4
CHEMICAL ENGINEERING 1h: HEAT TRANSFER brief notes Introduction As long as there is a temperature driving force between two points heat will be transferred down the temperature gradient (from hot to cold). Everyday examples we encounter are central heating, air conditioning, double glazing, refrigeration, etc. In an engineering context heat transfer is important in many unit operations. Reactants need to be heated to reaction temperature, temperatures in reactors need to be controlled, distillation requires both boiling and condensation, etc. In this course, we aim to study heat transfer in a chemical engineering context, so that the process of heat transfer may be undertood and that initial design of a heat exchanger may be done. The rate of heat transfer depends on the temperature driving force, the area available for heat transfer, the nature of the material and the mode of heat transfer (conduction, convection or radiation). Conduction Vibrational energy is transferred between atoms or molecules that do not themselves move. It is the basic transfer mechanism for heat transfer in solids but can also occur through layers of liquids and gases that are not highly mobile. The thickness of the material is important to the rate of heat transfer giving the basic equation: Thermal conductivity is the constant of proportionality. More generally, This is Fourier's law of heat conduction. Typical values of thermal conductivity for a range of material types are given below: Copper 390 at 300 K Glass 1.05 at 300 K Asbestos 0.088 at 300 K

Heat Transfer - Brief and concise Notes

  • Upload
    iganti

  • View
    12

  • Download
    2

Embed Size (px)

DESCRIPTION

Heat Transfer

Citation preview

Page 1: Heat Transfer - Brief and concise Notes

3/9/2015 HEAT TRANSFER ­ brief notes

http://www.see.ed.ac.uk/~johnc/teaching/chemicalengineering1/2005­06/chemeng1h/notes6/index.html 1/4

CHEMICAL ENGINEERING 1h: HEATTRANSFER ­ brief notesIntroduction

As long as there is a temperature driving force between two points heat will be transferred down thetemperature gradient (from hot to cold). Everyday examples we encounter are central heating, airconditioning, double glazing, refrigeration, etc. In an engineering context heat transfer is important inmany unit operations. Reactants need to be heated to reaction temperature, temperatures in reactorsneed to be controlled, distillation requires both boiling and condensation, etc. In this course, we aim tostudy heat transfer in a chemical engineering context, so that the process of heat transfer may beundertood and that initial design of a heat exchanger may be done.

The rate of heat transfer depends on the temperature driving force, the area available for heat transfer,the nature of the material and the mode of heat transfer (conduction, convection or radiation).

Conduction

Vibrational energy is transferred between atoms or molecules that do not themselves move. It is thebasic transfer mechanism for heat transfer in solids but can also occur through layers of liquids andgases that are not highly mobile. The thickness of the material is important to the rate of heat transfergiving the basic equation: 

Thermal conductivity is the constant of proportionality. 

More generally, 

This is Fourier's law of heat conduction.

Typical values of thermal conductivity for a range of material types are given below:

Copper 390  at 300 K

Glass 1.05  at 300 K

Asbestos 0.088  at 300 K

Page 2: Heat Transfer - Brief and concise Notes

3/9/2015 HEAT TRANSFER ­ brief notes

http://www.see.ed.ac.uk/~johnc/teaching/chemicalengineering1/2005­06/chemeng1h/notes6/index.html 2/4

Air 0.026  at 300 K

Water 0.61  at 300 K

For composite planar materials the heat flow through each slab is the same: 

Convection

Energy is transferred by large scale (macroscopic) motions. Therefore it is limited to liquids and gaseswhere the atoms or molecules are free to move. As the fluid is a conducting medium, conduction stilloccurs. Forced convection occurs when an exterior agent drives the fluid motion, natural convectionoccurs when buoyancy differences caused by local temperature differences drive the flow.

Convective heat transfer normally takes place from a solid surface to a fluid. Adjacent to a solid walllarge scale motions die away leaving a virtually still layer of fluid. Conductive transfer occurs acrossthis film which is of unknown thickness. 

where h is the heat transfer coefficient for the film. Values depend on the material and on the way it isbeing handled.

We could write both equations for heat transfer by conduction and convection making use of theresistance to heat transfer, R: 

For conduction   

For a fluid film   

Page 3: Heat Transfer - Brief and concise Notes

3/9/2015 HEAT TRANSFER ­ brief notes

http://www.see.ed.ac.uk/~johnc/teaching/chemicalengineering1/2005­06/chemeng1h/notes6/index.html 3/4

Where heat transfer processes occur in series (as in double glazing), we may add resistances 

Radiation

All bodies emit energy in the form of electro­magnetic waves. When this falls on a second body someis reflected, some passes through and some is absorbed. The proportions of each depend on thephysical properties of the material. The transfer does not depend on the presence of any physicalmedium between the two bodies. 

Radiant heat transfer becomes increasingly important with increasing surface temperature.

The governing equation is: 

 is the Stefan­Boltzmann constant with a value of 5.67  .

The emissivity,  , is a property of a surface.

   Black body = 1

Polished metal = 0.21Oxidised metal = 0.64 to 0.78

Strongly oxidised metal = 0.95Matt black paint = 0.91

lagged bar 1

Page 4: Heat Transfer - Brief and concise Notes

3/9/2015 HEAT TRANSFER ­ brief notes

http://www.see.ed.ac.uk/~johnc/teaching/chemicalengineering1/2005­06/chemeng1h/notes6/index.html 4/4

David BalmerLast modified: Thu Sep 3 10:30:52 BST