36
Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James Madison University, Sept 24 2018 1

Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

Hadron Masses and Factorization

(in DIS)

JeffersonLab/OldDominionUniversity

TedRogers

Quark-Hadron Duality 2018, James Madison University, Sept 24 2018 1

Page 2: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

2

Hadronic vs. Partonic Degrees of Freedom

•  Q≈1GeV,largex.

•  Approachkinematicalissuesintermsofwhattheyrevealaboutunderlyingdegreesoffreedom.

Page 3: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

Two Questions

•  Whatarekinematicaltargetmassapproximations?

•  When/howdotheymatter?

3

Page 4: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

4

Target Mass Corrections •  LargenumberofTMCformalisms:

– OPEbased

– Feynmangraphbased

– Highertwist

– Standardfactorization(Aivazis,Olness,Tung)

Brady,Accardi,Hobbs,MelnitchoukPHYSICALREVIEWD84,074008(2011)

Page 5: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

Standard setup

5

•  Definitionofacrosssection

33

Pb=

✓Q

xN

p2,xNM2

p2Q

,0T

◆(534)

W (P, q)µ⌫ =

Z1

xBj

d⇠

⇠f(⇠;µ/m,↵s(µ))W (xBj/⇠;µ/Q,↵s(µ))

µ⌫ . (535)

F1 =e2f

2�(x/⇠ � 1)

F2 = e2f�(x/⇠ � 1) (536)

+O

✓m2

Q2

◆(537)

F (1)

1=

g2e2f

32⇡3

⇣1�⇠

k2T

� ⇠(2⇠2�6⇠+3)

Q2(1�⇠)2

q1� 4⇠k2

TQ2(1�⇠)

(538)

T1T2F(1)

1=

g2e2f

32⇡3

(1� ⇠)

k2T

. (539)

g2e2f

32⇡2µ2✏S✏

Z 1

k2cut

dk2T(k2

T)�✏

(1� ⇠)

k2T

�g2e2

f

32⇡2(1� ⇠)

S✏

✏(540)

g2e2f

32⇡2

Zµ2

k2cut

dk2T

(1� ⇠)

k2T

=g2e2

f

32⇡2

Zk2max

k2cut

dk2T

(1� ⇠)

k2T

+g2e2

f

32⇡2

Zµ2

k2max

dk2T

(1� ⇠)

k2T

=g2e2

f

32⇡2

Zk2max

k2cut

dk2T

(1� ⇠)

k2T

+g2e2

f

32⇡2(1� ⇠) ln

µ2

k2max

(541)

F (1)

1⌦ f (0)

=g2e2

f

32⇡2

Zk2max

0

dk2T

0

@(1� xBj)(1�

q1� k

2T

k2max

)

q1� k

2T

k2max

k2T

�xBj(2x2

Bj� 6xBj + 3)

Q2(1� xBj)2

q1� k

2T

k2max

1

A�g2e2

f

32⇡2(1� xBj) ln

µ2

k2max

(542)

=g2e2

f

32⇡2

"2(1� xBj) ln (2)�

2x2

Bj� 6xBj + 3

2(1� xBj)

#�

g2e2f

32⇡2(1� xBj) ln

µ2

k2max

(543)

d� =|Me,P!N |2

2�(s,m2e,M2)1/2

d3p1

(2⇡)32E1

d3p2

(2⇡)32E2

· · ·⇥ d3pN

(2⇡)32EN

(2⇡)4�(4) P + l �

NX

i=1

pi

!(544)

Acknowledgments

This work was supported by...

33

Pb=

✓Q

xN

p2,xNM2

p2Q

,0T

◆(534)

W (P, q)µ⌫ =

Z1

xBj

d⇠

⇠f(⇠;µ/m,↵s(µ))W (xBj/⇠;µ/Q,↵s(µ))

µ⌫ . (535)

F1 =e2f

2�(x/⇠ � 1)

F2 = e2f�(x/⇠ � 1) (536)

+O

✓m2

Q2

◆(537)

F (1)

1=

g2e2f

32⇡3

⇣1�⇠

k2T

� ⇠(2⇠2�6⇠+3)

Q2(1�⇠)2

q1� 4⇠k2

TQ2(1�⇠)

(538)

T1T2F(1)

1=

g2e2f

32⇡3

(1� ⇠)

k2T

. (539)

g2e2f

32⇡2µ2✏S✏

Z 1

k2cut

dk2T(k2

T)�✏

(1� ⇠)

k2T

�g2e2

f

32⇡2(1� ⇠)

S✏

✏(540)

g2e2f

32⇡2

Zµ2

k2cut

dk2T

(1� ⇠)

k2T

=g2e2

f

32⇡2

Zk2max

k2cut

dk2T

(1� ⇠)

k2T

+g2e2

f

32⇡2

Zµ2

k2max

dk2T

(1� ⇠)

k2T

=g2e2

f

32⇡2

Zk2max

k2cut

dk2T

(1� ⇠)

k2T

+g2e2

f

32⇡2(1� ⇠) ln

µ2

k2max

(541)

F (1)

1⌦ f (0)

=g2e2

f

32⇡2

Zk2max

0

dk2T

0

@(1� xBj)(1�

q1� k

2T

k2max

)

q1� k

2T

k2max

k2T

�xBj(2x2

Bj� 6xBj + 3)

Q2(1� xBj)2

q1� k

2T

k2max

1

A�g2e2

f

32⇡2(1� xBj) ln

µ2

k2max

(542)

=g2e2

f

32⇡2

"2(1� xBj) ln (2)�

2x2

Bj� 6xBj + 3

2(1� xBj)

#�

g2e2f

32⇡2(1� xBj) ln

µ2

k2max

(543)

d� =|Me,P!N |2

2�(s,m2e,M2)1/2

d3p1

(2⇡)32E1

d3p2

(2⇡)32E2

· · ·⇥ d3pN

(2⇡)32EN

(2⇡)4�(4) P + l �

NX

i=1

pi

!(544)

d�

dx dQ2=

Zd⇠

d�

dx dQ2f(⇠) +O

✓m2

(1� x)Q2

◆(545)

E0 d�

d3l0=

2↵2em

(s�M2)Q4Lµ⌫W

µ⌫(546)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

Acknowledgments

This work was supported by...

33

Pb=

✓Q

xN

p2,xNM2

p2Q

,0T

◆(534)

W (P, q)µ⌫ =

Z1

xBj

d⇠

⇠f(⇠;µ/m,↵s(µ))W (xBj/⇠;µ/Q,↵s(µ))

µ⌫ . (535)

F1 =e2f

2�(x/⇠ � 1)

F2 = e2f�(x/⇠ � 1) (536)

+O

✓m2

Q2

◆(537)

F (1)

1=

g2e2f

32⇡3

⇣1�⇠

k2T

� ⇠(2⇠2�6⇠+3)

Q2(1�⇠)2

q1� 4⇠k2

TQ2(1�⇠)

(538)

T1T2F(1)

1=

g2e2f

32⇡3

(1� ⇠)

k2T

. (539)

g2e2f

32⇡2µ2✏S✏

Z 1

k2cut

dk2T(k2

T)�✏

(1� ⇠)

k2T

�g2e2

f

32⇡2(1� ⇠)

S✏

✏(540)

g2e2f

32⇡2

Zµ2

k2cut

dk2T

(1� ⇠)

k2T

=g2e2

f

32⇡2

Zk2max

k2cut

dk2T

(1� ⇠)

k2T

+g2e2

f

32⇡2

Zµ2

k2max

dk2T

(1� ⇠)

k2T

=g2e2

f

32⇡2

Zk2max

k2cut

dk2T

(1� ⇠)

k2T

+g2e2

f

32⇡2(1� ⇠) ln

µ2

k2max

(541)

F (1)

1⌦ f (0)

=g2e2

f

32⇡2

Zk2max

0

dk2T

0

@(1� xBj)(1�

q1� k

2T

k2max

)

q1� k

2T

k2max

k2T

�xBj(2x2

Bj� 6xBj + 3)

Q2(1� xBj)2

q1� k

2T

k2max

1

A�g2e2

f

32⇡2(1� xBj) ln

µ2

k2max

(542)

=g2e2

f

32⇡2

"2(1� xBj) ln (2)�

2x2

Bj� 6xBj + 3

2(1� xBj)

#�

g2e2f

32⇡2(1� xBj) ln

µ2

k2max

(543)

d� =|Me,P!N |2

2�(s,m2e,M2)1/2

d3p1

(2⇡)32E1

d3p2

(2⇡)32E2

· · ·⇥ d3pN

(2⇡)32EN

(2⇡)4�(4) P + l �

NX

i=1

pi

!(544)

d�

dx dQ2=

Zd⇠

d�

dx dQ2f(⇠) +O

✓m2

(1� x)Q2

◆(545)

E0 d�

d3l0=

2↵2em

(s�M2)Q4Lµ⌫W

µ⌫(546)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

Acknowledgments

This work was supported by...

Singlephotonexchange

Page 6: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

6

Massless Target Approximation (MTA) •  Exact:•  Theapproximation:

•  UsuallytakenforgrantedatlargeQandsmallx

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

✓M2

Q2

◆(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫(P, q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q,M)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q,M)

P · q (555)

Wµ⌫(P , q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2, 0)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2, 0) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2,M2

) ⌘ P1(xN, Q2,M2

)µ⌫Wµ⌫(P, q) F2(xN, Q

2,M2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫(P, q) (560)

F1(xBj, Q2, 0) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2, 0) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

✓M2

Q2

◆(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫(P, q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q,M)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q,M)

P · q (555)

Wµ⌫(P , q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2, 0)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2, 0) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2,M2

) ⌘ P1(xN, Q2,M2

)µ⌫Wµ⌫(P, q) F2(xN, Q

2,M2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫(P, q) (560)

F1(xBj, Q2, 0) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2, 0) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

36

k2 = O�m2�

(k + q)2 = O�m2�

k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2�

(581)

2k+q� = Q2+O

�m2�

(582)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(583)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(584)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(585)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(586)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(587)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(588)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(589)

⇠ =k+

P+= xBj +O

x2

BjM2

Q2

!+O

✓m2

Q2

◆(590)

y(x) = 1� 1

x2e�x

2

� .95 ln(1 + x) (591)

2P · q ! 2P · q M2/Q2 ! 0 . (592)

Acknowledgments

This work was supported by...

Page 7: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

7

MTA in Light-Cone Fractions •  Light-coneratios:– NoMTA:– MTA:

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘(548)

P ! P = (Pz, 0, 0, Pz) (549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

Acknowledgments

This work was supported by...

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫(P, q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q,M)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q,M)

P · q (555)

Wµ⌫(P , q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2, 0)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2, 0) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2,M2

) ⌘ P1(xN, Q2,M2

)µ⌫Wµ⌫(P, q) F2(xN, Q

2,M2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫(P, q) (560)

F1(xBj, Q2, 0) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2, 0) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

Page 8: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

Structure Functions

8

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q)

P · q (555)

Wµ⌫ !✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2,M2

) ⌘ P1(xN, Q2,M2

)µ⌫Wµ⌫(P, q) F2(xN, Q

2,M2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫(P, q) (560)

F1(xBj, Q2, 0) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2, 0) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

Page 9: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

Structure Functions

9

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘(548)

P ! P = (Pz, 0, 0, Pz) (549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

✓M2

Q2

◆(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫(P, q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q,M)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q,M)

P · q (555)

Wµ⌫(P , q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2, 0)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2, 0) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

Acknowledgments

This work was supported by...

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q)

P · q (555)

Wµ⌫ !✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2,M2

) ⌘ P1(xN, Q2,M2

)µ⌫Wµ⌫(P, q) F2(xN, Q

2,M2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫(P, q) (560)

F1(xBj, Q2, 0) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2, 0) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q)

P · q (555)

Wµ⌫ !✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2) ⌘ P1(xN, Q

2,M2)µ⌫Wµ⌫ F2(xN, Q

2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫ (560)

F1(xBj, Q2) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q)

P · q (555)

Wµ⌫ !✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2) ⌘ P1(xN, Q

2,M2)µ⌫Wµ⌫ F2(xN, Q

2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫ (560)

F1(xBj, Q2) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

Page 10: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

MTA

10

36

k2 = O�m2�

(k + q)2 = O�m2�

k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2�

(581)

2k+q� = Q2+O

�m2�

(582)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(583)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(584)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(585)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(586)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(587)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(588)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(589)

⇠ =k+

P+= xBj +O

x2

BjM2

Q2

!+O

✓m2

Q2

◆(590)

y(x) = 1� 1

x2e�x

2

� .95 ln(1 + x) (591)

2P · q ! 2P · q M2/Q2 ! 0 . (592)

Acknowledgments

This work was supported by...

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q)

P · q (555)

Wµ⌫ !✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2) ⌘ P1(xN, Q

2,M2)µ⌫Wµ⌫ F2(xN, Q

2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫ (560)

F1(xBj, Q2) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q)

P · q (555)

Wµ⌫ !✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2) ⌘ P1(xN, Q

2,M2)µ⌫Wµ⌫ F2(xN, Q

2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫ (560)

F1(xBj, Q2) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫ F2(xBj, Q2) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫ (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q)

P · q (555)

Wµ⌫ !✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2) ⌘ P1(xN, Q

2,M2)µ⌫Wµ⌫ F2(xN, Q

2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫ (560)

F1(xBj, Q2) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫ F2(xBj, Q2) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫ (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

Page 11: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

•  Powerexpansion

•  m2=partonvirtuality,transversemomentum,mass…

•  Whatabouthadronmasses?

11

Factorization

33

Pb=

✓Q

xN

p2,xNM2

p2Q

,0T

◆(534)

W (P, q)µ⌫ =

Z1

xBj

d⇠

⇠f(⇠;µ/m,↵s(µ))W (xBj/⇠;µ/Q,↵s(µ))

µ⌫ . (535)

F1 =e2f

2�(x/⇠ � 1)

F2 = e2f�(x/⇠ � 1) (536)

+O

✓m2

Q2

◆(537)

F (1)

1=

g2e2f

32⇡3

⇣1�⇠

k2T

� ⇠(2⇠2�6⇠+3)

Q2(1�⇠)2

q1� 4⇠k2

TQ2(1�⇠)

(538)

T1T2F(1)

1=

g2e2f

32⇡3

(1� ⇠)

k2T

. (539)

g2e2f

32⇡2µ2✏S✏

Z 1

k2cut

dk2T(k2

T)�✏

(1� ⇠)

k2T

�g2e2

f

32⇡2(1� ⇠)

S✏

✏(540)

g2e2f

32⇡2

Zµ2

k2cut

dk2T

(1� ⇠)

k2T

=g2e2

f

32⇡2

Zk2max

k2cut

dk2T

(1� ⇠)

k2T

+g2e2

f

32⇡2

Zµ2

k2max

dk2T

(1� ⇠)

k2T

=g2e2

f

32⇡2

Zk2max

k2cut

dk2T

(1� ⇠)

k2T

+g2e2

f

32⇡2(1� ⇠) ln

µ2

k2max

(541)

F (1)

1⌦ f (0)

=g2e2

f

32⇡2

Zk2max

0

dk2T

0

@(1� xBj)(1�

q1� k

2T

k2max

)

q1� k

2T

k2max

k2T

�xBj(2x2

Bj� 6xBj + 3)

Q2(1� xBj)2

q1� k

2T

k2max

1

A�g2e2

f

32⇡2(1� xBj) ln

µ2

k2max

(542)

=g2e2

f

32⇡2

"2(1� xBj) ln (2)�

2x2

Bj� 6xBj + 3

2(1� xBj)

#�

g2e2f

32⇡2(1� xBj) ln

µ2

k2max

(543)

d� =|Me,P!N |2

2�(s,m2e,M2)1/2

d3p1

(2⇡)32E1

d3p2

(2⇡)32E2

· · ·⇥ d3pN

(2⇡)32EN

(2⇡)4�(4) P + l �

NX

i=1

pi

!(544)

d�

dxBj dQ2=

Zd⇠

d�

dxBj dQ2f(⇠) +O

✓m2

Q2

◆(545)

E0 d�

d3l0=

2↵2em

(s�M2)Q4Lµ⌫W

µ⌫(546)

FornowassumeM2≠O(m2)

Page 12: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

12

Factorization and partonic light-cone fractions

k

k+qq

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

Page 13: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

13

Factorization and partonic light-cone fractions

k

k+qq

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(581)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(581)

2k+q� = Q2+O

�m2

�(582)

Acknowledgments

This work was supported by...

Page 14: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

14

Factorization and partonic light-cone fractions

k

k+qq

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(581)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(581)

2k+q� = Q2+O

�m2

�(582)

Acknowledgments

This work was supported by...

36

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(581)

2k+q� = Q2+O

�m2

�(582)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(583)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(584)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(585)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(586)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(587)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(588)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(589)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(590)

Acknowledgments

This work was supported by...

Page 15: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

15

Factorization and partonic light-cone fractions

k

k+qq

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(581)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(581)

2k+q� = Q2+O

�m2

�(582)

Acknowledgments

This work was supported by...

36

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(581)

2k+q� = Q2+O

�m2

�(582)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(583)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(584)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(585)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(586)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(587)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(588)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(589)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(590)

Acknowledgments

This work was supported by...

36

k2 = O�m2�

(k + q)2 = O�m2�

k+ = O (Q) . (580)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2�

(581)

2k+q� = Q2+O

�m2�

(582)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(583)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(584)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(585)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(586)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(587)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(588)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(589)

⇠ =k+

P+= xBj +O

x2

BjM2

Q2

!+O

✓m2

Q2

◆(590)

Acknowledgments

This work was supported by...

Page 16: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

16

Factorization Power Series

•  DropO(m2/Q2)?:Necessaryforfactorization.

•  DropO(x2BjM2/Q2)?:Notnecessaryforfactorization.

Page 17: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

•  Makeapproximationswithexacttargetmomentum:

•  ThendoMTA:

17

MTA with factorization

IntroduceO(m2/Q2)errors

IntroduceO(xBj2M2/Q2)errors

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫ ! Wµ⌫

fact(566)

Wµ⌫

fact! Wµ⌫

fact,TMC(567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

k2T

Q2(576)

|k2| ⌧ x2

BjM2

(577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫ ! Wµ⌫

fact(566)

Wµ⌫

fact! Wµ⌫

fact,TMC(567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

k2T

Q2(576)

|k2| ⌧ x2

BjM2

(577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

Page 18: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

Aivazis, Olness, Tung (AOT)

•  Normalfactorization,justkeepingexactmass.–  MTA

–  TMC

•  Theonly“pure”kinematicalcorrection.Othersinvolveassumptionsaboutdynamics.

18

Phys.Rev.D50,3085(1994)

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘=

✓P+,

M2

2P+,0T

◆(548)

P ! P = (Pz, 0, 0, Pz) =�P+, 0,0T

�(549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

x2

BjM2

Q2

!(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q)

P · q (555)

Wµ⌫ !✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2) ⌘ P1(xN, Q

2,M2)µ⌫Wµ⌫ F2(xN, Q

2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫ (560)

F1(xBj, Q2) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫ F2(xBj, Q2) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫ (561)

Wµ⌫=

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

35

Wµ⌫=

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

Wµ⌫=

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (564)

Wµ⌫=

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (565)

Wµ⌫=

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (566)

Wµ⌫=

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (567)

Wµ⌫=

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (568)

Wµ⌫=

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (569)

Wµ⌫=

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (570)

Wµ⌫=

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (571)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (572)

⇢2 ⌘ 1 +4x2

BjM2

Q2(573)

Wµ⌫ ! Wµ⌫

fact(574)

Wµ⌫

fact! Wµ⌫

fact,TMC(575)

k2 = 0 (576)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (577)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (578)

Page 19: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

What if the target mass is important?

•  Howtotest?– ScalingwithNachtmannratherthanBjorkenvariable?

–  Improveduniversality.ExtendrangeofpQCD?

•  Whydoesitgiveimprovement?Somethingaboutnucleonstructure?

19

SeeN.Satotalk

Page 20: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

20

Partonic interpretation of target mass effects

k

k+qq•  Smallscales

•  Exacttargetmassusefulifsuppressionbypartonicscalesisgreaterthantargetmass

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2(574)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2(574)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2(574)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2(574)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

Acknowledgments

This work was supported by...

Page 21: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

21

Partonic interpretation of target mass effects

•  Partonvirtualityvs.hadronmass

k

k+qq

?? ??

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2(574)

Acknowledgments

This work was supported by...

36

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (579)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (580)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (581)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(582)

x2

BjM2 � (583)

⇠ Ax2

BjM2

Q2+B

k2

Q2(584)

|k2| ⌧ x2

BjM2

(585)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(586)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(587)

k2 = O�m2

�(k + q)2 = O

�m2

�k+ = O (Q) . (588)

2k+q� + 2k�q+ �Q2+ k2 = O

�m2

�(589)

2k+q� = Q2+O

�m2

�(590)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(591)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(592)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(593)

⇠ =k+

P+= xBj +

x2

BjM2

Q2+O

✓m2

Q2

◆(594)

⇠ ⌘ k+

P+= xN +O

✓m2

Q2

◆(595)

Page 22: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

22

Partonic interpretation of target mass effects

k k+qq

•  Twoscales?

P

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

fact(P, q) (566)

Wµ⌫

fact(P, q) ! Wµ⌫

fact(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

|k2| ⌧ x2

BjM2

(577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

SeeE.Moffattalk

Page 23: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

•  AOT(directfactorization):–  Directpowerexpansioninsmallpartonicmassscales–  Keepexactmomentumexpressions

•  OPE:–  TransformtoMellinmomentspace–  Expandin1/Q(bothtwistandtargetmomentum)–  Truncatetwist

•  IdentifyleadingM/Qpart•  IdentifyremainingseriesofM/Q

–  InvertleadingM/Q(F1(0))–  InvertseriesofM/Q(F1TMC)–  RelateF1(0)andF1TMC

23

Operator product expansion versus AOT

Page 24: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

Summary

•  NormalfactorizationderivationnaturallyleadstoxNasscalingvariable/independentvariable.

•  Theseareeasytoretain(AOT).

•  Sensitivitytoatargetmassmightsaysomethingaboutnucleonstructure.– CompareProton,Kaon,Pion,Nucleustargets

24

Page 25: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

Backup

25

Page 26: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

•  AOT(directfactorization):–  Directpowerexpansioninsmallpartonicmassscales–  Keepexactmomentumexpressions

•  OPE:–  TransformtoMellinmomentspace–  Expandin1/Q(bothtwistandtargetmomentum)–  Truncatetwist

•  IdentifyleadingM/Qpart•  IdentifyremainingseriesofM/Q

–  InvertleadingM/Q(F1(0))–  InvertseriesofM/Q(F1TMC)–  RelateF1(0)andF1TMC

26

Operator product expansion versus AOT

Page 27: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

OPE-based

•  Georgi-Politzer(1976)

•  WhatisF1,2(0)?

27

34

Wµ⌫=

✓�gµ⌫ +

qµq⌫

q2

◆F1 +

(Pµ � qµP · q/q2)(P ⌫ � q⌫P · q/q2)P · q F2 (547)

P =

⇣pM2 + P 2

z, 0, 0, Pz

⌘(548)

P ! P = (Pz, 0, 0, Pz) (549)

� q+

P+= xN ⌘ 2xBj

1 +

q1 +

4x2BjM

2

Q2

(550)

� q+

P+= xBj +O

✓M2

Q2

◆(551)

(k + q)2 = 0 (552)

⇠ ⌘ k+

P+= xN (553)

⇡ xBj +O

✓M2

Q2

◆(554)

Wµ⌫(P, q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1 (xN, Q,M)

+

✓Pµ � P · q

q2qµ◆✓

P ⌫ � P · qq2

q⌫◆

F2 (xN, Q,M)

P · q (555)

Wµ⌫(P , q) =

✓�gµ⌫ +

qµq⌫

q2

◆F1(xBj, Q

2, 0)

+(Pµ � qµP · q/q2)(P ⌫ � q⌫ P · q/q2)

P · qF2(xBj, Q

2, 0) (556)

P1(xN, Q2,M2

)µ⌫ ⌘ �1

2gµ⌫ +

2Q2x2

N

(M2x2

N+Q2)2

PµP ⌫(557)

P2(xN, Q2,M2

)µ⌫ ⌘

12Q4x3

N

�Q2 �M2x2

N

(Q2 +M2x2

N)4

PµP ⌫ �

�M2x2

N+Q2

�2

12Q2x2

N

gµ⌫!

(558)

(559)

F1(xN, Q2,M2

) ⌘ P1(xN, Q2,M2

)µ⌫Wµ⌫(P, q) F2(xN, Q

2,M2) ⌘ P2(xN, Q

2,M2)µ⌫Wµ⌫(P, q) (560)

F1(xBj, Q2, 0) ⌘ P1(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) F2(xBj, Q2, 0) ⌘ P2(xBj, Q

2, 0)µ⌫Wµ⌫(P , q) (561)

Wµ⌫(P , q) =

Z1

xBj

d⇠

⇠Wµ⌫

(xBj/⇠, q)f(⇠) +O�m2/Q2

�+O

�M2/Q2

�. (562)

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

Page 28: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

28

As exact structure function •  Powerseries:

•  Mellinmoments:

•  Leadingtwist• 

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

Acknowledgments

This work was supported by...

Figure 2: Two di↵erent functions with identical integer Mellin moments.

6 Comparison with / critique of other TMC methods

There are many other theoretical formalisms that are often described as Target Mass Corrections (TMC), butfrom what I can see these actually involve at least some assumptions or modifications of parton dynamics,often in ways that are not easy for me to assess. I will critique these below.

The most famous TMC method is the Georgi-Politzer (GP) [3] method based on an extension of the operatorproduct expansion (OPE). Note that it predates much of the general work on factorization. I will reviewthe steps around [3, Eqs.(4.9-4.19)]. I will sometimes switch to the notation of [4] because I also want toinclude general higher order Wilson coe�cients. The strategy is to expand the forward Compton scatteringamplitude in an OPE and keep only leading twist, but also to keep power suppressed terms associated withthe target mass that are normally dropped. One applies xBj-moments followed by inverse xBj-moments inorder to relate the structure functions to local operator matrix elements. For example, the F2 structurefunction is expressed by the leading twist part of the OPE:

F2 =2

xBj

1X

l=0

1

x2lBj

1X

j=0

✓M

2

Q2

◆j

Nj,lC2l+2j

A2j+2l+2 (58)

where Nj,l is a combinatorial factor whose detailed form is not important for our discussion, the A2j+2l+2 arematrix elements of local operators, and C

2l+2j are hard scattering coe�cients that can be calculated in an ↵s

expansion . This establishes the desired relationship between the local matrix elements of quark fields andthe integer xBj-moments of F2(xN, Q

2,M):

Z 1

0

xn�2Bj F2 =

1X

j=0

✓M

2

Q2

◆j

Nn,jCn+2j

A2j+n , (59)

where Nn,j is another combinatorial factor. The steps are: 1.) take these integer xBj-Mellin transforms, 2.)analytically continue to non-integer n, 3.) identify the local matrix elements with Mellin moments of structurefunctions in an MTA, and 4.) inverse Mellin transform to recover a general expression for F2(xN, Q

2,M

2) interms of the MTA structure functions. The analytically continued inverse transverse is

F2 =1

2⇡i

Zi1

�i1dnx

�1+n

Bj

✓M

2

Q2

◆j

Nn,jCn+2j

A2j+n . (60)

8

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

Acknowledgments

This work was supported by...

DropHigherTwist

Page 29: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

29

As exact structure function •  Powerseries:

•  IntegerMellinmoments:

•  Leadingtwist• 

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

Acknowledgments

This work was supported by...

Figure 2: Two di↵erent functions with identical integer Mellin moments.

6 Comparison with / critique of other TMC methods

There are many other theoretical formalisms that are often described as Target Mass Corrections (TMC), butfrom what I can see these actually involve at least some assumptions or modifications of parton dynamics,often in ways that are not easy for me to assess. I will critique these below.

The most famous TMC method is the Georgi-Politzer (GP) [3] method based on an extension of the operatorproduct expansion (OPE). Note that it predates much of the general work on factorization. I will reviewthe steps around [3, Eqs.(4.9-4.19)]. I will sometimes switch to the notation of [4] because I also want toinclude general higher order Wilson coe�cients. The strategy is to expand the forward Compton scatteringamplitude in an OPE and keep only leading twist, but also to keep power suppressed terms associated withthe target mass that are normally dropped. One applies xBj-moments followed by inverse xBj-moments inorder to relate the structure functions to local operator matrix elements. For example, the F2 structurefunction is expressed by the leading twist part of the OPE:

F2 =2

xBj

1X

l=0

1

x2lBj

1X

j=0

✓M

2

Q2

◆j

Nj,lC2l+2j

A2j+2l+2 (58)

where Nj,l is a combinatorial factor whose detailed form is not important for our discussion, the A2j+2l+2 arematrix elements of local operators, and C

2l+2j are hard scattering coe�cients that can be calculated in an ↵s

expansion . This establishes the desired relationship between the local matrix elements of quark fields andthe integer xBj-moments of F2(xN, Q

2,M):

Z 1

0

xn�2Bj F2 =

1X

j=0

✓M

2

Q2

◆j

Nn,jCn+2j

A2j+n , (59)

where Nn,j is another combinatorial factor. The steps are: 1.) take these integer xBj-Mellin transforms, 2.)analytically continue to non-integer n, 3.) identify the local matrix elements with Mellin moments of structurefunctions in an MTA, and 4.) inverse Mellin transform to recover a general expression for F2(xN, Q

2,M

2) interms of the MTA structure functions. The analytically continued inverse transverse is

F2 =1

2⇡i

Zi1

�i1dnx

�1+n

Bj

✓M

2

Q2

◆j

Nn,jCn+2j

A2j+n . (60)

8

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

Acknowledgments

This work was supported by...

SeriesinαsOPEprovidesinfoaboutintegervalues

Page 30: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

30

As exact structure function •  Powerseries:

•  IntegerMellinmoments:

•  Leadingtwist,zeromass

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

Acknowledgments

This work was supported by...

Figure 2: Two di↵erent functions with identical integer Mellin moments.

6 Comparison with / critique of other TMC methods

There are many other theoretical formalisms that are often described as Target Mass Corrections (TMC), butfrom what I can see these actually involve at least some assumptions or modifications of parton dynamics,often in ways that are not easy for me to assess. I will critique these below.

The most famous TMC method is the Georgi-Politzer (GP) [3] method based on an extension of the operatorproduct expansion (OPE). Note that it predates much of the general work on factorization. I will reviewthe steps around [3, Eqs.(4.9-4.19)]. I will sometimes switch to the notation of [4] because I also want toinclude general higher order Wilson coe�cients. The strategy is to expand the forward Compton scatteringamplitude in an OPE and keep only leading twist, but also to keep power suppressed terms associated withthe target mass that are normally dropped. One applies xBj-moments followed by inverse xBj-moments inorder to relate the structure functions to local operator matrix elements. For example, the F2 structurefunction is expressed by the leading twist part of the OPE:

F2 =2

xBj

1X

l=0

1

x2lBj

1X

j=0

✓M

2

Q2

◆j

Nj,lC2l+2j

A2j+2l+2 (58)

where Nj,l is a combinatorial factor whose detailed form is not important for our discussion, the A2j+2l+2 arematrix elements of local operators, and C

2l+2j are hard scattering coe�cients that can be calculated in an ↵s

expansion . This establishes the desired relationship between the local matrix elements of quark fields andthe integer xBj-moments of F2(xN, Q

2,M):

Z 1

0

xn�2Bj F2 =

1X

j=0

✓M

2

Q2

◆j

Nn,jCn+2j

A2j+n , (59)

where Nn,j is another combinatorial factor. The steps are: 1.) take these integer xBj-Mellin transforms, 2.)analytically continue to non-integer n, 3.) identify the local matrix elements with Mellin moments of structurefunctions in an MTA, and 4.) inverse Mellin transform to recover a general expression for F2(xN, Q

2,M

2) interms of the MTA structure functions. The analytically continued inverse transverse is

F2 =1

2⇡i

Zi1

�i1dnx

�1+n

Bj

✓M

2

Q2

◆j

Nn,jCn+2j

A2j+n . (60)

8

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

Acknowledgments

This work was supported by...

Extendtonon-integervalues

Page 31: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

31

As exact structure function •  Invert:

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

Acknowledgments

This work was supported by...

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

x2

BjM2

Q2

x2

BjM2

X

Q2

k2

Q2

k2T

Q2

M2

J

Q2(574)

x2

BjM2 � (575)

⇠ Ax2

BjM2

Q2+B

x2

BjM2

Q2

k2T

Q2(576)

x2

BjM2 ⌧ |k2| (577)

q =

✓�xNP

+,Q2

2xNP+,0T

◆(578)

q =

✓�xBjP

+,Q2

2xBjP+,0T

◆(579)

Page 32: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

320.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x

0.010

0.050

0.100

0.500

1

5

F(x)Structure Functions

•  FunctionswithequalmomentsuptoN=13

Page 33: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

33

As fit to phenomenological structure function

•  Finiteorderhardpart

•  Parametrizationofpdf

•  Fitneededallthewaytox=1

•  Theoreticalleadingtwist≠phenofitnearx=1

35

Wµ⌫(P, q) =

Z1

xN

d⇠

⇠Wµ⌫

(xN/⇠, q)f(⇠) +O�m2/Q2

�. (563)

FTMC

1(xBj, Q

2) =

1 + ⇢

2⇢F (0)

1(xN, Q

2) +

⇢2 � 1

4⇢2

Z1

xN

du

u2F (0)

1(u,Q2

) +(⇢2 � 1)

2

8xBj⇢3

Z1

xN

du

Z1

u

dv

v2F (0)

1(v,Q2

) (564)

⇢2 ⌘ 1 +4x2

BjM2

Q2(565)

Wµ⌫(P, q) ! Wµ⌫

AP(P, q) (566)

Wµ⌫

AP(P, q) ! Wµ⌫

AP(P , q) (567)

k2 = 0 (568)

F2 =2

xBj

1X

l=0

1

x2l

Bj

1X

j=0

✓M2

Q2

◆j

Nj,lC2l+2jA2j+2l+2 (569)

F2 =1

2⇡i

Zi1

�i1dnx1�n

Bj

✓M2

Q2

◆j

Nn,jCn+2jA2j+n . (570)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (571)

Z1

0

dy yn�2F (0)

2(y,Q2

) ⌘ CnAn . (572)

F2 =

X

j

C↵

n

s

j/i(x/⇠, Q)⌦ fi/P (⇠;Q) (573)

Acknowledgments

This work was supported by...

Page 34: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

As a parton density

•  Ellis-Furmanski-Petronzio(Intro-1982)

•  Imposek2=0butallowkT>0

34

2

ps = 1.8 TeV / 1.97 TeV (13)

�De↵ = 11mb (14)

ps = 7 TeV (15)

Zd2b�2n(s, b; p

ct) = �inc

2n (s, pct) (16)

�De↵ (17)

⇡ 34 mb (18)

pct = 3.5 GeV (19)

�1 di↵(s, b; pct) = �diff (s, b; pct)� �diff (s, b; pct)1X

n=1

(�1)n�1�2n(s, b; pct) (20)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; pct)} (21)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; pct)} (22)

�n di↵(s, b; pct) =1

n!�diff (s, b; pct)

n exp {��2(s, b; pct)} (23)

�diff (s, b; pct) =�1� exp

���diff (s, b; pct)

�exp {��2(s, b; p

ct)} (24)

�(s, b) = 1� exp [��h(s, b; pct)� �s(s, b; p

ct) + · · · ] (25)

�h(s, b; pct) (26)

d�

dq2T(27)

qT (28)

q2 ⇠ Q2 � ⇤2QCD (29)

qT ⇠ ⇤QCD (30)

⇤QCD ⌧ k1T ⌧ Q (31)

qT ⌧ Q (32)

P (33)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

k

4

k =�⇠P+, 0,0t

�(52)

F2(x,Q2) =

X

j

e2jxfj(x) 2xF1(x,Q2) = F2(x,Q

2) (53)

d� =X

i

ZH(⇠)i,DIS ⌦ fi/p(⇠) (54)

d� =X

i

ZH(⇠1, ⇠2)i,DY ⌦ fi/p(⇠1)⌦ fi/p(⇠2) (55)

x =Q2

2P · q(56)

d�

d4qd⌦=

X

i

Zd⇠1

Zd⇠2 fi/p(⇠1) fi/p(⇠2)

d�

d4qd⌦(57)

l (58)

k � l (59)

�((k � l + q)2) (60)

⇡�⇠P+, k�,kt

�(61)

k =�⇠P+, 0,0t

�(62)

Zd4k

Zdk+

Zdk�d2kt (63)

�((k + q)2) (64)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

Page 35: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

35

As a parton density

•  InloworderYukawatheory

2

ps = 1.8 TeV / 1.97 TeV (13)

�De↵ = 11mb (14)

ps = 7 TeV (15)

Zd2b�2n(s, b; p

ct) = �inc

2n (s, pct) (16)

�De↵ (17)

⇡ 34 mb (18)

pct = 3.5 GeV (19)

�1 di↵(s, b; pct) = �diff (s, b; pct)� �diff (s, b; pct)1X

n=1

(�1)n�1�2n(s, b; pct) (20)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; pct)} (21)

�1 di↵(s, b; pct) = �diff (s, b; pct) exp {��2(s, b; pct)} (22)

�n di↵(s, b; pct) =1

n!�diff (s, b; pct)

n exp {��2(s, b; pct)} (23)

�diff (s, b; pct) =�1� exp

���diff (s, b; pct)

�exp {��2(s, b; p

ct)} (24)

�(s, b) = 1� exp [��h(s, b; pct)� �s(s, b; p

ct) + · · · ] (25)

�h(s, b; pct) (26)

d�

dq2T(27)

qT (28)

q2 ⇠ Q2 � ⇤2QCD (29)

qT ⇠ ⇤QCD (30)

⇤QCD ⌧ k1T ⌧ Q (31)

qT ⌧ Q (32)

P (33)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

k

5

d� = (73)

=�d�PM + d�(µ)one gluon ,↵s

� �f(⇠) + f(⇠, µ)one gluon ,↵s

�+O(↵2

s) +O(⇤/Q) (74)

d� = (75)

=�d�PM + d�(µ)one gluon ,↵s + · · ·

� �f(⇠) + f(⇠, µ)one gluon ,↵s + · · ·

�+O(⇤/Q) (76)

Wµ⌫DIS =

X

j

Zd⇠

⇠WDIS(Q/µ, ⇠, x)µ⌫j fj(⇠;µ) (77)

Wµ⌫DY =

X

i

Zd⇠1⇠1

Zd⇠2⇠2

WDY(Q/µ, ⇠1, ⇠2, x)µ⌫j fi/p(⇠1;µ) fi/p(⇠2;µ) (78)

v1 = (v01 , vx1 , v

y1 , v

z1) v2 = (v02 , v

x2 , v

y2 , v

z2) (79)

v21 = m21 v22 = m2

2 (80)

v+1 ⌘ v01 + vz1p2

, v�1 ⌘ v01 � vz1p2

, v1,t ⌘ (vx1 , vy1 ) (81)

v1 = (v+1 , v�1 ,v1,t) (82)

v1 · v2 = v+1 v�2 + v�1 v

+2 � v1,t · v2,t (83)

v21 = m21 = 2v+1 v

�1 � v21,t (84)

d ! 4� 2✏ gs ! gsµ✏ (85)

Aµ0 ! Z1/2

3 Aµ ! Z1/22 (86)

µd

dµS = 0 (87)

µd

dµ= µ

@

@µ+ �

@

@g� �mm

@

@m(88)

µd

dµg0(µ, g(µ)) = 0 (89)

d↵s(µ)/4⇡

d lnµ2= � (90)

↵s(µ)/(4⇡) = gs(µ)2/(16⇡2) (91)

hP | |P i (92)

hP | 0(0, w�,0t) 0(0, 0,0t) |P i (93)

hP | 0(0, w�,0t)

�+

2 0(0, 0,0t) |P i (94)

Zdw�

(2⇡)e�i⇠P+w�

hP | 0(0, w�,0t)

�+

2 0(0, 0,0t) |P i (95)

Page 36: Hadron Masses and Factorization (in DIS) · 2018-09-24 · Hadron Masses and Factorization (in DIS) Jefferson Lab/Old Dominion University Ted Rogers Quark-Hadron Duality 2018, James

36

0.0 0.2 0.4 0.6 0.8 1.0kT (GeV)

0.2

0.6

1.0

1.4

v(G

eV)

Q = 2 GeV

0.0 0.2 0.4 0.6 0.8 1.0kT (GeV)

0.2

0.6

1.0

1.4

Q = 20 GeV

exact

collinear

FIG. 5: The dependence of the parton virtuality v ⌘p�k2 on kT evaluated at exact (solid

red curves) and approximate collinear (dashed blue curves) kinematics, for xbj = 0.6 at fixed

Q = 2 GeV (left panel) and Q = 20 GeV (right panel), for quark mass mq = 0.3 GeV and

spectator diquark mass ms corresponding to v(kT = 0) = 0.5 GeV (see Table I).

kT for the lower Q. At large kT, the virtuality becomes linear with kT, in accordance with

Eq. (59) in the m/Q ! 0 limit. Even assuming v < 1 GeV for kT < 1 GeV, the exact value

of k2 (and its dependence on kT) impacts the shape of the kT distribution and the quality

of the usual factorization approximations.

C. The role of transverse momentum

The factorization approximations discussed in Sec. IV apply to the limit in which kT/Q ⇠

m/Q ⌧ 1. In QCD, however, there are ultraviolet divergences from the integrals over

transverse momentum in the PDF. The standard way to deal with this is to renormalize the

PDF.

When Q is large, vertex corrections involve O (Q2) o↵-shell propagators, so the appropri-

ate renormalization scale is µ ⇠ Q. By comparison, the kinematics of real gluon emission

restrict “large” transverse momentum to be . O�Qp1� xbj)

�[see Eq. (32)], so that the

corresponding scale is µ ⇠ Qp1� xbj. (In our model calculation, the spectator plays the

role kinematically of a real gluon emission.) If xbj is not too large and Q � m, this mismatch

between real and virtual emissions is not a serious problem because kTmax is at least O (Q)

29

As a parton density

•  v=√-k2•  Blue=inpdf•  Red=inunapproximatedgraph

Moffatetal.,(2017)

•  InloworderYukawatheory