6
ECOLIBRIUM JUNE 2010 32 Harmonics demystified Tim Makris, Danfoss Australia ABSTRACT This article provides a quick overview of harmonics in electrical power networks, the causes, the mitigation methods and applicable standards. The article also discusses best practice approach to achieve the optimum balance between cost/performance for modern installations within the HVAC industry. FORUM INTRODUCTION Harmonics are fairly common in modern electrical installations and form one part of a measurement of power quality. Equipment such as computer power supplies, lighting with electronic ballasts, UPS systems and variable speed drives (VSD) distort the current drawn from the network, cause harmonics and disturb other consumers or other equipment connected to the same supply network. Harmonic distortion, if not mitigated, can lead to increased consumption of power, reduced power system utilisation, increased losses in cables and transformers and equipment malfunction. Mitigation for harmonics can be applied at various points within the electrical network of a building depending on the source of the distortion, the location and power rating of the source of the distortion relative to the supply capacity. Filtering can be applied at the terminals of the device, at an MCC or switchboard feeding a number of distorting loads or at the transformer. A good analogy is to consider a piping system, with the water being the power supply and harmonics a contaminant within the water. The mitigating filter is a filter that removes the contaminant from the water supply. The location of the filter then determines how far within the building’s network the contaminant, the harmonics, are allowed to flow. Whatever harmonics are unfiltered will also find their way into the electrical network feeding other consumers of electricity. To maintain compatibility and a reasonable level of power quality, standards exist limiting the amount of distortion each consumer is allowed to produce. Electrical distributors have power to impose specific limits to each consumer or building. As the location and power rating of the harmonic producing equipment determines the method of filtering, so too the type of filter and the location within the network will determine overall cost and improvement to the building’s electrical network. Which filter is used and where it is used will also govern whether compliance with standards or limits imposed by an electrical distributor or a specification by a consultant can be met. WHAT ARE HARMONICS? The ideal supply voltage waveform is a sinewave. In Australia the voltage is 230V (+10%, – 6%) with a frequency of 50Hz for single-phase supplies, and 400V/50Hz (+10%, – 6%) for three-phase supplies. An example of the perfect sine wave is shown in Figure 1. Figure 1: Perfect single-phase sine wave When a load (equipment) is connected to the electrical supply, current is drawn by the load. In the context of harmonics, loads can be listed as either linear or non-linear. The load is categorised by the current it draws. For example, incandescent light bulbs, resistance heaters, direct on-line (DOL) connected motors are linear loads. The current drawn by linear loads is a sinewave, although may be out of phase with the voltage supply (displacement power factor). Non-linear loads consist of components drawing non-sinusoidal current. Single-phase rectifiers (power supplies), lighting with electronic ballasts (fluorescent lights), VSD, all draw non- sinusoidal current. Figure 2 shows typical current from a single- phase rectifier [1]. Figure 3 shows a typical current waveform from a three phase VSD without any harmonic filtering [1]. Figure 2: Typical single-phase rectifier input current waveform

Harmonics demystified - AIRAH · PDF fileHarmonics demystified ... An example of the perfect sine wave ... Where I(h) is the current at the component harmonic numbers

Embed Size (px)

Citation preview

Page 1: Harmonics demystified - AIRAH · PDF fileHarmonics demystified ... An example of the perfect sine wave ... Where I(h) is the current at the component harmonic numbers

eColi Br i u M • J u n e 2010 32

Harmonics demystifiedTim Makris, Danfoss Australia

ABsTrACTThisarticleprovidesaquickoverviewofharmonicsinelectricalpowernetworks,thecauses,themitigationmethodsandapplicablestandards.Thearticlealsodiscussesbestpracticeapproachtoachievetheoptimumbalancebetweencost/performanceformoderninstallationswithintheHVACindustry.

F O R U M

inTroDuCTionHarmonicsarefairlycommoninmodernelectricalinstallationsandformonepartofameasurementofpowerquality.Equipmentsuchascomputerpowersupplies,lightingwithelectronicballasts,UPSsystemsandvariablespeeddrives(VSD)distortthecurrentdrawnfromthenetwork,causeharmonicsanddisturbotherconsumersorotherequipmentconnectedtothesamesupplynetwork.Harmonicdistortion,ifnotmitigated,canleadtoincreasedconsumptionofpower,reducedpowersystemutilisation,increasedlossesincablesandtransformersandequipmentmalfunction.

Mitigationforharmonicscanbeappliedatvariouspointswithintheelectricalnetworkofabuildingdependingonthesourceofthedistortion,thelocationandpowerratingofthesourceofthedistortionrelativetothesupplycapacity.Filteringcanbeappliedattheterminalsofthedevice,atanMCCorswitchboardfeedinganumberofdistortingloadsoratthetransformer.Agoodanalogyistoconsiderapipingsystem,withthewaterbeingthepowersupplyandharmonicsacontaminantwithinthewater.Themitigatingfilterisafilterthatremovesthecontaminantfromthewatersupply.Thelocationofthefilterthendetermineshowfarwithinthebuilding’snetworkthecontaminant,theharmonics,areallowedtoflow.

Whateverharmonicsareunfilteredwillalsofindtheirwayintotheelectricalnetworkfeedingotherconsumersofelectricity.Tomaintaincompatibilityandareasonablelevelofpowerquality,standardsexistlimitingtheamountofdistortioneachconsumerisallowedtoproduce.Electricaldistributorshavepowertoimposespecificlimitstoeachconsumerorbuilding.

Asthelocationandpowerratingoftheharmonicproducingequipmentdeterminesthemethodoffiltering,sotoothetypeoffilterandthelocationwithinthenetworkwilldetermineoverallcostandimprovementtothebuilding’selectricalnetwork.Whichfilterisusedandwhereitisusedwillalsogovernwhethercompliancewithstandardsorlimitsimposedbyanelectricaldistributororaspecificationbyaconsultantcanbemet.

WHAT Are HArMoniCs?Theidealsupplyvoltagewaveformisasinewave.InAustraliathevoltageis230V(+10%,–6%)withafrequencyof50Hzforsingle-phasesupplies,and400V/50Hz(+10%,–6%)forthree-phasesupplies.AnexampleoftheperfectsinewaveisshowninFigure1.

Figure 1: Perfect single-phase sine wave

Whenaload(equipment)isconnectedtotheelectricalsupply,currentisdrawnbytheload.Inthecontextofharmonics,loadscanbelistedaseitherlinearornon-linear.Theloadiscategorisedbythecurrentitdraws.Forexample,incandescentlightbulbs,resistanceheaters,directon-line(DOL)connectedmotorsarelinearloads.Thecurrentdrawnbylinearloadsisasinewave,althoughmaybeoutofphasewiththevoltagesupply(displacementpowerfactor).

Non-linearloadsconsistofcomponentsdrawingnon-sinusoidalcurrent.Single-phaserectifiers(powersupplies),lightingwithelectronicballasts(fluorescentlights),VSD,alldrawnon-sinusoidalcurrent.Figure2showstypicalcurrentfromasingle-phaserectifier[1].Figure3showsatypicalcurrentwaveformfromathreephaseVSDwithoutanyharmonicfiltering[1].

Figure 2: Typical single-phase rectifier input current waveform

© R

heem

200

9 - D

i Mar

ca 1

0054

10054_RaypakCommHeating-Ad-OCT09_HR.pdf 13/8/09 2:54:39 PM

Page 2: Harmonics demystified - AIRAH · PDF fileHarmonics demystified ... An example of the perfect sine wave ... Where I(h) is the current at the component harmonic numbers

eColi Br i u M • J u n e 2010 34

F O R U M

Figure 3: One phase of a three-phase VSD waveform without harmonic filtering

Thesedistortedwaveformsarerepetitiveandconsistofcomponentwaveformsatdifferentfrequencies(harmonics)ofthefundamental50Hzwaveform.Thesecomponents,orharmonics,combinedproducetheresultantwaveformsshowninFigures2and3.

Figure 4: Three phase VSD harmonic spectrum without harmonic filtering

Acommonwaytodisplayharmonicsisasaspectrum(frequencydomain).Figure4[1]showsthespectrumoftheVSDwaveforminFigure3.Eachfrequencyisshownasabarwithaparticularmagnitudeasapercentageofthefundamental,50Hz.

Theharmonicvaluesarecombinedtoprovideasinglevaluethatcanquantifytheamountofharmonicspresent–totalharmonicdistortion,orTHD.HarmonicsinbothcurrentandvoltagecanbeexpressedasTHD:THDIandTHDVrespectively.TheformulaforTHDisexpressedas:

WhereI(h)isthecurrentatthecomponentharmonicnumbers(forexample5th,7th,etc.)I(1),isthefundamentcurrent.ThewaveforminFigure3hasaTHDofapproximately104%.

THe AffeCT of HArMoniCsIfthenon-linearcurrentdrawnbytheloadisconsumedbytheloadandonlytheload,thenwhatistheproblem?Theproblemofdistortedcurrentisthatitcreatesadistortedvoltageinthesupplythatisseenbyotherequipmentorconsumersconnectedtothesamesupply.

Thesupplynetworkconsistsofanimpedance.Thesource,thetransformer,andthecableallhaveimpedances.Whencurrentwithharmonicdistortionisdrawnthroughthesupplyimpedance,avoltagedropiscreatedateachparticularharmonicfrequency.ThesevoltagedropsdistortthevoltagewaveformfromtheidealsinewaveasseeninFigure5.

Figure 5: Distorted voltage waveform

Bothharmoniccurrentandvoltagedistortionaffectthenetworkandotherequipmentorconsumers.Asthenon-linearloadcreatescurrentharmonics,theseharmonicsincreasetheRootMeanSquared(RMS)currentoftheload–averagecurrentovertime.TheincreaseinRMScurrentduetoharmonicseffectthesupplybycausingincreasedthermallossesinsupplytransformersandgenerators.Thehigherfrequenciesoftheharmonicsalsoincreaselossesintransformersandgeneratorsbyincreasingtheeddycurrentlosses.Theseincreasedlossesaredissipatedasheat,raisingthetemperatureofthetransformer,itswindingsandinsulation,decreasingitslifetime.

Harmonicsalsohaveaneffectoncablesthatconductdistortedcurrent.AswiththeeffectontransformerstheharmoniccurrentsincreaseRMScurrentandthereforeincreasecablelosses.Anadditionaleffecttheharmonicfrequencieshaveoncablesisknownaskineffect.Skineffectdescribesthephenomenonofhowdifferentfrequenciesofcurrentaredrawnwithinaconductor.Thefundamentalfrequencycomponentofcurrent(currentat50Hz)isdistributeduniformlyacrossthecross-sectionoftheconductor.Theharmonicsathigherfrequencies,typicallyabove500Hz,aredistributedclosertotheouterlayersoftheconductor,reducingtheeffectivecross-sectionalareaandincreasingthecableresistanceandincreasingthermallossesincable.

Singlephasenon-linearloadssuchascomputerpowersuppliesandelectroniclightballast,createharmonicsknownastriplens–multiplesofthethirdharmonic.Thesetriplensaddupintheneutralconductorofthesupply,placingextraloadontheneutral.Itiscommonpracticetooversizeneutralconductorstoaccommodatetheadditionalharmonicloadingsingle-phasenon-linearloadsgenerate.

ExcessiveharmonicvoltagedistortioncancausetorquepulsationsandincreasedlossesinDOLconnectedmotors.Typically,a10°Criseintemperatureabovetheratedtemperaturecanreducemotorinsulationlifeupto50%.Thehighfrequencyharmonicspresentinadistortedvoltagewaveformcauserotatingfluxwithinthemotoratfrequenciesabove50Hz,whichinteracttocreatetorqueopposedtothenormal,ratedtorqueoutput,leadingtoshaftpulsations.

10

20

40

60

80

100

3 5 7 9 11 13 15 17 19 21 23 25

harmonic

% F

und

(1)

Page 3: Harmonics demystified - AIRAH · PDF fileHarmonics demystified ... An example of the perfect sine wave ... Where I(h) is the current at the component harmonic numbers

35J u n e 2010 • eColi B r i u M

F O R U M

CircuitbreakersaredesignedtomonitorRMScurrentandpeakcurrent.AdistortedcurrentwaveformhashigherRMSvaluesandpeakvaluesaboveastandardsinewave.Thecircuitbreaker,ifnotcapableoftrueRMSmonitoringmayneedtobeadjustedtoaccommodateharmonicsifnuisancetripsoccur.Similarly,conventionalmeteringequipmentcanalsoindicateincorrectvalueduetoharmonics.MeteringequipmentcapableoftrueRMSreadingsisrecommendedifmeteringofnon-linearloadsisrequired.

Powerfactorcorrectioncapacitorscanbesusceptibletoproblemsifconnectedonasupplywithsignificantlevelsofharmonicspresent.Capacitorsabsorbharmoniccurrentsand,ifnotfilteredordimensionedfortheharmoniccurrents,canbedestroyed.Resonancecanalsooccurwhenthecapacitor,combinedwiththesupplyimpedanceattheharmonicfrequencies,magnifytheamplitudeofharmonicscurrentsandvoltagesleadingtodamagetoplantandequipment.De-tuningreactorsarenecessarytoprotectthepowerfactorcorrectioncapacitors.

Thepowerfactoroftheinstallationisalsoaffectedbyharmonicproducingnon-linearloads.Non-linearloadshaveadisplacementpowerfactorclosetounity.However,thetruepowerfactoralsofactorsharmonics.Theformula(2)hastheapparentpowerS(thepowerdeliveredtotheequipment),realpowerP(thepowerrequiredtodowork),reactivepowerQandharmonicpowerD.

Assumingalmostunitydisplacementpowerfactorforanon-linearloadsuchasaVSD,truepowerfactorcanbeapproximatedas:

ForaVSDwithaTHDIof45%,thenthetruepowerfactorwouldbe0.92.

Theabovearejustsomeoftheaffectsofharmonicsinthesupplynetwork.Anunfortunateside–effectofenergy-savingdevicessuchasfluorescentlightswithelectronicballastsandvariablespeeddrivesisthattheycreateharmonics.Someoftheaffectscanbemeasured,andtheircostlyimpactquantified.AnincreaseinRMScurrentandareductioninpowerfactorhaveadirectimpactonelectricityusage,efficiencyandplantlifetime.

FlowtechFlowtechAIR CONDITIONINGAIR CONDITIONING

• Independent Commissioning Agents• Commissioning Management• Air & Water Balancing• Surveys of Existing Plant & Buildings• Dilapidation & Performance Reports• Retro-Commissioning Existing Buildings• AS1851 Essential Services Maintenance• NEBB Certifi cation• Preventative Maintenance• Pressure Testing: Clean Rooms & Ducting• International Projects

• Independent Commissioning Agents• Commissioning Management• Air & Water Balancing• Surveys of Existing Plant & Buildings• Dilapidation & Performance Reports• Retro-Commissioning Existing Buildings• AS1851 Essential Services Maintenance• NEBB Certifi cation• Preventative Maintenance• Pressure Testing: Clean Rooms & Ducting• International Projects

Unit 1/54 Nealdon Drive Meadowbrook Brisbane Qld 4131

Tel: 07 3200 3300Fax: 07 3200 3311

Email: admin@f lowtech.com.aumarkgilby@f lowtech.com.au

www.f lowtechac.com.au

TechnicalPapers

AIRAH is always seeking technical papers of merit for publication in Ecolibrium.

If you are interested in submitting a paper for publication, visit www.airah.org.au and download the AIRAH guidelines for preparing technical papers.

www.airah.org.au

S = P2 + Q2 + D2 (2)

1 + (THiD)/1002

1TPF ≈ (3)

carly
Text Box
Page 4: Harmonics demystified - AIRAH · PDF fileHarmonics demystified ... An example of the perfect sine wave ... Where I(h) is the current at the component harmonic numbers

eColi Br i u M • J u n e 2010 36

F O R U M

MiTiGATion MeTHoDsConsumersincorporateharmonicmitigationwithintheirbuildingsforvariousreasonssuchastonegateaproblem,tocomplywithaspecificationorwithlimitsimposedbyanelectricaldistributor.Thequestiononwhethermitigatingharmonicsimproveenergyefficiencydependsonvariousfactors,basedontheseverityofharmonics,thetypeofloads,thelimitsrequiredtomeet,andthemethodofmitigation.Iftheimprovementstoelectricityconsumptionoutweightheaddedlossesoftheadditionalharmonicmitigationequipment,thenfurtherimprovementscanbemadetoenergyefficiency.Areviewofcommonmitigationmethodsaresummarisedbelow,focussingonbalancedthree-phaseequipment(suchasVSDload).ItisassumedthataVSDhassomeformofintegralharmonicmitigationssuchasACorDCchokes.ThemitigationmethodsreviewedareadditionaltotheintegralfilteringpresentwithinaVSD.

Inelectricalnetworkswithmorethanonesupplytransformer,apossiblemitigationmethodinvolvesover-sizingthesupplytransformertoreducetherelativesupplyimpedanceandvoltagedistortion.Distributingthelinearandnon-linearloadstoreduceaconcentrationofharmonicproducingloadsononetransformercan“dilute”apotentialproblem.Thisformofmitigationcanoccuratthedesignstageofaprojectandwouldincuradditionalcostforlargersupplytransformers.

AddingimpedancetothefrontofVSD,suchasACreactors,reducesthecurrentdistortionandthisreducesthevoltagedistortionattheterminalsoftheACreactorcomparedtothevoltagedistortionattheterminalsoftheVSD.TheACreactoraddsavoltagedropbetweenthesupplyandVSD,whichassistsintheharmonicreductionbuthasanunwantedsideeffectofreducingtheinputvoltageandhence,theoutputvoltage,oftheVSD.TypicalvaluesofACreactorsrangefrom1to5%impedance,withtheequivalentlevelofvoltagedrop.Typically,THDIwouldreducefrom40%to28%asthereactorimpedanceincreasedforagivenVSDonagivensupply.CostislowrelativetothecostofaVSD.

PassiveharmonicfiltersconsistingofinductorandcapacitorcircuitscanbeinstalledupstreamfromasingleVSD,oranumberofparallelconnectedVSDs.Thesepassivefiltersconsistofseriesandshuntcomponents,tunedtoblocktheharmonicsproducedbytheloadfromgettingintothesupplynetwork.Theintegralcapacitorsabsorbtheharmoniccurrents.ThesefilterscanbespecifiedtoprovideacertainlevelofTHDIatfullload,withtypicalvaluesintherangefrom5%to10%.

Passiveharmonicfiltersarerobust,simpletoinstallandrelativelylowcostcomparedtomoresophisticatedmitigationtechniques;however,theydohavesomeshortcomings.TheharmonicperformanceofTHDIbetween5%or10%isattheratedloadofthefilter.Operationatreducedloadswillslightlyincreasetheharmoniccontent.Butthecapacitorswithinthefilterwillalsoprovideleadingpowerfactor,whichcouldbeaproblemongenerators.AnotherimpactofpassivefiltersistheycanincreasethevoltageattheterminalsoftheVSD.Ensuringthefiltershavebeentestedwith,orhavebeentunedtothespecificVSD,willprovidebetterperformanceandoperation.Thefilteringcapabilitycanalsobereducedwithincreasedphaseimbalanceandhighvaluesofharmonicvoltagepre-distortion.

Shuntpassivefilters,consistingofinductorandcapacitorscircuits,inessencepowerfactorcorrectioncapacitorscircuits,

canbetunedtofilterspecificfrequencies.Capacitorsactasharmonicsinks,andbycombiningthemwithdetuningreactors,afiltercanbedesignedtoabsorbspecificharmonicfrequencies.Shuntbranchestoremovethefifthharmonic,theseventhharmonicandsoon,canbeaddedasneeded.Precautionshouldbetakenwhenapplyingshuntpassivefiltersasthefilterswillabsorbharmoniccurrentsfromnotonlytheload,butthesupplynetworkaswell.Incorrectlydesignedfilterscouldleadtomalfunctionandresonance.

Anactivefilterconsistsofacontrolcircuit,capacitorbank,inverterandlinefilter.Currenttransformersmonitortheharmoniccurrentsinthesupplynetwork.Thecontrolcircuitdeterminestheharmoniccomponentandconfigurestheoperationoftheinvertertoinjectharmoniccurrentsincounter-phasetotheexistingharmonicsinthesupply.Thetheoryofoperationcanbecomparedtoaudiblenoisecancelling.

Flexibilityinoperationandinstallationmaketheactivefilterversatile.Itcanbeinstalledattheoffendingload,ataswitchboard,atthetransformer,inneworretrofitinstallations.Themodesofoperationofafiltercanconsistofoverallharmoniccompensation,individualorselectiveharmoniccompensationandreactivepowercompensation(displacementpowerfactorimprovement).Moderndesignshaveintuitivecontrolpanelsandoffersupplymeasurementsandauto-tuningofthemeteringcurrenttransformers,havevariousIPratingstosuitdifferentinstallationlocationsandcanwithstandhighambienttemperatures.Activefilterscanalsooperateathigherlevelsofpre-distortioncomparedtopassivesolutions.

Carehastobetakenwiththeactivefilters,astheinverterswitchingfrequencycanbeimposedonthesupply.Thiscouldleadtoharmonicfrequenciesbeyondthe50thandpossibleresonance.Well-designedfiltersincorporateautomaticallyvariableswitchingfrequenciesthatarenotconsistentlyatonefrequencyandcanlessenthepossibilityofresonance.Increasingthelinefiltercomponentoftheactivefiltertolessentheimpactoftheswitchingfrequencycanbedone,buttheharmonicinjectioncapabilityisreduced.Withmostdesigns,abalancemustbeachieved.

HArMoniC sTAnDArDs AnD BesT PrACTiCeRegulationofharmonicsexistsviastandards.Standardsforpowerqualityareutilisedandappliedbysupplyauthorities,whichthenapportionlimitstoeachconsumerconnectedtothepointofcommoncoupling,orPCC.ThePCCiswheretwoormoreconsumersareconnectedtothesamesupply.Standardsexistthatgovernlimitsofharmonicsathigh-voltage(HV)andmedium-voltage(MV)networksandalsoforlow-voltage(LV)systemsandLVproducts.

Forexample,AS/NZS61000.3.12:2006,Electromagneticcompatibility(EMC)–Limits–Limitsforharmoniccurrentsproducedbyequipmentconnectedtopubliclow-voltagesystemswithinputcurrent>16Aand<=75Aperphase[3],isapplicableforbalancedthree-phase-harmonic-producingequipmentsuchasVSDs.ThisstandardisapplicabletoeachindividualVSD,andmostreputablevendorshaveacompliantproduct.However,thisstandarddoesnotconsidertheimpactofnumerousVSDsconnectedinanHVACinstallation,forexample.

www.hydroheat.com.au

PO Box 1045, 6 Helen Kob Drive, Braeside Vic 3195Ph (03) 9588 1299 Fax (03) 9588 [email protected]

Highly Efficient Condensing Boilers28–150kW

UP to 1800 kW in cascade

Highly Efficient Condensing Boilers28–150kW

UP to 1800 kW in cascade

Working Towards a Greener Future

• Environmentally friendly with low NOx and CO2 emissions to reduce carbon footprint

• Stainless steel 316 double chamber exchanger with a large surface area to ensure high efficiency (90–96%)

• Up to 30% savings on gas consumption and running cost

• Outdoor and Indoor models

• Compact design 450–600mm to fit through existing doors

• Compact and flexible installation, with a single or cascade (1800kW) boiler(s)

• BMS controllable, highly advanced control technology – cascade control via RVA47 sequence controller up to 12 units

• Solutions for the integrated heating system

• AGA certified # 6253 and 7023

• Environmentally friendly with low NOx and CO2 emissions to reduce carbon footprint

• Stainless steel 316 double chamber exchanger with a large surface area to ensure high efficiency (90–96%)

• Up to 30% savings on gas consumption and running cost

• Outdoor and Indoor models

• Compact design 450–600mm to fit through existing doors

• Compact and flexible installation, with a single or cascade (1800kW) boiler(s)

• BMS controllable, highly advanced control technology – cascade control via RVA47 sequence controller up to 12 units

• Solutions for the integrated heating system

• AGA certified # 6253 and 7023

Page 5: Harmonics demystified - AIRAH · PDF fileHarmonics demystified ... An example of the perfect sine wave ... Where I(h) is the current at the component harmonic numbers

eColi Br i u M • J u n e 2010 38

F O R U M

Maximum Harmonic Current Distortion in Percent of IL

Individual Harmonic Order (Odd Harmonics)

Isc / IL <11 11≤h<17 17≤h<23 23≤h<35 35≤h TDD

<20 4.0 2.0 1.5 0.6 0.3 5.0

20<50 7.0 3.5 2.5 1.0 0.5 8.0

50<100 10.0 4.5 4.0 1.5 0.7 12.0

100<1000 12.0 5.5 5.0 2.0 1.0 15.0

>1000 15.0 7.0 6.0 2.5 1.4 20.0

Even harmonics are limited to 25% of the odd harmonic limits above

Table 2: IEEE519:1992, table 10.3 harmonic current limits for system voltages to 69kV.

StandardslookingatasystemlevelorPCClevelaremoreapplicable,encompassingthebuildingaswhole.InAustraliathereisAS/NZS61000.3.6:2001,Electromagneticcompatibility(EMC)–Limits–AssessmentofemissionlimitsfordistortingloadsinMVandHVpowersystems(IEC61000-3-6:1996)[2],andrecommendationIEEE519:1992,RecommendedPracticesandRequirementsforHarmonicControlinElectricalPowerSystems[4],arefrequentlyreferencedandapplied.

AS/NZS61000.3.6provideslimitsofharmonicvoltagedistortionataPCCforbothMVandHVconnections(andalsoLV)andisusedbysupplyauthoritiestoensurepowerquality.ThesupplyauthoritiestypicallyprovidespecificlimitsbasedonconsumedpowerforeachconnectiontoensureharmoniclevelsateachPCCarewithinthestandard.CompatibilitylevelsofvoltagedistortionforLVandMVconnectionsareshowninTable1.

IEEE519:1992isarecommendationthatprovideslimitsofcurrentdistortionandvoltagedistortion.Currentdistortionlimitsareprovidedbasedonthefactthatlowercurrentdistortioncreateslowervoltagedistortion.Atpresent,onlyonestateinAustralia,Victoria,utilisesIEEE519:1992forharmonicdistortioncontrol.

ThevaluesofcurrentdistortionbasedonvaluesshowninTable2,Limitsareplacedontotaldemanddistortion,TDD,anexpressionofharmoniccurrentdistortionasapercentageofthemaximumdemandcurrentatthePCC,andrangefrom5%upwardsbasedonsupplycapacity(shortcircuitcapacity).Thebiggerthesupply,themoreharmonicsitcanabsorb.

Projectspecificationsmustalsoprovidespecificlimits,butcaremustbetakentonotprovideunnecessarilystrictlimits,inflatingcostsbeyondwhatisnecessary.Forexample,placinglimitsof5%THDIoneachthree-phaseharmonicproducingloadcanensurelowharmonics.Yetthismaybewellbelowtherequirementsfromthesupplyauthority.Somepreliminaryworkatdesignstagecanprovideaworkingsystemthatisnotover-engineered.Knowingthelimitsfromthesupplyauthority,thecapacityofthesupply,thetotallinearandnon-linearloadandmaximumdemand,onecanestimatedistortionvaluesusingavailablesoftwaretools.

ConClusionHarmonicswithinapowersystemaregeneratedbynon-linearequipmentsuchasrectifiers,electronicballastlightingandVSDs.Mitigationisrequiredtomaintainpowerquality,improveenergyefficiencyandsystemutilisationandtoreducethepotentialfordevicefailure.

Odd harmonics not multiple of 3

Odd harmonics multiple of 3 Even harmonics

Order h

Harmonic voltage

%

Order h

Harmonic voltage

%

Order h

Harmonic voltage

%

5 6 3 5 2 2

7 5 9 1.5 4 1

11 3.5 15 0.3 6 0.5

13 3 21 0.2 8 0.5

17 2 >21 0.2 10 0.5

19 1.5 12 0.2

23 1.5 >12 0.2

25 1.5

>250.2 +

1.3*(25/h)

NOTE – Total harmonic distortion (THD): 8%

Table 1: AS/NZS 61000.3.6:2006, compatibility levels for harmonic voltages (in per cent of the nominal voltage) in LV and MV power systems.

Page 6: Harmonics demystified - AIRAH · PDF fileHarmonics demystified ... An example of the perfect sine wave ... Where I(h) is the current at the component harmonic numbers

39J u n e 2010 • eColi B r i u M

F O R U M

Mitigationmethodsvarydependingontheequipmentgeneratingtheharmonicsandthelocation,andthelevelofharmoniclimitsimposedonabuilding.Passivefilteringcanbeinstalledattheterminalsoftheharmonicgeneratingload(seriesfilters),oratthemainboard(shuntfiltering).Shuntactivefilteringprovidesvariousmethodsofoperationtomitigateharmonicsandimprovepowerfactorandflexibilityininstallationandretrofitapplications.

Harmonicstandardsexistforequipmentandsupplynetworks.Careshouldbetakeninimplementingappropriatestandards.Preliminarydesignworkforanewprojectcanincludesoftwareestimatesofharmoniclevelstoprovideaworkingsystemwithoutunnecessarylevelsoffiltering.

TheauthoracknowledgesthecontinualadviceandknowledgeprovidedbyGregersGeilager. ❚

referenCes[1]ABS,GuidanceNotesonControl

ofHarmonicsinElectricalPowerSystems,AmericanBureauofShipping,2006

[2]AustralianStandard:AS/NZS61000.3.6:2001,Electromagneticcompatibility(EMC)–Limits–AssessmentofemissionlimitsfordistortingloadsinMVandHVpowersystems(IEC61000-3-6:1996)

[3]AustralianStandard:AS/NZS61000.3.12:2006,Electromagneticcompatibility(EMC)–Limits–Limitsforharmoniccurrentsproducedbyequipmentconnectedtopubliclow-voltagesystemswithinputcurrent>16Aand<=75Aperphase

[4]IEEE519:1992,RecommendedPracticesandRequirementsforHarmonicControlinElectricalPowerSystems,InstituteofElectricalandElectronicEngineers.

About the authorTim Makris is an electrical engineer with extensive experience in the application of variable speed drives and harmonic mitigation equipment.