20
Gut-Heart Axis: Potential Therapeutic Implications W. H. Wilson Tang, MD Research Director (HF/Transplant), Heart & Vascular Institute, Cleveland Clinic Disclosure: Consultant for Sequana Medical, ABIM Funding: P20HL113452, R01DK106000, R01HL126827

Gut-Heart Axis: Potential Therapeutic Implications

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gut-Heart Axis: Potential Therapeutic Implications

Gut-Heart Axis: Potential Therapeutic Implications

W. H. Wilson Tang, MD Research Director (HF/Transplant), Heart & Vascular Institute, Cleveland Clinic

Disclosure: Consultant for Sequana Medical, ABIM Funding: P20HL113452, R01DK106000,

R01HL126827

Page 2: Gut-Heart Axis: Potential Therapeutic Implications

“Gut Hypothesis” of Heart Failure: Changes in Bowel Wall

Sadnek et al, Int J Cardiol 2012; Sandek et al, JACC 2007; Kitai et al, ACC 2017 (abstract)

*Lactulose (5g) + Rhamnose (5g) + Sucrose (5g) in 100cc deionized water (~1,500 mOsm/l)

Urine lactulose/ rhamnose ratio (LR) * Structure Microbes Function/Integrity

Page 3: Gut-Heart Axis: Potential Therapeutic Implications
Page 4: Gut-Heart Axis: Potential Therapeutic Implications

Gut Microbiota: Composition and Functionality Microbial cells may out-number human cells 10 to 1; genes

by 100 to 1, and may vary up 50% between individuals

Cui et al, Sci Rep 2018; Califf et al, Microbes 2014

Page 5: Gut-Heart Axis: Potential Therapeutic Implications

Dietary Nutrients and Host-Microbial Metabolism

Kohl & Carey, J Exp Biol 2016

The biggest environment “exposure” is represented by what we ingest as food and filtered by gut microbiota and their metabolites’ interactions with human host.

Page 6: Gut-Heart Axis: Potential Therapeutic Implications

Tang et al, J Am Coll Cardiol 2019

Diet, Intestinal Microbiota & Cardio-Renal Risk

Page 7: Gut-Heart Axis: Potential Therapeutic Implications

Short-Chain Fatty Acid (SCFA) from Dietary Fiber

David et al, Nature 2014

Tang et al, Nat Rev Cardiol 2019

Pluznick, Kidney Int 2016

Renal Sensory Nerve Activation

Page 8: Gut-Heart Axis: Potential Therapeutic Implications

Wang et al, Nat Med 2011

Involvement of Gut Microbiota

Page 9: Gut-Heart Axis: Potential Therapeutic Implications

Tang et al., N Engl J Med 2013

Page 10: Gut-Heart Axis: Potential Therapeutic Implications

Impact of Diet & Microbes on TMAO in Humans Vegans/Vegetarians vs Omnivores

Koeth et al, Nat Med 2013; Koeth et al, JCI 2019

Carnitine sources

γ-Butyrobetaine (pre-carnitine)

Page 11: Gut-Heart Axis: Potential Therapeutic Implications

Koeth et al JCI 2019

Page 12: Gut-Heart Axis: Potential Therapeutic Implications

Dietary Red Meat Intake Alters Both TMA/TMAO Production & Renal Clearance

Wang et al, Eur Heart J 2019

Page 13: Gut-Heart Axis: Potential Therapeutic Implications

Pathogenic Mechanisms Linking TMAO to Diseases

Modified from Tang & Hazen, Circulation 2017 Chen et al., Cell Metab 2019

Page 14: Gut-Heart Axis: Potential Therapeutic Implications

Li et al, JCI Insight 2018

Model 1: adjusted for age, sex, HDL, LDL, smoking, diabetes, SBP, hsCRP Model 2: Model 1 + TMAO

Li et al, Eur Heart J 2019

Page 15: Gut-Heart Axis: Potential Therapeutic Implications

Therapeutic Implications with TMAO-Lowering

Withdrawal (WD) of dietary TMAO (0.12%) at 6 weeks

Organ et al, AHA 2016 (manuscript submitted, under review) Wang et al, Eur Heart J 2018

↓Dietary Red Meat

Zhu et al, Circulation 2017

Aspirin Dietary Restriction

Page 16: Gut-Heart Axis: Potential Therapeutic Implications

Seafood TMA/TMAO Content and Consumption Male ApoE-/- mice on Western Diet (200g/kg) for 16 wks

TMA (mg/kg)

24.5

529.0 (white turbot)

23

(Milk

)

TMAO and TMA Content in Various Seafood

Zeneng et al, 2019 (unpublished) Yazdekhasti Mol Nutr & Foods Res 2016

Page 17: Gut-Heart Axis: Potential Therapeutic Implications

Summary: Dietary Changes and TMAO in Humans Intervention Effects on TMAO References

Caloric restriction ↓ Erikson ML et al, Nutrients 2019

Intermittent fasting ↓ Washburn RL et al, Nutrients 2019

↓Red meat consumption ↓ Wang Z et al, Eur Heart J 2019

Vitamin B+D ↓ Obeid R et al, Mol Nutr Food Res 2017

Mediterranean diet ↓↔ Pignanelli M et al, Nutrients 2018 Guasch‐Ferré M et al, JAHA 2018

Probiotics ↔↑ Boutagy NE et al, Obesity 2015

Increase protein allowance ↑ Mitchell et al, Nutrients 2019 Animal intervention studies showing TMAO‐lowering effects with garlic (allicin), fish oil, and resveratrol

Page 18: Gut-Heart Axis: Potential Therapeutic Implications

Roberts et al, Nat Med 2018

MC = methylcholine

Wang et al, Cell 2015 DMB = 3,3-dimethyl-1-butanol

Page 19: Gut-Heart Axis: Potential Therapeutic Implications

Take Home Messages • Understanding gut‐heart axis and pathways associated with

intestinal microbial metabolism may be more relevant than recognizing species’ composition in human health and disease

• Intestinal microbiota and their ability to metabolize our ingested food can impact on cardio‐renal disease progression, with insights into TMA/TMAO pathway demonstrating transmission of susceptibility of cardio‐renal disease risk

• Modifying long‐term dietary nutrient intake and unique microbial targeting strategies are proof‐of‐concept approaches for cardiovascular prevention

Page 20: Gut-Heart Axis: Potential Therapeutic Implications

Acknowledgements Cleveland Clinic Tang Lab

• Vichai Senthong, MD • Jennifer Kirsop • Timothy Engelman, LPN

Hazen Lab

• Stanley Hazen, MD PhD • Zeneng Wang, PhD • Robert Koeth, MD PhD • Xinmin S. Li, PhD • Weifei Zhu, PhD • Nilaksh Gupta, PhD • Ina Nemet, PhD • Jennifer Buffa, MS

Cleveland State University • Yuping Wu, PhD

USC/UCLA • Hooman Allayee, PhD • Jaana Hartiala, PhD • Aldon J. Lusis, PhD

Lousiana State University • David Lefer, PhD • Chelsea Organ, PhD

Funding Support • NIH R01HL105993 • NIH P20HL113452 • NIH UL1TR000439 • NIH R01DK106000 • NIH R01HL126827