9
Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 1 Harold’s AP Physics “Cheat Sheet” 24 March 2017 Mechanics: Linear Translation Mechanics: Angular / Rotational Motion Electricity / Magnetism Fluid Mechanics / Thermo- dynamics Atomic and Nuclear / Waves and Optics Kinematics Position (m) (rad) Horizontal: = 0 + 0 + 1 2 2 Vertical: = 0 + 0 1 2 2 = 0 + = = ∫ = 0 + 0 + 1 2 2 = cos() = cos(2) 10 −24 = 10 −21 = 10 −18 = 10 −15 = 10 −12 = 10 −9 = 10 −6 = 10 −3 = 10 0 =1 10 3 = 10 6 = 10 9 = 10 12 = 10 15 = 10 18 = 10 21 = 10 24 = Fluid Mechanics: 1 + 1 + 1 2 1 2 = 2 + 2 + 1 2 2 2 (Conservation of Mass) = ∆ℓ = ℓ 0 Waves and Optics: 1 + 1 = 1 ∆ = sin = Relativity: = 0 1− 2 2

Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

  • Upload
    lamnga

  • View
    225

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 1

Harold’s AP Physics “Cheat Sheet” 24 March 2017

Mechanics:

Linear Translation

Mechanics: Angular / Rotational

Motion

Electricity / Magnetism

Fluid Mechanics /

Thermo-dynamics

Atomic and Nuclear /

Waves and Optics

Kinematics

Position (m)

(rad)

Horizontal:

𝒙 = 𝑥0 + 𝑣𝑥0𝑡 +1

2𝒂𝑡2

Vertical:

𝒚 = 𝑦0 + 𝑣𝑦0𝑡 −1

2𝒈𝑡2

𝒙 = 𝑥0 + 𝒗𝑡

𝑠 = 𝑟𝜃

𝑥 = ∫𝑣 𝑑𝑡

𝜃 = 𝜃0 +𝜔0𝑡 +1

2𝜶𝑡2

𝑥 = 𝐴 cos(𝜔𝑡)

𝑥 = 𝐴 cos(2𝜋𝑓𝑡)

10−24 = 𝑦𝑜𝑐𝑡𝑜­ 10−21 = 𝑧𝑒𝑝𝑡𝑜­ 10−18 = 𝑎𝑡𝑡𝑜­ 10−15 = 𝑓𝑒𝑚𝑡𝑜­ 10−12 = 𝑝𝑖𝑐𝑜­ 10−9 = 𝑛𝑎𝑛𝑜­ 10−6 = 𝑚𝑖𝑐𝑟𝑜­ 10−3 = 𝑚𝑖𝑙𝑙𝑖­ 100 = 1 103 = 𝑘𝑖𝑙𝑜­ 106 = 𝑚𝑒𝑔𝑎­ 109 = 𝑔𝑖𝑔𝑎­ 1012 = 𝑡𝑒𝑟𝑎­ 1015 = 𝑝𝑒𝑡𝑎­ 1018 = 𝑒𝑥𝑎­ 1021 = 𝑧𝑒𝑡𝑡𝑎­ 1024 = 𝑦𝑜𝑡𝑡𝑎­

Fluid Mechanics:

𝑃1 + 𝜌𝑔𝑦1 +1

2𝜌𝑣1

2

= 𝑃2 + 𝜌𝑔𝑦2 +1

2𝜌𝑣2

2

(Conservation of Mass)

𝜌 =𝑚

𝑉

∆ℓ = 𝛼ℓ0∆𝑇

Waves and Optics: 1

𝑠𝑖+1

𝑠𝑜=1

𝑓

∆𝐿 = 𝑚𝜆

𝑑 sin𝜃 = 𝑚𝜆

Relativity:

𝐿 = 𝐿0√1−𝑣2

𝑐2

Page 2: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Mechanics: Linear

Mechanics: Angular

Electricity / Magnetism

Fluid Mechanics /

Thermo-dynamics

Atomic and Nuclear /

Waves and Optics

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 2

Velocity (m/s)

(rad/s)

𝒗 =𝒅

𝑡=∆𝒙

∆𝑡=𝑑𝒙

𝑑𝑡

𝒗 = 𝒗0 + 𝒂𝑡

𝒗2 = 𝑣0

2 + 2𝒂(𝑥 − 𝑥0)

�̅� =𝑣0 + 𝑣

2

𝒗 = 𝑟𝝎 𝒗 = 𝝎 × 𝒓

𝑣 = ∫𝑎𝑑𝑡

𝜔 =𝜃

𝑡=∆𝜃

∆𝑡=𝑑𝜃

𝑑𝑡

𝝎 = 𝝎0 + 𝜶𝑡

𝝎2 = 𝝎0

2 + 2𝜶(𝜃 − 𝜃0)

�̅� =𝝎0 +𝝎

2

𝜔 =2𝜋

𝑇= 2𝜋𝑓

𝜔 = √𝑘

𝑚= √

𝑔

Speed of Light:

𝑐 ≈ 3.00 𝑥 108 𝑚

𝑠

= 299,792,458 𝑚

𝑠

Fluid Mechanics: 𝐴1𝑣1 = 𝐴2𝑣2

𝑣𝑟𝑚𝑠 = √3𝑅𝑇

𝑀

𝑣𝑟𝑚𝑠 = √3𝑘𝐵𝑇

𝜇

Waves and Optics: 𝑣 = 𝑓𝜆

𝑛 =𝑐

𝑣

𝑛1 sin𝜃1 = 𝑛2 sin𝜃2

Relativity:

𝑣(𝑡) = 𝑣0

√1 −𝑣2

𝑐2

Acceleration

(m/𝒔𝟐) (rad/𝑠2)

𝒂 =𝒗

𝑡=∆𝒗

∆𝑡=𝑑𝒗

𝑑𝑡

𝒂 =∑𝑭

𝑚=𝑭𝑛𝑒𝑡𝑚

𝒂 = 𝑟𝜶

𝑔 = 9.80665 𝑚

𝑠2

𝑔 = 32.1740 𝑓𝑡

𝑠2

Tangential:

𝜶 = 𝑎𝑇𝑟=∆𝝎

∆𝑡=𝑑𝝎

𝑑𝑡

𝜶 =∑𝝉

𝐼=𝝉𝑛𝑒𝑡𝐼

Centripetal:

𝒂𝒄 = 𝒗2

𝑟= 𝝎2𝑟

𝒂2 = 𝒂𝑐

2 + 𝒂𝑇2

NA NA NA

Jerk (Jolt) (m/𝒔𝟑)

(rad/𝑠3)

𝒋 =𝒂

𝑡=∆𝒂

∆𝑡=𝑑𝒂

𝑑𝑡

𝛇 =𝜶

𝑡=∆𝜶

∆𝑡=𝑑𝜶

𝑑𝑡 NA NA NA

Page 3: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Mechanics: Linear

Mechanics: Angular

Electricity / Magnetism

Fluid Mechanics /

Thermo-dynamics

Atomic and Nuclear /

Waves and Optics

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 3

Dynamics

Mass (kg)

/ Moment of

Inertia (𝑘𝑔 •𝑚2)

m = actual mass I = effective mass

𝐼 =∑𝑚𝑟2

𝐼 = ∫𝑟2 𝑑𝑚

𝐼 = ∫𝒓 • 𝑑𝒎

𝑚𝑒= 9.11 ×10−31 𝑘𝑔

𝑚𝑝 ≈ 𝑚𝑛= 1.67 ×10−27 𝑘𝑔

NA

Relativity:

𝑚 =𝑚0

√1 −𝑣2

𝑐2

Momentum (kg•m/s)

(𝑘𝑔 •𝑚2/𝑠)

𝒑 = 𝑚𝒗

∆𝒑 = 𝑚∆𝒗

Conservation of Momentum: 𝒑𝑖 = 𝒑𝑓

𝑳 = 𝐼𝝎

𝑳 = 𝒓 × 𝒑

𝐿 = ∫𝒓 × 𝒗 𝑑𝑚

NA Fluid Mechanics:

𝛻𝒑 = 𝜌𝒈

Atomic and Nuclear:

𝜆 =ℎ

𝑝

Relativity:

𝑝 =𝑚𝑣

√1 −𝑣2

𝑐2

Page 4: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Mechanics: Linear

Mechanics: Angular

Electricity / Magnetism

Fluid Mechanics /

Thermo-dynamics

Atomic and Nuclear /

Waves and Optics

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 4

Force (N =

kg•m/𝒔𝟐) /

Torque (J = N•m)

𝑭 = 𝑚𝒂

𝑭𝑔 = 𝑚𝒈

∑𝑭 = 𝑭𝑛𝑒𝑡 = 𝑚𝒂

𝑭 =𝒑

𝑡=∆𝑝

∆𝑡=𝑑𝒑

𝑑𝑡

𝑭𝑓𝑟𝑖𝑐 ≤ 𝜇𝑁

Hooke’s Law: 𝑭𝑠 = −𝑘𝒙

𝐹𝐺 = −𝐺𝑚1𝑚2𝑟2

𝑭𝐺 = −𝐺𝑚1𝑚2𝑟2

�̂�

𝜏 = 𝑟𝐹 sin𝜃

∑𝝉 = 𝝉𝑛𝑒𝑡 = 𝐼𝜶

𝜏 = 𝑟𝐹 = 𝐼𝜶

𝝉 = 𝒓 × 𝑭

𝝉 =𝑑𝐿

𝑑𝑡

𝑭 = 𝑚𝒂𝒄

𝑭 =𝑚𝒗2

𝑟

𝑭 = 𝑚𝑟𝝎2

Electricity: Coulomb’s Law:

𝐹 = 𝑘𝑞1𝑞2𝒓2

𝐹 =1

4𝜋𝜖0 𝑞1𝑞2𝒓2

𝑭 = 𝑬𝑞

Magnetism: 𝐹𝐵 = 𝑞𝑣𝐵 sin 𝜃

𝐹𝐵 = 𝐵𝐼ℓ sin𝜃

𝑭𝐵 = 𝑞𝒗 × 𝑩

𝑭𝐵 = 𝐼ℓ × 𝑩

𝑭 = ∫𝐼 𝑑ℓ× 𝑩

Fluid Mechanics: 𝐹 = 𝑃𝐴

𝑃 =𝐹

𝐴= 𝜌ℎ𝑔

𝐹𝑏𝑢𝑜𝑦 = 𝜌𝑉𝑔

𝑃𝑉 = 𝑛𝑅𝑇 = 𝑁𝑘𝐵𝑇

𝑅 = 8.31𝐽

(𝑚𝑜𝑙 • 𝐾)

𝑘𝐵 = 1.38 ×10−23

𝐽

𝐾

NA

Impulse (N•s)

(N•m•s)

𝑱 = 𝑭 ∆𝑡 = ∆𝒑 = 𝒎 ∆𝒗

𝑱 = ∫𝑭 𝑑𝑡 = ∆𝒑

𝑯 = 𝝉 ∆𝑡 = ∆𝑳 = 𝑰 ∆𝜔

𝑯 = ∫𝝉 𝑑𝑡 = ∆𝑳

NA NA NA

Yank (N/𝒔𝟐)

Rotatum (J/s)

𝒀 = 𝑚 𝑱

𝒀 =𝑭

𝑡=∆𝐹

∆𝑡=𝑑𝑭

𝑑𝑡

𝑷 = 𝒓 × 𝒀

𝑷 =𝝉

𝑡=∆𝜏

∆𝑡=𝑑𝝉

𝑑𝑡

NA NA NA

Page 5: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Mechanics: Linear

Mechanics: Angular

Electricity / Magnetism

Fluid Mechanics /

Thermo-dynamics

Atomic and Nuclear /

Waves and Optics

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 5

Energy

Work (J = N•m)

𝑊 = 𝐹𝑑

𝑊 = 𝐹 ∆𝑥 cos 𝜃

𝑊 = ∫𝑭 • 𝑑𝒓

𝑊 = 𝜏 ∆𝜃

𝑊 = 𝜏 (𝜃 − 𝜃0)

𝑊 = ∫𝝉 • 𝑑𝜽

𝑾 = 𝑸𝑉

Thermodynamics: 𝑊 = −𝑃 ∆𝑉

𝑒 = |𝑊

𝑄𝐻|

𝑒𝑐 =𝑇𝐻 − 𝑇𝐶𝑇𝐻

NA

Kinetic Energy

(J) 𝐾 =

1

2𝑚𝒗2 𝐾 =

1

2𝐼𝜔2

1 𝑒𝑉= 1.60 ×10−19 𝐽

Fluid Mechanics:

𝑃 + 𝜌𝑔𝑦 +1

2𝜌𝑣2

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Thermodynamics:

𝐾𝑎𝑣𝑔 =3

2𝑘𝐵𝑇

Atomic and Nuclear: 𝐾𝑚𝑎𝑥 = ℎ𝑓 − 𝜙

Relativity: 𝐾 =

𝑚0𝑐2

(

1

√1 −𝑣2

𝑐2

− 1

)

Potential Energy

(J)

∆𝑈𝑔 = 𝑚𝑔ℎ

𝑈𝐺 = −𝐺𝑚1𝑚2𝑟

𝐺 = 6.67 ×10−11

Coiled spring:

𝑈𝑠 = −1

2𝑘𝑥2

𝑈𝐸 = 𝑞𝑉

𝑈𝐸 =1

4𝜋𝜖0 𝑞1𝑞2𝑟

𝑈𝑐 =1

2𝑄𝑉

𝑈𝑐 =1

2𝐶𝑉2

𝑈𝐿 =1

2𝐿𝐼2

Fluid Mechanics: 𝑃 = 𝑃0 + 𝜌𝑔ℎ

Thermodynamics: ∆𝑈 = 𝑄 +𝑊

Atomic and Nuclear: 𝐸 = ℎ𝑓 = 𝑝𝑐

𝐸 = 𝑚𝑐2

∆𝐸 = (∆𝑚)𝑐2

Relativity:

𝐸 = 𝑚𝑐2

(

1

√1 −𝑣2

𝑐2)

Page 6: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Mechanics: Linear

Mechanics: Angular

Electricity / Magnetism

Fluid Mechanics /

Thermo-dynamics

Atomic and Nuclear /

Waves and Optics

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 6

Heat Energy

(J)

Conservation of Energy: 𝑬𝑖 = 𝑬𝑓

𝐸= 𝑊 + 𝑄 + 𝐾 + ∆𝑈𝑔+ 𝑈𝐺 + 𝑈𝑠 + 𝑈𝐸 + 𝑈𝑐+ 𝑈𝐿 +⋯ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

NA NA

Thermodynamics:

𝐻 =𝑘𝐴∆𝑇

𝐿

𝑄 = 𝑚𝐻𝑓

𝑄 = 𝑚𝐻𝑣

∆𝐸 = 𝑄 = 𝑚𝐶∆𝑇

𝑚𝐶∆𝑇 = 𝑚𝐶(𝑇𝑓 − 𝑇𝑖)

𝐶𝐻2𝑂 = 4180 𝐽/Kg °K

𝑇𝑓

=𝑚1𝐶1∆𝑇1𝑖 +𝑚2𝐶2∆𝑇2𝑖

𝑚1𝐶1 +𝑚2𝐶2

NA

Power (W)

𝑃 =𝑊

∆𝑡= 𝐹𝑣

𝑃 =∆𝐸

∆𝑡=𝑑𝐸

𝑑𝑡

𝑃 = 𝐹𝑣 cos 𝜃

𝑃 = 𝑭 • 𝒗

𝑃 =𝑊

∆𝑡= 𝜏𝜔

𝑃 =∆𝑊

∆𝑡=𝑑𝑊

𝑑𝑡

𝑃 = 𝜏𝜔 cos 𝜃

𝑃 = 𝝉 • 𝝎

𝑃 = 𝐼𝑉

𝑃 = 𝐼2𝑅

𝑃 =𝑉2

𝑅

NA NA

Page 7: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Mechanics: Linear

Mechanics: Angular

Electricity / Magnetism

Fluid Mechanics /

Thermo-dynamics

Atomic and Nuclear /

Waves and Optics

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 7

Engineering Application

Period / Frequency

(Hz)

𝑇 =1

𝑓

𝑓 =1

𝑇

𝑇 =1

𝑓=2𝜋

𝜔

𝑇𝑠 = 2𝜋√𝑚

𝑘

𝑇𝑝 = 2𝜋√ℓ

𝑔

𝑇 =2𝜋

𝑏

For: 𝑦 = 𝑠𝑖𝑛(𝑏𝜃) 𝑦 = 𝑐𝑜𝑠(𝑏𝜃)

NA

Waves and Optics:

𝑓 =𝜆

𝑣

Doppler Effect:

𝒇𝒓 = 𝒇𝒔 (𝒗 ± 𝒗𝒓𝒗 ∓ 𝒗𝒔

)

Relativity:

𝑡 = 𝑡0

√1 −𝑣2

𝑐2

Center of Mass

(m)

𝑥𝐶𝑀 =𝑚1𝑥1 +𝑚2𝑥2𝑚1 +𝑚2

𝑥𝐶𝑀 =∑𝑚𝑖𝑥𝑖∑𝑚𝑖

�̅� =1

𝑀 ∫ 𝑥 𝑑𝑚

𝑀

0

where 𝑀 = ∫ 𝑑𝑚𝑀

0

and 𝑑𝑚 = 𝜌 𝑑𝑧 𝑑𝑦 𝑑𝑥

𝒓𝐶𝑀 =∑𝑚𝒓

∑𝑚 NA NA

Waves and Optics:

|𝑀| = |ℎ𝑖ℎ𝑜| = |

𝑠𝑖𝑠𝑜|

(magnification)

Rigid Bodies

∑𝐹𝑦 =∑𝑚𝑔 =0

(Down = ‘−‘)

∑𝜏 =∑𝐹𝑦𝑥𝐶𝑀 = 0

(CW = ‘−‘)

Conservation of Charge

Conservation of Mass Conservation of

Energy

Page 8: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 8

Electricity Electricity

Electric Field

(V/m) (N/C)

𝑬 =𝑭

𝑞

𝐸𝑎𝑣𝑔 = −𝑉

𝑑

𝐸 = −∆𝑉

∆𝑟= −

𝑑𝑉

𝑑𝑟

Gauss’s Law:

∮𝑬 • 𝑑𝑨 =𝑄

𝜖0

𝑬 = 𝜌𝑱

Capacitance (F)

𝐶 =𝑄

𝑉

𝐶 =𝜖0𝐴

𝑑

𝐶 =𝜅𝜖0𝐴

𝑑

𝐶𝑝 = ∑ 𝐶𝑖𝑖

1

𝐶𝑠= ∑

1

𝐶𝑖𝑖

Potential (V)

𝑉 = 𝐼𝑅

𝑉 =𝑄

𝐶

𝑉 = 𝑘∑𝑞𝑖𝑟𝑖𝑖

𝑉 =1

4𝜋𝜖0∑

𝑞𝑖𝑟𝑖𝑖

Resistance (Ω)

𝑅 =𝑉

𝐼

𝑅 =𝜌ℓ

𝐴

𝑅𝑠 = ∑ 𝑅𝑖𝑖

1

𝑅𝑝= ∑

1

𝑅𝑖𝑖

Current (A)

𝐼𝑎𝑣𝑔 =∆𝑄

∆𝑡

𝐼 =𝑑𝑄

𝑑𝑡

𝐼 =𝑉

𝑅

𝐼 = 𝑁𝑒𝑣𝑑𝐴

𝑒 = 1.60 ×10−19 𝐶

EMF (V)

Faraday’s Law of Induction:

∮𝑬 • 𝑑𝓵 = − ∆𝜙𝐵∆𝑡

𝜀 = −𝐿𝑑𝐼

𝑑𝑡

Page 9: Harold’s AP Physics “Cheat Sheet” 24 March 2017 - · PDF fileHarold’s AP Physics “Cheat Sheet ... Fluid Mechanics / Thermo-dynamics Atomic and ... Engineering Application

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 9

Magnetism Magnetism

Magnetic Field (T)

𝐵 =𝜇02𝜋 𝐼

𝑟

𝑆𝑜𝑙𝑒𝑛𝑜𝑖𝑑: 𝐵𝑠 = 𝜇0𝑛𝐼

𝑤ℎ𝑒𝑟𝑒 𝑛 =𝑁

𝓵 𝑡𝑢𝑟𝑛𝑠 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟

𝑩 =𝜇04𝜋 𝑞�⃗⃗⃗� × �⃗⃗�

𝑟3

𝑩 =𝜇04𝜋 𝑞�⃗⃗⃗� × �̂�

𝑟2

𝜇0 = 4𝜋 ×10−7(𝑇 • 𝑚)

𝐴

Ampere’s Circuit Law:

∮𝑩 • 𝑑𝓵 = 𝜇𝑜𝐼

𝑑𝐵 =𝜇04𝜋 𝐼 𝑑𝓵 × �⃗⃗�

𝑟3

Magnetic Flux (Wb)

𝜙𝑩 = 𝐵𝐴 cos 𝜃

𝜙𝐵 = 𝑩 • 𝑨

Gauss’s Law for Magnetism:

𝜙𝐵 = ∫𝑩 • 𝑑𝑨

EMF (V)

𝜀𝑎𝑣𝑔 = − ∆𝜙𝐵∆𝑡

𝜺 = 𝑩𝑙𝑣