8
HÀM L˙I, LÕM. HÀM BÁN L˙I, BÁN LÕM VÀ NGUYÊN LÝ BIÊN Thüc hi»n: Phan Đình Trung I. Đnh nghĩa: 1. Hàm li, lõm: Hàm sL f đưæc gi là li trên đo/n [α; β ] R n‚u vi mi x, y [α; β ] và vi mi a, b 0 tha a + b =1 thì: f (ax + by) af (x)+ bf (y) Ngưæc l/i, f đưæc gi là lõm trên đo/n [α; β ] R n‚u vi mi x, y [α; β ] và vi mi a, b 0 tha a + b =1 thì: f (ax + by) af (x)+ bf (y) Chú ý: Ta thla nh“n k‚t qu£ sau: N‚u hàm f kh£ vi hai lƒn trên [α; β ] thì f li trên [α; β ] khi f 00 0, x [α; β ]. Ngưæc l/i, f lõm trên [α; β ] khi f 00 0, x [α; β ] 2. Hàm bán li, bán lõm: Hàm sL f đưæc gi là bán li, bán lõm trên [α; β ] R n‚u tn t/i h‹ng sL γ [α; β ] duy nh§t sao cho f li trên [α; γ ] và lõm trên [γ ; β ] hoc ngưæc l/i. II. Tính ch§t: 1. N‚u f là hàm li trên [α; β ] thì ta có: min f = min{f (α); f (β )} 2. N‚u f lõm trên [α; β ] thì ta có: max f = max{f (α); f (β )} 3. N‚u f là mºt hàm lõm trên đo/n [α; β ] thì khi đó vi mi x, y, z R tha mãn đng thi β x z y α x + y - z α thì f (x)+ f (y) - f (z ) f (x + y - z ) Chøng minh: Đt t = x - z , d„ th§y 0 t x - y t = k(x - y),k [0; 1]. Ta có: f (x)+ f (y) - f (z ) - f (x + y - z )= f (x)+ f (y) - f (x - t) - f (y + t) = f (x)+ f (y) - f (x - k(x - y)) - f (y + k(x - y)) = f (x)+ f (y) - f ((1 - k)x + ky) - f (kx + (1 - k)y) f (x)+ f (y) - (1 - k)f (x) - kf (y) - kf (x) - (1 - k)f (y)=0 (Q.E.D) 4. N‚u f li trên trên đo/n [α; β ] thì khi đó vi mi x, y, z R tha mãn đng thi β x z y α x + y - z α thì f (x)+ f (y) - f (z ) f (x + y - z ) 5. N‚u f lõm trên [α; β ] thì vi dãy sL x n [α; β ] tha n i=1 x i β +(n - 1)α thì khi đó: f (x 1 )+ f (x 2 )+ ... + f (x n ) - (n - 1)f (a) f (x 1 + x 2 + ... + x n - (n - 1)α) Chøng minh: Ta chøng minh b‹ng qui n/p theo n Vi n =1, hi”n nhiên đúng. Gi£ sß tính ch§t 5 đúng ti n. Ta xét khi n +1. Không gi£m tính tŒng quát, gi£ sß x n+1 = max{x 1 ; x 2 ; ...; x n+1 }. Sß dng gi£ thi‚t qui n/p ta ch¿ cƒn chøng minh: f (x 1 + x 2 + ... + x n - (n - 1)α)+ f (x n+1 ) f (α)+ f (x 1 + x 2 + ... + x n+1 - ) 1

Hàm lồi-lõm, bán lồi-bán lõm và nguyên lý biên

Embed Size (px)

DESCRIPTION

Bất đẳng thức, hàm lồi, hàm lõm, nguyên lý biên, Phan Đình Trung

Citation preview

  • HM LI, LM. HM BN LI, BN LM

    V NGUYN L BINThc hin: Phan nh Trung

    I. nh ngha:

    1. Hm li, lm:Hm s f c gi l li trn on [;] R nu vi mi x, y [;] v vi mi a, b 0 thaa+ b = 1 th:

    f(ax+ by) af(x) + bf(y)

    Ngc li, f c gi l lm trn on [;] R nu vi mi x, y [;] v vi mi a, b 0 thaa+ b = 1 th:

    f(ax+ by) af(x) + bf(y)

    Ch : Ta tha nhn kt qu sau:Nu hm f kh vi hai ln trn [;] th f li trn [;] khi f 0, x [;]. Ngc li, f lm trn[;] khi f 0, x [;]

    2. Hm bn li, bn lm:Hm s f c gi l bn li, bn lm trn [;] R nu tn ti hng s [;] duy nht sao chof li trn [; ] v lm trn [;] hoc ngc li.

    II. Tnh cht:

    1. Nu f l hm li trn [;] th ta c: min f = min{f(); f()}

    2. Nu f lm trn [;] th ta c: max f = max{f(); f()}

    3. Nu f l mt hm lm trn on [;] th khi vi mi x, y, z R tha mn ng thi x z y v x+ y z th

    f(x) + f(y) f(z) f(x+ y z)

    Chng minh: t t = x z, d thy 0 t x y t = k(x y), k [0; 1]. Ta c:

    f(x) + f(y) f(z) f(x+ y z) = f(x) + f(y) f(x t) f(y + t)= f(x) + f(y) f (x k(x y)) f (y + k(x y))= f(x) + f(y) f ((1 k)x+ ky) f (kx+ (1 k)y) f(x) + f(y) (1 k)f(x) kf(y) kf(x) (1 k)f(y) = 0 (Q.E.D)

    4. Nu f li trn trn on [;] th khi vi mi x, y, z R tha mn ng thi x z y v x+ y z th

    f(x) + f(y) f(z) f(x+ y z)

    5. Nu f lm trn [;] th vi dy s xn [;] than

    i=1 xi + (n 1) th khi :

    f(x1) + f(x2) + ...+ f(xn) (n 1)f(a) f(x1 + x2 + ...+ xn (n 1))

    Chng minh: Ta chng minh bng qui np theo nVi n = 1, hin nhin ng.Gi s tnh cht 5 ng ti n. Ta xt khi n+ 1.Khng gim tnh tng qut, gi s xn+1 = max{x1;x2; ...;xn+1}. S dng gi thit qui np ta ch cnchng minh:

    f(x1 + x2 + ...+ xn (n 1)) + f(xn+1) f() + f(x1 + x2 + ...+ xn+1 n)

    1

  • Do xn+1 = max{x1, x2, ..., xn+1} v xi [;] nn:

    f() + f(x1 + x2 + ...+ xn+1 n) f(x1 + x2 + ...+ xn+1 n+ xn+1) + f(xn+1)= f(x1 + x2 + ...+ xn (n 1)) + f(xn+1)

    Nh vy, khng nh ng vi n+ 1. Ta c pcm.

    6. Nu f li trn [;] th vi dy s xn [;] than

    i=1 xi + (n 1) th khi :

    f(x1) + f(x2) + ...+ f(xn) (n 1)f(a) f(x1 + x2 + ...+ xn (n 1))

    7. (BDT tip tuyn) Nu f lm trn [;] th vi mi x, x0 [;] ta c :

    f(x) f (x0)(x x0) + f(x0)

    Nu f li trn [;] th vi mi x, x0 [;] ta c :

    f(x) f (x0)(x x0) + f(x0)

    c bit, khi f(x) = ax+ b, a 6= 0 th th f l mt on thng nn:

    min{f(); f()} f(x) max{f(); f()}

    nh l 1: Cho (xn) l dy cc s thc tha:i) (xn) l dy khng gim.ii) xn [;]iii) x1 + x2 + ...+ xn = k = constiv) f l hm trn [;] tha f li trn [; ] v lm trn[;].

    t F = f(x1) + f(x2) + ...+ f(xn). Khi :+ minF x1 = x2 = ... = xk1 = a;xk+1 = ... = xn [;]+ maxF x1 = x2 = ... = xk1 [;];xk+1 = ... = xn = b

    nh l 2: Cho (xn) l dy cc s thc tha:i) (xn) l dy khng gim.ii) xn [;]iii) x1 + x2 + ...+ xn = k = constiv) f l hm trn [;] tha f lm trn [; ] v li trn[;].

    t F = f(x1) + f(x2) + ...+ f(xn). Khi :+ maxF x1 = x2 = ... = xk1 = a;xk+1 = ... = xn [;]+ minF x1 = x2 = ... = xk1 [;];xk+1 = ... = xn = b

    nh l 3: Cho (xn) l dy cc s thc tha:i) (xn) l dy khng gim.ii) xn Riii) x1 + x2 + ...+ xn = k = constiv) f l hm trn [;] tha f li trn (; ] v lm trn[; +).

    t F = f(x1) + f(x2) + ...+ f(xn). Khi :+ minF x1 x2 = x3 = ...xn+ maxF x1 = x2 = ... = xn1 xn

    nh l 4: Cho (xn) l dy cc s thc tha:i) (xn) l dy khng gim.

    2

  • ii) xn Riii) x1 + x2 + ...+ xn = k = constiv) f l hm trn [;] tha f lm trn (; ] v li trn[; +).

    t F = f(x1) + f(x2) + ...+ f(xn). Khi :+ maxF x1 x2 = x3 = ...xn+ minF x1 = x2 = ... = xn1 xn

    III. Cc v d:

    V d 1: (IMO Shorlist 1993, Viet Nam) Cho a, b, c, d l cc s thc khng m tha a+b+c+d = 1.CMR:

    abc+ abd+ acd+ bcd 127

    +176

    27abcd

    Li gii:

    Gi s a = min{a, b, c, d} a 14. BDT cn chng minh vit li di dng:

    (bc+ cd+ bd 176

    27bcd

    )a+ bcd 1

    27(1)

    Xem VT ca (1) nh mt hm s theo a. Ta xt cc trng hp: Trng hp 1: bc+cd+bd17627

    bcd = 0.

    Khi :

    V T(1) = bcd (b+ c+ d)3

    27 (a+ b+ c+ d)

    3

    27=

    1

    27

    Trng hp 2: bc+ cd+ bd 17627

    bcd < 0. Khi :

    V T(1) bcd 1

    27

    Trng hp 3: bc+ cd+ bd 17627

    bcd > 0. Khi :

    V T(1) bc+ cd+ bd

    4 17

    27bcd

    S dng BDT Schur, ta c:

    bc+ cd+ bd

    4 17

    27bcd 13

    324(bc+ cd+ bd) +

    17

    576 13(b+ c+ d)

    2

    324.3+

    17

    576=

    1

    27

    Php chng minh hon tt.

    Lu : Ty theo bi ton ra cn la i lng thay i ph hp sao cho thun li trong viccng ph bi ton. i vi bi ton ny, ta c th c nh c, d th do a+ b+ c+ d = 1 nn a+ b cngc nh, lc ny kho st V T(1) theo ab ta cng thu dc pcm.

    V d 2: (Vasile Cirtoaje) Cho a, b, c, d l cc s thc khng m a, b, c, d tha a2 + b2 + c2 + d2 = 1.CMR:

    (1 a)(1 b)(1 c)(1 d) abcd

    Li gii:

    Gi s a = min{a, b, c, d} a 12. Ta vit BDT cn chng minh di dng:

    [(1 b)(1 c)(1 d) + bcd]a (1 b)(1 c)(1 d) 0 (1)

    3

  • Xem VT ca (1) nh mt hm theo a. Ta c hai trng hp:Trng hp 1: (1 b)(1 c)(1 d) + bcd = 0, hin nhin ng.Trng hp 2: (1 b)(1 c)(1 d) + bcd > 0. Khi :

    [(1 b)(1 c)(1 d) + bcd]a (1 b)(1 c)(1 d) bcd (1 b)(1 c)(1 d)2

    t

    p = b+ c+ d

    q = bc+ cd+ db

    r = bcd

    . Khi , ta cn CM:

    2r + p q 12

    0

    Ch l lc ny p2 2q = 34nn ta cn CM:

    4r 14 (p 1)2

    Theo AM-GM: p 3 3r T y ch vic kho st hm g(r) = 4r9 3

    r2+6

    r 5

    4, r 1

    8l c pcm.

    V d 3: (Crux Mathemmaticorum) Cho a, b, c l cc s khng m. CMR:1 +

    48a

    b+ c+

    1 +

    48b

    c+ a+

    1 +

    48c

    a+ b 15

    Li gii:

    t x =2a

    b+ c; y =

    2b

    c+ a; z =

    2c

    a+ b. Khi , ta c:

    xy + yz + zx+ xyz = 4

    V ta cn CM: 1 + 24x+

    1 + 24y +

    1 + 24z 15 (1)

    Khng gim tnh tng qut, gi s: x = max{x, y, z} x 1. Xem VT ca (1) nh mt hm f theo x.D thy f ng bin nn f t gi tr nh nht khi x = 1. Lc ny, ta c y+z+2yz = 4 y = 4 z

    1 + 2zv ta cn tm GTNN ca

    1 + 24y +1 + 24z =

    1 + 24.

    4 z1 + 2z

    +1 + 24z

    Thc hin kho st hm g(z) =

    1 + 24.4 z1 + 2z

    +1 + 24z vi z [0; 1] ta d dng thy g(z) 10

    T suy ra: 1 + 24x+

    1 + 24y +

    1 + 24z 15 (Q.E.D)

    V d 4: Cho cc s a, b, c khng m. CMR:(4a

    b+ c+ 1

    )(4b

    c+ a+ 1

    )(4c

    a+ b+ 1

    ) 25

    Li gii:

    t x =2a

    b+ c, y =

    2b

    c+ a, z =

    2c

    a+ b. Khi :

    xy + yz + zx+ xyz = 4

    V ta cn CM:(1 + 2x)(1 + 2y)(1 + 2z) 25

    4

  • Nu ta xem VT ca BDT ny nh mt hm theo z th r rng y l mt hm bc nht v ng bin.Theo . GTNN ca hm ny t c khi z = 0. Lc ny xy = 4 v ta cn ch ra:

    (1 + 2x)(1 + 2y) 25 x+ y 8

    iu ny l hin nhin theo AM-GM. Bi ton c chng minh.

    V d 5: (USA MO 2000) Cho a, b, c l cc s thc khng m. CMR:

    a+ b+ c

    3 3abc max{(

    ab)2; (

    bc)2; (

    ca)2}

    Li gii:Khng mt tnh tng qut, gi s a b c. Khi , ta cn CM:

    a+ b+ c 3 3abc 3(

    ca)2 0 (1)

    Xem VT ca (1) l mt hm theo b. Ta tnh c

    f (b) =3ca

    33b5> 0

    Do f l hm lm. Nh vy GTLN ca f t c khi b = a hoc b = c. Ta xt khi a = b. Khi ta cn CM:

    a+ 2c+ 33ca2 6

    ca

    iu ny l ng theo AM-GM.

    Nu m rng BDT trn ta tm c chn di ca i lng TBC-TBN l1

    2min1i

  • Tng qut ha bi ton v d 6, ta thu c bi ton ca tp ch Crux Mathemmaticorum:Cho x1, x2, ..., xn (n 2) l cc s khng m c tng bng 1. CMR:

    1 x11 + x1

    +

    1 x21 + x2

    + ...+

    1 xn1 + xn

    n 2 + 23

    V d 7: (VMEO 2005) Cho a, b, c l cc s thc dng cho trc v x, y, z l cc s thc dng thamn ax+ by + cz = xyz. Tm GTNN ca:

    P = x+ y + z

    Li gii:B : Vi cc s thc dng a, b, c cho trc. Khi tn ti duy nht d > 0 sao cho:

    1

    a+ d+

    1

    b+ d+

    1

    c+ d=

    2

    d

    Chng minh b : Vit biu thc trn li thnh:

    a

    a+ d+

    b

    b+ d+

    c

    c+ d= 1

    Xem y l mt hm f theo d. D thy f lin tc v f nghch bin. Mt khc limd0 f(d) = 3 vlimd+ f(d) = 0 nn tn ti duy nht s d > 0 tha mn ng thc trn. B c chng minh.

    Quay li bi ton. t x =

    bc

    am, y =

    ca

    bn, z =

    ab

    cp. Khi ta c:

    m+ n+ p = mnp

    iu ny gi cho ta chn A,B,C l ba gc ca mt tam gic nhn sao cho: m = tanA,n = tanB, p =tanC. By gi, ta cn tm GTNN ca:

    P =

    bc

    atanA+

    ca

    btanB +

    ca

    btanC

    Xt hm f(x) = tanx, x (0;

    2

    ). Ta c : f(x) = 2 tanx.(tan2 x + 1) > 0, x

    (0,

    2

    )nn f lm

    trn(0;

    2

    ). Ta chn d l s thc dng sao cho:

    1

    a+ d+

    1

    b+ d+

    1

    c+ d=

    2

    d

    S tn ti ca d hon ton c khng nh theo b . p dng BDT tip tuyn, ta c:

    f(A) f (arctan

    a(b+ d)(c+ d)

    bc(a+ d)

    )[A arctan

    a(b+ d)(c+ d)

    bc(a+ d)

    ]+ f

    (arctan

    a(b+ d)(c+ d)

    bc(a+ d)

    )

    tanA a(b+ d)(c+ d) + bc(a+ d)bc(a+ d)

    [A arctan

    a(b+ d)(c+ d)

    bc(a+ d)

    ]+

    a(b+ d)(c+ d)

    bc(a+ d)

    bc

    atanA 2abc+ (ab+ bc+ ca)d+ ad

    2

    abc(a+ d)

    [A arctan

    a(b+ d)(c+ d)

    bc(a+ d)

    ]+

    (b+ d)(c+ d)

    a+ d

    Ch rng v1

    a+ d+

    1

    b+ d+

    1

    c+ d=

    2

    d

    nn ta c ngayd3 = 2abc+ (ab+ bc+ ca)d

    6

  • Suy ra: bc

    atanA d

    2

    abc

    [A arctan

    a(b+ d)(c+ d)

    bc(a+ d)

    ]+

    (b+ d)(c+ d)

    a+ d

    Tng t, ta cng c:ca

    btanB d

    2

    abc

    [B arctan

    b(a+ d)(c+ d)

    ac(b+ d)

    ]+

    (a+ d)(c+ d)

    b+ d

    ab

    ctanC d

    2

    abc

    [C arctan

    c(a+ d)(b+ d)

    ab(c+ d)

    ]+

    (a+ d)(b+ d)

    c+ d

    Ch rng:a(b+ d)(c+ d)

    bc(a+ d)+

    b(c+ d)(a+ d)

    ca(b+ d)+

    c(a+ d)(b+ d)

    ab(c+ d)=

    (a+ d)(b+ d)(c+ d)

    abc

    nn:

    A+B + C arctan

    a(b+ d)(c+ d)

    bc(a+ d) arctan

    b(c+ d)(a+ d)

    ca(b+ d)+ arctan

    c(a+ d)(b+ d)

    ab(c+ d)= 0

    Do :

    P

    (a+ d)(b+ d)

    c+ d+

    (b+ d)(c+ d)

    a+ d+

    (c+ d)(a+ d)

    b+ d

    Vy:

    minP =

    (b+ d)(c+ d)

    a+ d+

    (c+ d)(a+ d)

    b+ d+

    (a+ d)(b+ d)

    c+ d

    Kt thc bi vit, ti xin ngh mt s bi tp t luyn:1. Cho a, b, c, d [0; 1]. CMR:

    (1 a)(1 b)(1 c)(1 d) + a+ b+ c+ d 1

    2. (THTT 2002) Cho a, b, c l cc s thc c tng bnh phng bng 2. Tm GTLN ca

    P = 3(a+ b+ c) 22abc

    3. Cho a, b, c, d 0 tha a+ b+ c+ d = 4. CMR:

    16 + 2abcd 3(ab+ ac+ ad+ bc+ bd+ cd)

    4. (Viet Nam TST 2001, Trn Nam Dng) Cho a, b, c l cc s dng tha 21ab+2bc+8ca 12. TmGTNN ca:

    P =1

    a+

    2

    b+

    3

    c

    5. (IMO 1984) Cho x, y, z 0 tha x+ y + z = 1. CMR:

    0 xy + yz + zx 2xyz 727

    6. Cho x, y, z > 0 tha x+ y + z = 1. Tm GTLN ca

    F =x

    x2 + 1+

    y

    y2 + 1+

    z

    z2 + 1

    7. (VMEO 2004) Cho tam gic nhn ABC. Tm GTNN ca:

    P = tanA+ 2 tanB + 5 tanC

    7

  • 8. Cho x, y, z, t 0 tha x+ y + z + t = 4. CMR:

    (1 + x)(1 + 3y)(1 + 3z)(1 + 3t) 125 + 131xyzt

    Ti liu tham kho:[1]. Bt ng thc- V Quc B Cn.[2]. K thut nh gi trn bin - Phm Quc Thng.[3]. Nguyn l bin - Cao nh Huy.[4]. www.diendantoanhoc.net

    8