25
Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde [email protected] Coastal Ocean Dynamics Seventh course: Estuarine Dynamics

Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde

  • Upload
    hashim

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

Coastal Ocean Dynamics Seventh course: Estuarine Dynamics. Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde [email protected]. The principle of estuarine circulation. MacCready and Geyer (2010). Knudsen formula of 1900. Volume conservation :. s=0. - PowerPoint PPT Presentation

Citation preview

Page 1: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Hans Burchard

Leibniz Institute for Baltic Sea Research Warnemünde

[email protected]

Coastal Ocean Dynamics

Seventh course: Estuarine Dynamics

Page 2: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

The principle of estuarine circulation

MacCready and Geyer (2010)

Page 3: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Knudsen formula of 1900

s=0Volume conservation:

Salt conservation: 0

Page 4: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Analytical solution for estuarine circulationBalance between pressure gradient and friction:

.

With

we obtain the analytical solution:

.

Page 5: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Example solution

Page 6: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Tidal straining

after flood

after ebb

MacCready and Geyer (2010) after Simpson et al. (1990)

Page 7: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

MacCready & Geyer (2010) after Jay & Musiak (1994)

Estuarine circulation due to tidal straining

75% level

75% level

Page 8: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Result:Tidal straining makes about 2/3 of estuarine circulation.

With full-scale 1Dmodel (GOTM, www.gotm.net):Gravitational circulation and tidal straining profilescan be decomposed.

Burchard and Hetland (JPO 2010)

Estuarine circ.Straining

Gravitational

Simple model simulations of estuarine circulation

under tidally energetic conditions

Page 9: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

MacCready & Geyer (2010)

Lateral circulation in tidal estuaries

Flood currents are faster in the deep channel such that salinity becomes higher in the channel centre than at the sides. This lateral density gradient then causes lateral circulation. Ebb is

vice versa.

Page 10: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Nunes & Simpson (1985)

Floating material collected at tidal front during flood

(Conwy River, Wales, UK)

Page 11: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

MacCready & Geyer (2010)

Estuarine circulation due to lateral circulation

During flood high (positive) surface momentum is vertically transported to the near bed region. During ebb, relatively high

(negative, but less negative than in channel centre) is transported from the sides to the central near-bed region. This

both supports estuarine circulation.

Page 12: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Enhancement of estuarine circulation in channelised tidal flow

(2D slice modelling with GETM)

Burchard et al. (JPO 2011)

www.getm

.eu

Page 13: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Circulation in transverse estuary

Page 14: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Transverse structure of estuarine circulation

Burchard et al. (JPO 2011)

Tidal straining circulation Gravitational circulation

Advective circulation Barotropic circulation

Page 15: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Estuarinecirculationdrives SPMfluxes

Page 16: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Estuarine circulation drives SPM fluxes

Observations in the Elbe estuary:

Kappenberg et al. (1995)

Page 17: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Generation of estuarine turbidity maxima (ETMs)

Sediment accumulation

Page 18: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Consequences of estuarine circulationon sediment transport

ETM

ETM = estuarine turbidity maximum

Jay and Musiak (1994)

Page 19: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Modelling (2DV) ETM formation

Burchard and Baumert (1998)

Page 20: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

The lower Elbe River

Page 21: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Observations of ETM in lower Elbe River

Salinity (g/kg)

Run-off Neu-Darchau = 707 m3/s

Courtesy Jens Kappenberg

Page 22: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Modelling (3D) ETM formation

Burchard et al. (2004)

ebb tide

flood tide

low water

high water

Page 23: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Ems as hyperturbid estuary

Talke et al. (2009)

Page 24: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

Is there a positive feedback loop in estuarie?

Winterwerp, 2013

Page 25: Hans  Burchard Leibniz Institute for  Baltic Sea Research  Warnemünde

What happened to the Ems estuary?

Pers. Comm. Henk Schuttelaars, 2013

Winterwerp, 2013

Elbe