: Geometrization of Runge-Kutta methods:LGI solves: y ′ = f (y)·y , y ∈M, f :M→ gwhere · : g×M→ TM denotes infinitesimal group action

Given yn ≈ y(tn) and a stepsize h.We compute yn+1 ≈ y(tn + h) as:

for i = 1, sui =

∑sj=1 ai,j K̃j

Ki = h·F (exp(ui)·yn)

K̃j = d exp−1ui

(Kj) = Kj − 12 [ui ,Kj ] + 1

12 [ui , [ui ,Kj ]] + · · ·end

u =∑s

j=1 bj K̃j

yn+1 = exp(u)·yn

where exp : g→ G, and · : G×M→M.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 9 / 16

Page 14: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Example: A highly oscillatory problem

Carl Størmer explains Aurorae (1907).

Størmer developed an excellent symplectic integrator.He ’ran’ his scheme on human computers (students),4500 CPU hours! Three steps per hour ...

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 10 / 16

Page 15: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Aurora example (cont.)

Equation of motion:(y(t)v(t)

)′=

(v(t)

v(t)× B(y)

), B(y) : magnetic field

Lie group action by freezing magnetic field (⇒ helical motion):(y(t)v(t)

)′=

(v(t)

v(t)× B(y0)

).

Equations rewritten by action of GL(6) on R6. f : M→ gl(6)(yv

)′=

(v

v × B(y)

)=

(0 I0 −B̂(y)

)·(

yv

)= f (y) ·

(yv

).

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 11 / 16

Page 16: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Størmers problem integrated with an LGI

Stepsize in LGI and RK-45. 0 50 100 150 200 250 300 350 400 450 5000

2

4

6

8

10

12

time

stepsize

LGI is more efficient, since it can take 8-10 times longer steps withsame accuracy.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 12 / 16

Page 17: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Actions for LGI

Actions are for LGI as preconditioners for iterative solvers.

Examples of actions:

Action of O(n) by similarity transforms on Rn, g · A = gAg−1.(Isospectral flows).Action of Aff(n) on Rn, (A,b) · x = Ax + b. (Info about jacobiancan be taken into the action).Action by solving simplified differential equations, e.g. equatoinut = ∇(µ(x)∇u) can be solved by using solution of ut = c∇2u + bas action (affine action by circulants).Co-adjoint action for Lie Poisson systems (geometric mechanics).

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 13 / 16

Page 18: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Examples of LGI

Crouch–Grossman methods: (CG ’93, Owren-Marthinsen ’99)

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 14 / 16

Page 19: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Examples of LGI

MK-type methods: (MK ’95, ’98, ’99)

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 14 / 16

Page 20: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Examples of LGI

Magnus and Fer expansions: (Iserles-Nørsett ’99, Iserles ’84)These are special methods for solving equations of the form

y ′ = f (t)y ,

where f : R→ g, by iterated integrals.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 14 / 16

Page 21: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Examples of LGI

Commutator free methods (Celledoni, Owren, Marthinsen 2003)By a combination of exponentials and sums one can avoidcommutators. Advantage for stiff systems.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 14 / 16

Page 22: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Examples of LGI

Retraction and coordinate based methodsThese are methods based on other mappings (than exp) between gand G, ex. Cayley map, generalized polar coordinates etc.

Symplectic Lie-group methods (Bogfjellmo, H. Marthinsen 2014)These methods are derived from discrete variational principles and aresymplectic for Hamiltonian flows on (the cotangent bundle) of Liegroups.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 14 / 16

Page 23: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Properties of the (matrix) exponential

BCH equation

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 15 / 16

Page 24: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Properties of the (matrix) exponential

’dexp equation’ (Hausdorff 1904)

ddt

exp(A(t)) = d expA(t)(A′(t)) exp(A(t))

d expA(B) = A +12

[A,B] +16

[A, [A,B]] + · · ·

=∞∑

k=0

1(k + 1)!

adkAB =

ez − 1z

∣∣∣∣z=adA

B

d exp−1A (B) =

zez − 1

∣∣∣∣z=adA

B = B − 12

[A,B] +1

12[A, [A,B]]− · · ·

=∞∑

j=0

Bj

j!adj

A(B),

Bj Bernoulli numbers.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 15 / 16

Page 25: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Properties of the (matrix) exponential

CorollaryThe Lie group equation

y ′(t) = f (y(t)), y(t) ∈ G, y(0) = y0

has solutiony(t) = exp(θ(t))y0, θ(t) ∈ g,

where θ solves the equation

θ′(t) = d exp−1θ (f (y(t)), θ(0) = 0

on the flat vector space g.

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 15 / 16

Page 26: Groups and Symmetries in Numerical Linear Algebra Part 3 - …simoncin/CIME/munthekaas3.pdf · differential equations on manifolds, J. Nonlinear Sci. 1993. Bergen-Cambridge-Trondheim

Generalized polar decompositionsand the matrix exponential

(this last part of my talk is done on blackboard).

Hans Munthe-Kaas (Univ. of Bergen) Groups ↔ Num. Lin. Algebra CIME-EMS ’15 16 / 16