Handbook of Combustion

Embed Size (px)

Citation preview

  • 7/24/2019 Handbook of Combustion

    1/15

    See discussions, stats, and author profiles for this publication at:

    http://www.researchgate.net/publication/233752514

    Handbook of Combustion

    BOOK APRIL 2010

    DOI: 10.1002/9783527628148

    CITATIONS

    8

    READS

    486

    3 AUTHORS:

    Maximilian Lackner

    TU Wien

    74PUBLICATIONS 408CITATIONS

    SEE PROFILE

    Franz Winter

    TU Wien121PUBLICATIONS 1,309CITATIONS

    SEE PROFILE

    Avinash Kumar Agarwal

    Indian Institute of Technology Kan

    189PUBLICATIONS 3,536CITATIONS

    SEE PROFILE

    Available from: Avinash Kumar Agarwal

    Retrieved on: 06 November 2015

    http://www.researchgate.net/profile/Avinash_Agarwal4?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_4http://www.researchgate.net/profile/Avinash_Agarwal4?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_5http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_3http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2http://www.researchgate.net/?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_1http://www.researchgate.net/profile/Avinash_Agarwal4?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_7http://www.researchgate.net/institution/Indian_Institute_of_Technology_Kanpur?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_6http://www.researchgate.net/profile/Avinash_Agarwal4?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_5http://www.researchgate.net/profile/Avinash_Agarwal4?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_4http://www.researchgate.net/profile/Franz_Winter?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_7http://www.researchgate.net/institution/TU_Wien?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_6http://www.researchgate.net/profile/Franz_Winter?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_5http://www.researchgate.net/profile/Franz_Winter?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_4http://www.researchgate.net/profile/Maximilian_Lackner?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_7http://www.researchgate.net/institution/TU_Wien?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_6http://www.researchgate.net/profile/Maximilian_Lackner?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_5http://www.researchgate.net/profile/Maximilian_Lackner?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_4http://www.researchgate.net/?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_1http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_3http://www.researchgate.net/publication/233752514_Handbook_of_Combustion?enrichId=rgreq-877aa0ae-57c8-4713-afa2-55e5beca78fd&enrichSource=Y292ZXJQYWdlOzIzMzc1MjUxNDtBUzoxODEwNDc4NjYxNzU0ODhAMTQyMDE3NjU4MzA0NA%3D%3D&el=1_x_2
  • 7/24/2019 Handbook of Combustion

    2/15

    Handbook of Combustion

    Volume 4: Solid Fuels

    Edited by

    Maximilian Lackner, Franz Winter,

    and Avinash K. Agarwal

    WILEY-VCH

    WILEY-VCH Verlag GmbH & Co. KGaA

  • 7/24/2019 Handbook of Combustion

    3/15

    Contents

    PrefaceXIX

    About the Editors XXIList of Contributors XXV

    List of AbbreviationsXXIX

    List of Symbols XXXIII

    Synopsis Volume 4 XLIII

    1 Overview of Solid Fuels, Characteristics and Origin 1

    Toby G. Bridgeman, Jenny M . Jones, and Alan Williams

    1.1 Origin of the Solid Biomass and Fossil Fuels 11.1.1 Formation of Coal 11.1.2 Origin of Biomass Fuels 31.1.3 Peat 4

    1.1.4 Derived Fuels and Waste or Opportunity Fuels 41.2 Availability and Resource Base of the Fossil and Biomass Fuels 51.2.1 Coal 5

    1.2.2 Biomass 6

    1.2.3 Peat 6

    1.2.4 Waste Materials 61.3 Methods of Characterizing Solid Fuels 7

    1.3.1 Proximate and Ultimate Analyses of Coals or Biomass 71.3.2 Calorific Value 81.3.3 Ash Composition 91.3.4 Ash Fusibility 91.3.5 Physical Properties 101.4 Physical and Chemical Properties of the Solid Fuels 101.4.1 Ultimate Analysis and Heating Value 1 11.4.2 Proximate Analysis 111.4.3 Ash12

    1.4.4 Classification 19

    1.4.5 Reactivity of Solid Fuels 20

  • 7/24/2019 Handbook of Combustion

    4/15

    Contents

    1.5 Handling and Preparation of the Fuels Prior to Use 24

    1.5.1 Coal24

    1.5.2 Biomass 26

    References 29

    2 Overview of Solid Fuels Combustion Technologies 31

    Despina Varnvuka

    2.1 Introduction 312.2 Coal Characteristics Affecting Combustion Processes 32

    2.2.1 Coal Structure and Petrographic Composition 322.2.2 Organic Elements and Sulfur Content 332.2.3 Moisture and Volatile Matter Contents 332.2.4 Calorific Value 342.2.5 Agglomeration Properties 34

    2.2.6 Ash Content and Composition 342.2.6.1 Effect on Ash Softening Temperature 342.2.6.2 Effect on Slag Viscosity 352.2.6.3 Effect on Fouling 352.3 Conventional Coal Combustion Technologies 362.3.1 Stokers 37

    2.3.1.1 Spreader Stokers 382.3.1.2 Chain Grate Stokers 392.3.1.3 Vibrating Grate Stokers 392.3.1.4 Underfeed Stokers 39

    2.3.2 Pulverized-Coal Furnaces 402.3.2.1 Dry-Bottom Furnaces 422.3.2.2 Wet-Bottom Furnaces 432.3.3 Cyclone Furnaces 452.4 Advanced Clean Coal Technologies 46

    2.4.1 Fluidized-Bed Combustion 462.4.1.1 AFBC Process 472.4.1.1.1Process and Key Issues 47

    2.4.1.1.2Current Status and Experience 492.4.1.1.3Future Developments 50

    2.4.1.2 PFBC Process 522.4.1.2.1Process and Key Issues 52

    2.4.1.2.2Current Status and Experience 542.4.1.2.3Future Developments 55

    2.4.2 Supercritical Coal Combustion 562.4.2.1 Process and Key Issues 562.4.2.2 Current Status and Experience 572.4.2.3 Future Developments 582.4.3 In Situ Emissions Control Technologies 582.4.3.1 SO, Control Technologies 58

    2.4.3.2 NO, Control Technologies 59

  • 7/24/2019 Handbook of Combustion

    5/15

    Contents I VII

    2.4.3.3 Near-Zero CO 2Emissions Technologies 622.5 Biomass Characteristics Affecting Combustion Processes 632.5.1 Moisture Content 632.5.2 Ash Content and Composition 632.5.3 Particle Size 64

    2.6 Industrial Biomass Combustion Systems 642.6.1 Fixed Bed Systems 652.6.1.1 Grate Furnaces 652.6.1.2 Underfeed Stokers 692.6.2 Fluidized Bed Systems 7 12.6.2.1 Bubbling Fluidized Bed 7 12.6.2.2 Circulating Fluidized Bed 722.6.3 Dust Combustion Systems 74

    2.7 Outlook 752.8 Summary 76

    References 78

    3 Solid Biomass Combustion 85

    Amit Suri and Masayu ki Horio

    3.1 Introduction 853.2 Solid Biomass Fuels 883.2.1 Variety of Biomass Fuels 88

    3.2.2 Characterization of Biomass Fuels 92

    3.2.2.1 Chemical Analysis 923.2.2.2 Ash Characterization 953.2.2.3 Ash Behavior 993.2.2.4 Bulk Density and Energy Density 102

    3.2.2.5 Hardness 1 0 3

    3.3 Principle of Solid Biomass Combustion 104

    3.3.1 Drying and Pyrolysis of Wood 105

    3.3.2 Effect of Heating Rate and Temperature an Products of Pyrolysis 107

    3.3.3 Ignition, Combustion, and Extinction 108

    3.3.4 Kinetics 110

    3.3.4.1 Volatiles Combustion 110

    3.3.4.2 Char Combustion 1123.3.4.3 Effect of Shape Factor during Combustion 113

    3.3.5 Gaseous Emissions 11 4

    3.3.5.1 Nitrogen Oxides (NO,) 11 4

    3.3.5.2 Nitrous Oxide (N 20)117

    3.3.5.3 Sulfur Oxides (S0,3 1183.3.5.4 Hydrogen Chloride (HC1) 11 8

    3.3.5.5 Heavy Metals and Dioxins 11 8

    3.4 Combustion and Conversion Technologies 120

    3.4.1 Large-Scale Boilers 120

    3.4.1.1 Fixed Bed Combustion Systems 122

  • 7/24/2019 Handbook of Combustion

    6/15

    VIII Contents

    3.4.1.1.1Grate Furnaces 122

    3.4.1.1.2Stoker Furnaces 123

    3.4.1.2 Fluidized Bed Combustion 124

    3.4.1.2.1Circulating Fluidized Bed 125

    3.4.1.2.2Bubbling Fluidized Bed 12 63.4.1.3 Entrained Bed Furnace 127

    3.4.2 Small-Scale Boilers 1283.4.2.1 Classical Cooking Stoves 12 8

    3.4.2.2 Fireplace Heaters 1283.4.2.3 Pellet Burners 128

    3.4.2.4 Charcoal Combustion 129

    3.5 Ash Behavior in Different Combustion Systems 1 3 1

    3.5.1 Ash Behavior in Grate Furnaces 1 3 1

    3.5.2 Ash Behavior in FBCs 1 3 3

    3.6 Outlook 1353.7 Summary 136

    References 13 6

    4 SmaII-Scale Biomass Combustion 141

    Matthias Gaderer, Florian Volz, and Robert Kunde

    4.1 Introduction and Summary 1 4 14.2 Biomass Fuels 142

    4.3 Biomass Combustion Techniques 143

    4.3.1 Combustion Process 143

    4.3.2 Manually Operated Systems 1444.3.2.1 Log Wood Combustor Systems 144

    4.3.2.1.1 Updraft Combustion with Complete Combustion 144

    4.3.2.1.2Updraft Combustion with Top-Burnout 145

    4.3.2.1.3Downdraft Combustion with Bottom or Lateral Burnout 146

    4.3.2.2 Log Wood Fired Heating Systems 147

    4.3.2.2.1Fireplace 147

    4.3.2.2.2Stoves149

    4.3.2.2.3Tule Stove, Heat-Storing Stoves 150

    4.3.2.2.4Central Heating Boilers 1 5 1

    4.3.3 Automatically Fed Combustors 15 34.3.3.1 Combustion Concepts for Automatically Fed Firing Systems 1564.3.3.1.1Underfed Firing 156

    4.3.3.1.2Horizontally Fed Furnace Systems or So-called Stokers 157

    4.3.3.1.3Drop-Shaft Firing 158

    4.3.3.2 Automatically Operated Wood Chip and Pellet Heating Systems 1584.3.3.2.1Stoves for the Combustion of Wood Pellet 1584.3.3.2.2Central Heating Boilers for Wood Pellet and Wood Chips 1604.4 Emissions 1654.5 Electricity Production and Combined Heat and Power 167

    References 16 8

  • 7/24/2019 Handbook of Combustion

    7/15

    Contents I IX5 Coal Combustion 1 7 1

    Monika Kosowska-Golachowska

    5.1 Introduction 1 7 15.2 Description of Combustion of a Single Coal Particle 1725.2.1 Heating and Drying 17 25.2.2 Ignition of Volatiles

    174

    5.2.3 Devolatilization and Volatile Combustion 17 55.2.4 Char Combustion 1795.2.4.1 Mechanisms of Combustion of Non-Porous Char 1805.2.4.2 Mechanisms of Combustion of Porous Char 1 8 15.2.4.3 Burning Rate 182

    5.2.4.4 Time of Char Combustion 18 25.2.5 Fragmentation of a Coal Particle 18 25.3 Experimental Research into Combustion of a Single Coal Particle 184

    5.3.1 Test Apparatus 1855.3.2 Test Procedure 18 65.3.3 Coals Tested 1865.3.4 Thermal Fragmentation of Coal 1865.3.4.1 Effect of Coal Type 1875.3.4.2 Effect of Particle Diameter 1 9 15.3.4.3 Influence of Bed Temperature 1 9 15.3.5 Evolution of Coal Structure during Combustion 1925.4 Mathematical Model of Primary Fragmentation 1985.4.1 Coal Heating 199

    5.4.2 Volatile Release 2015.4.3 Volatile Transport 2025.4.4 Primary Fragmentation 2025.4.5 Results of Numerical Simulations 2035.4.6 Verification of the Model 2065.5 Applications of Coal Combustion in Industry 209

    5.6 Outlook 211

    5.7 Summary 212

    References 213

    6 Pulverized Coal-Fired Boilers 217Hai Zhang andJunfu Lu

    6.1 Introduction 2176.1.1 PC Combustion and PC Fired Boiler 217

    6.1.2 Physical Properties of PC Particles 2 20

    6.1.3 Conventional Layout of a PC Boiler 221

    6.1.4 Heating Surfaces and Water-Vapor Path in a PC Boiler 223

    6.1.5 Heat Transfer Calculation Procedure of a PC Boiler 224

    6.2 Some Theories 2266.2.1 Theoretical Air and Coefficient of Excess Air 226

    6.2.2 Heat Balance and Efficiency of a PC Boiler 227

  • 7/24/2019 Handbook of Combustion

    8/15

    XContents

    6.2.3 Ignition of PC Particles 2296.2.4 Char Combustion 2326.2.5 NO, Formation Mechanisms 2326.2.5.1 Thermal NO 233

    6.2.5.2 Fuel NO2346.3 PC Fired Furnace 2356.3.1 Furnace Layout and Firing Type 235

    6.3.2 Cross-Section Heat Release Rates Selection 237

    6.3.3 Volumetric Heat Release Rates Selection 2386.3.4 Empirical Heat Transfer Calculation in the

    Furnace 238

    6.3.4.1 General Introduction 2386.3.4.2 Heat Input to the Furnace 239

    6.3.4.3 Emissivity of the Flame and the Furnace 240

    6.3.4.4 Empirical Heat Transfer Calculation in the Furnace 2416.4 PC Fired Burners 2436.4.1 General Introduction 2436.4.2 Arrangement of Burners 2446.4.3 Low NO, burners (LNB) 2476.4.4 Examples of LNBs 2486.4.4.1 Boat-Shaped Bluff-Body Burner 2486.4.4.2 Double PA Channel Burner 2486.4.4.3 DRB Burner 2496.4.4.4 WR Burner 250

    6.4.4.5 PM Burner and Vertical Rich/Lean 2506.4.4.6 Louver Damper Burner and Bias Combustion 2516.4.4.7 In-Furnace HTAC Burner 2516.5 Outlook 2536.6 Summary 254

    References 254

    7 Modeling Moving and Fixed Bed Combustion 257

    Bernhard Peters and Harald Raupenstrauch

    7.1 Introduction 257

    7.1.1 Combustion Characteristics of an Individual Particle 2577.1.2 Combustion Characteristics of a Fixed or Moving Bed 2587.1.3 Conversion Regimes 2597.1.4 Classification of Model Approaches 2607.2 Modeling Approach 2627.2.1 Conversion262

    7.2.1.1 Drying 2637.2.1.2 Pyrolysis and Devolatilization 2637.2.1.3 Gasification and Combustion 2657.2.2 Transport of Fuel Particles 266

    7.2.3 Gas Flow 267

  • 7/24/2019 Handbook of Combustion

    9/15

    Co ntents I XI7.3 Applications 2687.3.1 Conversion 2687.3.1.1 Drying 2687.3.1.2 Pyrolysis and Devolatilization 2697.3.1.3 Gasification and Combustion 2717.3.1.3.1Grate: Optimal Conditions for Fuel Ignition and Optimal

    Primary Air Load 2727.3.2 Transport an a Grate and in a Rotary Kiln 2777.3.2.1 Grate 277

    7.3.2.2 Rotary Kiln 2797.4 Outlook 2797.5 Summary 280

    References 280

    8 Waste Combustion, MSW, Sewage Sludge, Hazardous,

    Grate and Rotary Kiln 285

    Helmut Seifert and Jrgen Vehlow

    8.1 Introduction 2858.2 Objectives of Thermal Waste Treatment 2858.3 Basic Processes for Thermal Waste Treatment 2868.4 Waste Incineration Processes 2878.5 Incineration of Municipal Solid Waste 2888.5.1 Generation and Quality of Municipal Solid Waste 2888.5.2 Management of Municipal Solid Waste 289

    8.5.3 Grate-Based Waste Incinerators 2898.5.3.1 Elements and Design of Grate Furnaces 2918.5.3.2 Grate Types 2928.5.3.3 Travelling Grates 2928.5.3.3.1Roller Grates 292

    8.5.3.3.2Reciprocating Grates 2938.5.3.4 Fundamentals of Fuel Technology 2958.5.3.4.1Waste Characteristics 295

    8.5.3.4.2Specific Combustion Parameters 2978.5.3.4.3Design of a Grate Fired Furnace 299

    8.6 Material Partitioning Inside the Furnace 3008.7 Air Pollution Control 301

    8.7.1 Flue Gas Quality 301

    8.7.2 Air Emission Regulations 302

    8.7.3 Process Stages 3048.7.4 Particle Removal 304

    8.7.5 Chemical Gas Cleaning 3058.7.5.1 Wet Scrubbing 3068.7.5.2 Dry Scrubbing 3078.7.5.3 NO, Abatement 308

    8.7.5.4 Control of Dioxins 308

  • 7/24/2019 Handbook of Combustion

    10/15

    xllContents

    8.7.6 Quality of Emissions 309

    8.8 Solid Residues 310

    8.8.1 Mass Flows in a Waste Incinerator 310

    8.8.2 Management of Bottom Ashes 311

    8.8.2.1 Characterization 3118.8.2.2 Pretreatment for Utilization 311

    8.8.2.3 Utilization and Environmental Compatibility 311

    8.9 Management of Boiler and Filter Ashes and APC Residues 313

    8.9.1 Boiler and Filter Ashes 313

    8.9.2 APC Residues 315

    8.10 Hazardous Waste Combustion in Rotary

    Kiln Furnaces 3158.11 Sewage Sludge Incineration in Fluidized

    Bed Furnaces 316

    8.12 Alternative Processes for Thermal Waste Treatment 3178.13 Summary 319

    References 319

    9 Gasification and Pyrolysis of Coal 325

    Adam Luckos, Mohammed N. Shaik, and Johan C. van Dyk

    9.1 Introduction 3259.2 Fundamentals of Coal Gasification Technology 326

    9.3 Pyrolysis and Gasification Chemistry 328

    9.3.1 Pyrolysis 328

    9.3.2 Stoichiometry and Thermodynamics of Gasification 3319.3.3 Kinetics of Gasification Reactions 333

    9.4 Coal Gasification Technologies 334

    9.4.1 Fixed-Bed Gasifiers 335

    9.4.1.1 Fixed-Bed Dry-Bottom (FBDB) Process 336

    9.4.1.2 British Gas/Lurgi Process 338

    9.4.2 Fluidized-Bed Gasifiers 339

    9.4.2.1 High Temperature Winkler Process 340

    9.4.2.2 Kellogg Rust Westinghouse Process 342

    9.4.2.3 Kellogg Brown Root Transport Gasifier 343

    9.4.3 Entrained-Flow Gasifiers 3459.4.3.1 Shell Coal Gasification Process 345

    9.4.3.2 Prenflo Gasification Process 348

    9.4.3.3 General Electric Coal Gasification Process 350

    9.4.3.4 Conoco-Phillips E-Gas Gasification Process 351

    9.4.3.5 Mitsubishi Heavy Industries Coal Gasification Process 352

    9.4.3.6 Siemens Fuel Gasification Technology 355

    9.4.4 Other Gasification Technologies 356

    9.4.4.1 Opposed Multi-Burner (OMB) Gasification Technology 356

    9.4.4.2 Pratt and Whitney Rocketdyne (PWR)

    Gasification Technology 357

  • 7/24/2019 Handbook of Combustion

    11/15

    Contents I X III9.4.4.3 Plasma Gasification 3579.4.4.4 Underground Coal Gasification 3579.5 Outlook 3589.6 Summary 359

    References 359

    10 Gasification of Biomass and Waste 365

    Alberto Grnez-Barea and Bo Leckner

    10.1 Introduction 36510.2 Biomass as a Fuel for Gasification 36610.2.1 I mpact of Biomass Characteristics an Gasifier Performance 36610.2.2 Biomass Classification and Standardization 36810.2.3 Biomass Reliability 36910.3 Thermochemistry of Biomass Gasification 370

    10.4 Gasification Technologies 37310.4.1 Types of Gasifiers 37310.4.1.1 Fixed-Bed Gasifiers 37410.4.1.2 Fluidized-Bed Gasifiers 37510.4.1.3Entrained-Flow Gasifiers 37610.4.2 Direct and Indirect Gasification 37610.4.3 Pressured Gasification 37810.5 Gas Requirements for Utilization 37810.6 Gas Cleaning 38010.6.1 Dust Removal 38010.6.2 Removal of Contaminants 38110.6.2.1 Nitrogen 38110.6.2.2 Chlorine 38110.6.2.3 Alkalis 381

    10.6.2.4Sulfur382

    10.6.3 Tar Removal and Conversion 382

    10.6.3.1Secondary Methods 382

    10.6.3.2Primary Methods 384

    10.6.4 State of the Art of Gas Cleaning Technology 386

    10.7 Applications 387

    10.7.1 Direct Firing 38710.7.1.1Direct Firing for Thermal Applications 387

    10.7.1.2Direct Firing in Stand-Alone Gas Boiler for

    Electricity Production 388

    10.7.2 Co-Firing 38910.7.3 Power Production in Engines 391

    10.7.4 Biomass Gasification Integrated in Combined Cycles 392

    10.7.5 Production of Liquids by Chemical Synthesis 393

    10.7.6 Fuel Cell Applications 394

    10.8 Summary and Outlook 395References 396

  • 7/24/2019 Handbook of Combustion

    12/15

    XIV Contents

    1 1 Fluidized Beds 399

    Zbigniew Bis

    11.1 Introduction 399

    11.2 Theory 401

    11.2.1 Average Particle Size 40411.2.2 Parameters of a Bed of Solids 405

    11.2.3 Critical Fluidization Velocities 407

    11.2.4 Structure of Fluidized Bed 413

    11.2.5 Heat Transfer in Fluidized Bed 418

    11.3 Application in Industry 420

    11.3.1 Introduction 42011.3.2 Fundamental Rules in Designing and Operating

    the Fluidized Bed Boilers 422

    11.4 Outlook 428

    11.5 Summary 431References 432

    12 Modeling of Circulating Fluidized Bed Combustion 435

    Wei Wang and finghol Li

    12.1 Introduction 43512.2 Fluid Dynamics 43712.2.1 Moving Packed Bed 437

    12.2.2 Bubbling Fluidization 43812.2.3 Fast Fluidization 438

    12.2.3.1 Axial Voidage Profile 43912.2.3.2 Lateral Voidage Profile 441

    12.2.3.3 Meso-Scale Structure 441

    12.2.3.4EMMS Model and Extensions 44112.2.3.5Gas and Solids Mixing 445

    12.3 Heat and Mass Transfer 44512.3.1 ParticleFluid Heat/Mass Transfer 446

    12.3.1.1 Classical Correlations 44612.3.1.2Heat/Mass Transfer with Meso-Scale Structures 44712.3.2 Bed-to-Wall Heat Transfer 449

    12.4 Reaction Kinetics 45112.4.1 Devolatilization 45212.4.2 Char Combustion 45312.4.3 Pollutant Emission 45512.5 Modeling Approaches 45612.5.1 Lumped Parameter Model 45612.5.2 1D/1.5D Model 45612.5.3 Multi-D Model 45712.5.4 CFD Model 45712.6 Multiscale CFD Modeling of Combustion 458

  • 7/24/2019 Handbook of Combustion

    13/15

    Contents XV

    12.6.1 Governing Equations for Multiphase Flow and Reactions 45812.6.1.1 Continuity Equation for Phase j (j = 1, 2...N) 45812.6.1.2Momentum Equations for Gas Phase (g) and Solid Phase (s) 45912.6.1.3Mass Conservation Equations for Gas and Solid Components 462

    12.6.1.4Energy Conservation Equations 46412.6.2 An Example of Simulation 46412.7 Summary and Prospects 466

    References 466

    13 Agglomeration in Fluidized Bed Combustion: Mechanisms, Detection,

    and Counteraction 471

    J. Ruud van Ommen and bleigang Lin

    13.1 Introduction 47113.2 Mechanisms of Agglomeration in a Fluidized Bed 472

    13.2.1 Hydrodynamics 47213.2.2 Chemical Reactions and Transportation of Sticky Compounds 47413.3 Fuel Ash Measurement Methods 476

    13.4 Agglomeration Detection Based on Process Measurements 477

    13.4.1 Detection Methods Based on Pressure Measurements 477

    13.4.2 Detection Methods Based on Acoustic Emissions 479

    13.4.3 Detection Methods Based on Temperature 480

    13.4.4 Detection Methods Based on Gas-Phase Alkali Concentrations 480

    13.4.5 Detection Methods Based on Other Measurement Sources 48113.5 Agglomeration Counteraction Strategies and Technologies 481

    13.6 Summary483

    References 485

    14 Ash-Forming Matter and Ash-Related Problems 493

    Maria Zevenhoven, Patrik Yrjas, and Mikko Hupa

    14.1 Analysis of Ash-Forming Matter 493

    14.2 Release and Chemical Reactions of Ash-Forming Matter 500

    14.2.1 Silicon 502

    14.2.2 Aluminum 50314.2.3 Iron504

    14.2.4 Potassium and Sodium 505

    14.2.5 Calcium and Magnesium 507

    14.2.6 Sulfur 510

    14.2.7 Chlorine 51114.2.8 Phosphorus 51214.3 Deposit Formation 513

    14.4 Agglomeration and Sintering in Fluidized Bed Conversion 520

    14.5 Corrosion 524

    14.6 Final Remarks 527References 528

  • 7/24/2019 Handbook of Combustion

    14/15

    XVIContents

    15 Ash Fouling of Boiler Tubes and Thermophysical Properties

    of Deposits 533

    Arv o Ots

    15.1 Introduction 533

    15.2 Types and Classification of Ash Deposits 53415.3 Formation of Ash Deposits 535

    15.3.1 Forces Acting on a Ash Particle 535

    15.3.2 Sticking of Particles on the Surface 537

    15.3.3 Formation of Loose Deposits 538

    15.3.4 Formation of Bound Deposits 542

    15.4 Thermophysical Properties of the Ash Deposits 546

    15.4.1 Thermal Conductivity 546

    15.4.2 Thermal Radiation Emissivity 549

    15.4.3 Influence of Emissivity on Heat Transfer 550

    15.5 Summary 553References 553

    16 Co-Firing Biomass with Coal in Fluidized Bed Combustion Systems 557

    Nevin Selcuk and Zuhal Gogebakan

    16.1 Introduction 55716.2 Comparison between Coal and Biomass Characteristics 55816.3 Comparison between Combustion Characteristics of

    Coal and Biomass 56116.4 Motivation Behind Co-firing 563

    16.5 Co-firing Biomass with Coal 56616.5.1 Combustion Efficiency 568

    16.5.2 Emissions 56916.5.2.1CO2and CO Emissions 56916.5.2.2SO2Emissions 570

    16.5.2.3NO, and N20 Emissions 571

    16.5.2.4Trace Element Emissions 57316.5.3 Agglomeration and Ash Deposition 57316.6 Industrial and Utility-Scale Applications 57516.7 Outlook 575

    16.8 Summary 577References 577

    17 Co-utilization of Biomass Based Fuels in Pulverized Coal Power

    Plants in Europe 585

    Panagiotis Grammelis, Michalis Agraniotis, and Emmanuel Kakaras

    17.1 Introduction 58517.2 Current Co-firing Techniques 586

    17.3 Practical Considerations for Retrofitting a Coal-Fired Unit to

    Co-firing Biomass 588

    17.3.1 Fuel Availability 588

  • 7/24/2019 Handbook of Combustion

    15/15

    Contents (XVII

    17.3.2 Plant Modifications 59117.3.2.1 Biomass Handling, Storage, and Fuel Preparation 59117.3.2.2Preparation of the Blended Fuel and Modifications in the

    Coal Mills 592

    17.3.2.3Impact of Co-firing on the Boiler Performance 59417.3.2.4Impacts of Co-firing on Emissions 59517.3.3 Legislative Framework on Environmental Issues 59617.3.4 Financial Evaluation 598

    17.3.5 Societal Issues 59917.4 Review on Co-firing Experience at European Level 60017.5 Research trends for Biomass Co-firing in Europe 602

    17.6 Conclusions 605References 607

    Index 609