31
Hadron physics experiments at JPARC K. Ozawa (KEK)

Hadron physics experiments at J PARC · 2014. 8. 26. · Contents • Introduction – What is hadron physics? – What is J‐PARC? • Experiment at J‐PARC I – Charmed Baryon

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Hadron physics experiments at J‐PARC

    K. Ozawa (KEK)

  • Contents• Introduction

    – What is hadron physics?– What is J‐PARC?

    • Experiment at J‐PARC I – Charmed Baryon Spectroscopy 

    • Experiment at J‐PARC II– Meson properties in nucleus

    2014/8/22 K. Ozawa, CNS Summer School 2

  • Hadron and Hadron Physics• Hadron is a particle which have a “strong interaction”– Baryons, such as protons, neutrons– Mesons, such as mesons, mesons,  … – Naively speaking, particles which consist of “quark”s

    • So many hadrons are observed by now

    • Hadron physics is a natural extension of nuclear physics to study following topics– Internal structure of baryons and mesons– Origin of interactions between hadrons– Nucleus as a nuclear matter   

    2014/8/22 K. Ozawa, CNS Summer School 3

  • QCD medium

    2014/8/22 K. Ozawa, CNS Summer School 4

    K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74 (2011) 014001

    QCD: Quantum Chromo DynamicsTempe

    rature T

    Baryon Chemical Potential B

    Nucleus

    Free Space

  • Chiral symmetry

    2014/8/22 K. Ozawa, CNS Summer School 5

    The lagrangian does not change under the transformation below.

    This symmetry is called Chiral symmetry.

    V(q)

    q

    Symmetric in rotation

    GluonDivide with chirality Neglect (if m ~0)quark mass

    QCD Lagrangian

  • Breaking of symmetry

    2014/8/22 K. Ozawa, CNS Summer School 6

    Potential is symmetric andGround state (vacuum) is at symmetric position

    Potential is still symmetric, however,Ground state (vacuum) is at non-symmetricposition

    This phenomenon is called spontaneous symmetry breaking

    When the potential is like V() = 4,

    V~ self energy of ground state ~ mass

    If the interaction generate additional potential automatically,

    V’() = -a*2

  • In QCD

    2014/8/22 K. Ozawa, CNS Summer School 7

    High TemperatureHigh Density

    Quark – antiquark pairs make a condensate and give a potential. Chiralsymmetry is breaking, spontaneously.

    Chiral symmetry exists.Mass ~ 0 (Higgs only)

    Vacuum contains quark antiquark condensates.So called “QCD vacuum”.

    q

    q

    Vacuum Vacuum

    When T and is going down,

    as a Nambu-Goldstone boson.

  • Mas

    s [G

    eV]

    Symmetry Breaking in Hadron

    2014/8/22 K. Ozawa, CNS Summer School 8

    Pseudo Scalar meson as NG boson(Jp=0-)

    Constituent quark mass

    • Hadron mass is understood a sum of constituent quark masses

    – Dynamical mass

    • The fact that meson has a “too light” mass (M ~ 130 MeV/c2 ) is understood as NG boson.

    • In fact, chiral symmetry is broken in the real world.

    – masses of chiral partners are different.

    – (JP = 1-) m=770 MeV a1 (JP = 1+) m=1250 MeV

    mesons baryons

  • How to study more details?

    2014/8/22 K. Ozawa, CNS Summer School 9

    “QCD medium”, i.e. quark condensates can be changed in finite density or temperature

    matter.Then, chiral symmetry will

    be restored (partially).

    Vacuum 0

    In finite

    Chiral properties can be studied at finite density or temperature.

    Nucleus can be used as a finite density system.High energy heavy ion collisions can generate

    a high temperature matter

    Chiral property of the medium is characterized by a quark condensate.The quark condensate is an order parameter of chiral symmetry.

  • 2014/8/22 K. Ozawa, CNS Summer School 10

    QCD phase and

    Spontaneous breaking of a symmetry is marked by:

    * a non-zero order parameter, the quark condensate in the case of QCD

    heavy ion reactions:A+AV+X

    mV(>>0;T>>0)SPS

    LHCRHIC

    elementary reaction:, p, V+XmV(=0;T=0)

    , . p - beams

    J-PARCLEPS2

    At Nuclear Density

    0 qq

    3250MeVqq

    High T High

    We can study medium property as functions of T and .

  • Observables

    2014/8/22 K. Ozawa, CNS Summer School 11

    However, the quark condensate is not an observable and one need to find observables which are related to the quark condensate.

    We need to find out observables related to quark condensates.Relations between mass spectra of V-AV mesons and condensates is developed using a sum rule.

    Hatsuda, Koike and Lee, Nucl. Phys. B394 (1993) 221Kapusta and Shuryak, Phys. Rev. D49 (1994) 4694

    In free space, there is a good measurement done by ALEPH group.(ALEPH, Phys. Rep. 421(2005) 191) See the next slide.

  • Condensates and spectra

    2014/8/22 K. Ozawa, CNS Summer School 12

    ALEPH, Phys. Rep. 421(2005) 191

  • QCD Sum rule

    2014/8/22 K. Ozawa, CNS Summer School 13

    q

    q

    Vacuum Vacuum

    QCD sum rule

    Average of Imaginary part of (2)

    vector meson spectral function

    T.Hatsuda and S.H. Lee,PRC 46 (1992) R34

    03.0;10

    *

    B

    V

    V

    mm

    Prediction

    Spectrum

    mVTheoretical Assumption

    Example:

    Measurements of axial vector mesons in a medium is difficult.Different type of sum rule is proposed.

    Measurements of vector mesons can be done in nucleus and high energy collisions.

  • Current status of experiments

    • High energy heavy ion collisions– SPS‐NA60 (PRL 96 (2006) 162302)

    • Modification of meson due to hadronic effects– RHIC‐PHENIX (PRC81(2010) 034911)

    • Origin of the enhancement is under discussion • Nuclear targets

    – CBELSA/TAPS (Phys.Rev. C82 (2010) 035209)• Modification of is not observed

    – J‐LAB CLAS G7 (PRL 99 (2007) 262302)• Mass broadening of  due to hadronic effects

    – KEK‐PS E325  (PRL 96 (2006) 092301)• Peak shift and  width broadening of 

    2014/8/22 14

    Most measurements are done for mesons

    Large uncertainty in background subtraction method

    K. Ozawa, CNS Summer School

    Several hadronic and experimental effects cause difficulties in measurements.   

  • How about meson?•

    – Dynamical mass contribution is dominantM ~ 130 MeV/c2 M ~ 770 MeV/c2

    – Large hadronic effects and background issues are large•

    – Still, dynamical mass contribution is dominantM ~ 550 MeV/c2 M ~ 1020 MeV/c2

    – Narrow width ( 4.3 MeV/c2)• Small background issue

    – Small effects of hadron‐hadron interactions• e.g. Binding energy of N is 1.8 MeV (Phys. Rev. C 63(2001) 022201R)

    2014/8/22 15

    To see QCD‐originated effects, meson is the most promising probe.

    K. Ozawa, CNS Summer School

  • KEK-PS E325 Experiment

    • Finite density matter• Stable system• Saturated density

    Measure Vector meson spectrum

    16162014/8/22 K. Ozawa, CNS Summer School

    Use Nucleus

    Generate vector mesons using proton beamMeson mass spectrum in nucleus can be measured using decays and compared to the prediction.

    Leptonic (e+e-) decay is suitable, since lepton doesn’t have final state interaction.

    T.Hatsuda and S. Lee,PRC 46 (1992) R34

    03.0;10

    *

    B

    V

    V

    mm

    Prediction

  • Experimental Setup

    2014/8/22 K. Ozawa, CNS Summer School 17

    12 GeV proton induced. p+A + X

    Electrons from decays are detected.

    KEK E325

  • E325 Spectrometer

    2014/8/22 K. Ozawa, CNS Summer School 18

  • Measurements of meson

    2014/8/22 K. Ozawa, CNS Summer School 19

    R. Muto et al., PRL 98(2007) 042581

    Indication of mass modification!

    0

    50

    100

    150

    0.9 1 1.1 1.2

    [GeV/c2]

    coun

    ts/[6

    .7M

    eV/c

    2 ]

    DataFitting Result

    Cu

  • 2014/8/22 K. Ozawa, CNS Summer School 20

    Target/Momentum dep.

  • Next step

    2014/8/22 K. Ozawa, CNS Summer School 21

    Then, calculate quark condensate using QCD sum rule.

    Experimental requirements

    1. High statics2. Good mass resolution

    Average of Imaginary part of (2)

    Assumed Spectrum

    Evaluate quark condensate directly.Replace by average of measured spectra

    0

    50

    100

    150

    0.9 1 1.1 1.2

    [GeV/c2]

    coun

    ts/[6

    .7M

    eV/c

    2 ]

    DataFitting Result

    p

  • New Goal

    2014/8/22 22

    Pb

    Proton

    A clear shifted peak needs to be identified to establish QCD‐originated effects

    Momentum Dependence

    E325 results Extrapolate

    K. Ozawa, CNS Summer SchoolTarget: 100 times larger statistics

  • What can be achieved?

    2014/8/22 K. Ozawa, CNS Summer School 23

    Pb

    Modified

    [GeV/c2]

    from Proton

    Invariant mass in medium

    High resolution

    Dispersion relation

  • Experimental set up

    2014/8/22 24

    Cope with 1010 per spill beam intensity (x10)Extended acceptance (90 in vertical) (x5)Increase cross section (x2)

    K. Ozawa, CNS Summer School

    Construct a new beam line and new spectrometer

    Deliver 1010 per spill proton beam Primary proton (30GeV) beam 

    New high momentum beam line

  • Detector components

    2014/8/22 K. Ozawa, CNS Summer School 25

    Tracker~Position resolution 100μmHigh Rate(5kHz/mm2)Small radiation length(~0.1% per 1 chamber)

    Electron identificationLarge acceptanceHigh pion rejection @ 90% e-eff.

    100 @ Gas Cherenkov25 @ EMCal

  • R&D Items

    2014/8/22 K. Ozawa, CNS Summer School 26

    Develop 1 detector unit and make 26 units.① GEM foil

    ③ Hadron Blind detectorGas Cherenkov for electron-ID

    ② GEM Tracker

    Ionization (Drift gap)+ Multiplication (GEM)

    High rate capability + 2D strip readout

    CsI + GEMphoto-cathode

    50cm gas(CF4) radiator~ 32 p.e. expected

    CF4 also for multiplication in GEM

  • 27Beam test results of prototype detectors (2012)

    100x100 200x200 300x300

    10 p.e.

    QE upto 40%Required position resolution (~100m) is achieved

    UV Cherenkov photons are detected with CsI-evaporated LCP-GEM and CF4 gas

    ● Large size (300x300mm) PI- and LCP-GEM are successfully worked for a electron beam

    – Stability and response for a pion beam should be checked at J-PARC.

    ● GEM Tracker is successfully worked.

    ● Improvement of the photo-detection efficiency of HBD is on going.

    GEM Tracker

    HBD (Hadron-Blind Cherenkov detector )

  • 28

    GEM Tracker : first prod. type is testedislands for

    Y-strip(Ni plated)

    X-strip(Ni plated)

    Y-strip

    200m

    m

    x

    Y

    island

    100mm

    Y.Komatsu, NIM A 732(2013)241

    BVH type 2D R/O PCB

  • 29

    HBD @ J-PARC

    2014/8/22 K. Ozawa, CNS Summer SchoolCerenkov blob, ~34mm

    Electron

  • 30

    HBD (Hadron Blind Detector) ● Test @ J-PARC K1.1BR in 2013/Jan (T47)

    ● pion rejection is improved with a higher gain of new PI-GEM and smaller-size readout pad

    – measure the distributed charge: selecting 3 fired pads or more

    → pion rejection factor 100 with e-efficiency 70% achieved, same level as PHENIX, in spite of the less #p.e.

    e-eff. 70%

    rejection>100

  • Summary• Chiral properties of QCD medium are studied using measurements of vector meson mass spectra.

    • Several measurements are already done using AA and pA collisions to investigate high temperature or high density matters.

    • Results show modifications of mass spectra. To study more details of chiral properties, higher statistics  and better resolution. Such experiments will be done at J‐PARC.

    2014/8/22 K. Ozawa, CNS Summer School 31