53
Heterogeneous Congestion Control Protocols Steven Low CS, EE netlab.CALTECH.edu with A. Tang, J. Wang, D. Wei, Caltech M. Chiang, Princeton

Heterogeneous Congestion - cs.sfu.caljilja/iwcsn2006/pdf/steven.low.pdf · Heterogeneous Congestion Control Protocols Steven Low CS, EE netlab. CALTECH.edu with A. Tang, J. Wang,

Embed Size (px)

Citation preview

Heterogeneous Congestion Control Protocols

Steven Low

CS, EEnetlab.CALTECH.edu

with A. Tang, J. Wang, D. Wei, CaltechM. Chiang, Princeton

Outline

� Review: homogeneous case� Motivating experiments� Model� Equilibrium

� Existence, uniqueness, local stability� Efficiency, fairness

� Slow timescale control

Tang, Wang, Low, Chiang. ToN, 2007Tang, Wang, Hegde, Low. Telecommunications Systems, Dec 2005Tang, Wei, Low, Chiang. ICNP, 2006

Bibliography!!!

�Bibliography!!!

F1

FN

G1

GL

R

RT

TCP Network AQM

x y

q p

))( ),(( )1())( ),(( )1(

tRxtpGtptxtpRFtx T

=+=+ Reno, Vegas

DT, RED, …

liRli link uses source if 1= IP routing

Network model

for every RTT

{ W += 1 }

for every loss

{ W := W/2 }

Reno: (AI)

(MD)Jacobson

1989

=+

−=+

ililill

llli

i

ii

tptxRGtp

tpRxT

tx

)(),()1(

)(2

1)1(2

2

AI

MD

TailDrop

Network model: example

FAST:Jin, Wei, Low

2004α W

RTTbaseRTT :W +=

periodically

{

}

−+=+

−+=+

ilili

lll

llliii

i

iii

ctxRc

tptp

tpRtxT

txtx

)(1)()1(

)()()()1( αγ

Network model: example

Duality model of TCP/AQM

� TCP/AQM

� Equilibrium (x*,p*) primal-dual optimal:

� F determines utility function U� G guarantees complementary slackness

� p* are Lagrange multipliers

) ,( ) ,(

***

***

RxpGpxpRFx T

==

cRxxU iix≤∑≥

subject to )( max0

Uniqueness of equilibrium� x* is unique when U is strictly concave� p* is unique when R has full row rank

Kelly, Maloo, Tan 1998Low, Lapsley 1999

Duality model of TCP/AQM

� TCP/AQM

� Equilibrium (x*,p*) primal-dual optimal:

� F determines utility function U� G guarantees complementary slackness

� p* are Lagrange multipliers

) ,( ) ,(

***

***

RxpGpxpRFx T

==

cRxxU iix≤∑≥

subject to )( max0

Kelly, Maloo, Tan 1998Low, Lapsley 1999

The underlying concave program also leads to simple dynamic behavior

Duality model of TCP/AQM

� Equilibrium (x*,p*) primal-dual optimal:

cRxxU iix≤∑≥

subject to )( max0

Mo & Walrand 2000:

≠−

== −− 1 if )1(

1 if log)( 11 αα

αα

i

iii x

xxU

� α = 1 : Vegas, FAST, STCP � α = 1.2: HSTCP� α = 2 : Reno� α = : XCP (single link only) ∞ Low 2003

Duality model of TCP/AQM

� Equilibrium (x*,p*) primal-dual optimal:

cRxxU iix≤∑≥

subject to )( max0

Mo & Walrand 2000:

≠−

== −− 1 if )1(

1 if log)( 11 αα

αα

i

iii x

xxU

Low 2003

� α = 0: maximum throughput � α = 1: proportional fairness � α = 2: min delay fairness � α = : maxmin fairness ∞

Some implications� Equilibrium

� Always exists, unique if R is full rank� Bandwidth allocation independent of AQM or

arrival� Can predict macroscopic behavior of large scale

networks

� Counter-intuitive throughput behavior� Fair allocation is not always inefficient � Increasing link capacities do not always raise

aggregate throughput[Tang, Wang, Low, ToN 2006]

� FAST TCP� Design, analysis, experiments

[Jin, Wei, Low, ToN 2007]

Some implications� Equilibrium

� Always exists, unique if R is full rank� Bandwidth allocation independent of AQM or

arrival� Can predict macroscopic behavior of large scale

networks

� Counter-intuitive throughput behavior� Fair allocation is not always inefficient � Increasing link capacities do not always raise

aggregate throughput[Tang, Wang, Low, ToN 2006]

� FAST TCP� Design, analysis, experiments

[Jin, Wei, Low, ToN 2007]

Duality model

� Global stability in absence of feedback delay� Lyapunov function

� Kelly, Maulloo & Tan (1988)� Gradient projection

� Low & Lapsley (1999)� Singular perturbations

� Kunniyur & Srikant (2002)� Passivity approach

� Wen & Arcat (2004)

� Linear stability in presence of feedback delay� Nyquist criteria

� Paganini, Doyle, Low (2001), Vinnicombe (2002), Kunniyur& Srikant (2003)

� Global stability in presence of feedback delay� Lyapunov-Krasovskii, SoSTool

� Papachristodoulou (2005)� Global nonlinear invariance theory

� Ranjan, La & Abed (2004, delay-independent)

Outline

� Review: homogeneous case� Motivating experiments� Model� Equilibrium

� Existence, uniqueness, local stability� Efficiency, fairness

� Slow timescale control

The world is heterogeneous…

� Linux 2.6.13 allows users to choose congestion control algorithms

� Many protocol proposals� Loss- based: Reno and a large number of

variants� Delay- based: CARD (1989), DUAL (1992), Vegas

(1995), FAST (2004), …� ECN: RED (1993), REM (2001), PI (2002), AVQ

(2003), …� Explicit feedback: MaxNet (2002), XCP (2002),

RCP (2005), …

Throughputs depend on AQM

� FAST and Reno share a single bottleneck router� NS2 simulation� Router: DropTail with variable buffer size � With 10% heavy-tailed noise traffic

FAST throughput

buffer size = 80 pkts buffer size = 400 pkts

Multiple equilibria: throughput depends on arrival

13M61Mpath 2

93M27Mpath 3

13M52MPath 1

eq 2eq 1

eq 1

eq 2

Tang, Wang, Hegde, Low, Telecom Systems, 2005

Dummynet experiment

13M61Mpath 2

93M27Mpath 3

13M52MPath 1

eq 2eq 1

Tang, Wang, Hegde, Low, Telecom Systems, 2005

eq 1

eq 2 eq 3 (unstable)

Dummynet experiment

Multiple equilibria: throughput depends on arrival

Multiple equilibria: single constraint sets

1 1

11x

21x

� Smallest example for multiple equilibria� Single constraint set but infinitely many equilibria� J=1: prices are non-unique but rates are unique� J>1: prices and rates are both non-unique

Some implications

dependentindependentbandwidthallocationon arrival

dependentindependentbandwidthallocation on AQM

non- uniqueuniqueequilibrium

heterogeneoushomogeneous

� Duality model:

, ***

= ∑l

illiii xpRFxcRxxU iix≤∑≥

s.t. )( max0

−+= ∑l

lliiii

iii pRx

TxF αγ

� Why can’t use Fi’s of FAST and Reno in duality model?

∑−=l

llii

ii pRx

TF

21 2

2

delay for FAST

loss for Reno

They use different prices!

� Duality model:

, ***

= ∑l

illiii xpRFxcRxxU iix≤∑≥

s.t. )( max0

−+= ∑l

lliiii

iii pRx

TxF αγ

� Why can’t use Fi’s of FAST and Reno in duality model?

∑−=l

llii

ii pRx

TF

21 2

2

They use different prices!

−= ∑i

lilil

l ctxRc

p )(1D

= ∑i

ililll txRtpgp )(),(D

F1

FN

G1

GL

R

RT

TCP Network AQM

x y

q p

Homogeneous protocol

( )

=+

=+

)( ,)( )1(

)( ,)( )1(

txtpmRFtx

txtpRFtx

ji

ll

jlli

ji

ji

il

lliii

same pricefor all sources

F1

FN

G1

GL

R

RT

TCP Network AQM

x y

q p

Heterogeneous protocol

( )

=+

=+

)( ,)( )1(

)( ,)( )1(

txtpmRFtx

txtpRFtx

ji

ll

jlli

ji

ji

il

lliii

heterogeneousprices for

type j sources

Heterogeneous protocols

� Equilibrium: p that satisfies

>=≤

=

=

i,j ll

lji

jlil

ll

jlli

ji

ji

pcc

pxRpy

pmRfpx

0 if

)( : )(

)( )(

Duality model no longer applies !� pl can no longer serve as Lagrange multiplier

Heterogeneous protocols

� Equilibrium: p that satisfies

>=≤

=

=

i,j ll

lji

jlil

ll

jlli

ji

ji

pcc

pxRpy

pmRfpx

0 if

)( : )(

)( )(

Need to re-examine all issues� Equilibrium: exists? unique? efficient? fair?� Dynamics: stable? limit cycle? chaotic?� Practical networks: typical behavior? design guidelines?

Heterogeneous protocols

� Equilibrium: p that satisfies

>=≤

=

=

i,j ll

lji

jlil

ll

jlli

ji

ji

pcc

pxRpy

pmRfpx

0 if

)( : )(

)( )(

� Dynamic: dual algorithm

( )llll

ll

jlli

ji

ji

ctpyp

tpmRftpx

−=

= ∑

))((

))(( ))((

γC

Notation

� Simpler notation: p is equilibrium ifon bottleneck links

� Jacobian:

� Linearized dual algorithm:

cpy )( =

)( : )( ppyp

∂∂=J

p(t)pp ∂=∂ )( *JγC

See Simsek, Ozdaglar, Acemoglu 2005for generalization

Outline

� Review: homogeneous case� Motivating experiments� Model� Equilibrium

� Existence, uniqueness, local stability� Efficiency, fairness

� Slow timescale control

Tang, Wang, Low, Chiang. Infocom 2005

Existence

Theorem

Equilibrium p exists, despite lack of underlying utility maximization

� Generally non-unique� There are networks with unique bottleneck

set but infinitely many equilibria� There are networks with multiple bottleneck

set each with a unique (but distinct) equilibrium

Regular networks

Definition

A regular network is a tuple (R, c, m, U) for which all equilibria p are locally unique, i.e.,

Theorem� Almost all networks are regular� A regular network has finitely many and

odd number of equilibria (e.g. 1)

0 )(det : )(det ≠∂∂= ppypJ

Regular networks

Proof idea:� Sard’s Theorem: critical value of a

continuously differentiable function over open set has measure zero

� Apply to y(p) = c on each bottleneck set � regularity

� Compact equilibrium set � finiteness

Regular networks

Proof idea:� Poincare- Hopf index theorem: if there

exists a vector field with non- singular dv/dp at every equilibrium and all trajectories move inward, then

� Dual algorithm defines such a vector field� Index theorem implies odd #equilibria

><−

=0det if 1 0det if 1

: )(index (p)(p)

pIJJ

L

p- pI )1( )(

eq

=∑

Global uniqueness

Corollary� If price mapping functions ml

j are linear and link-independent, then equilibrium is globally unique

e.g. a network of RED routers with slope inversely proportional to link capacity almost always has globally unique equilibrium

Theorem� If price heterogeneity is small, then equilibrium is

globally unique

0any for ]2,[

0any for ]2,[/1

/1

>∈

>∈jjLjj

l

llL

lj

l

aaamaaam

D

D

Global uniqueness

Remarks:

� Condition independent of U, R, c� Depends on m and size L of network � “Tight” from Index Theorem

Theorem� If price heterogeneity is small, then equilibrium is

globally unique

0any for ]2,[

0any for ]2,[/1

/1

>∈

>∈jjLjj

l

llL

lj

l

aaamaaam

D

D

Local stability:`uniqueness’ � stability

Theorem� If price heterogeneity is small, then the unique

equilibrium p is locally stable

0any for ]2,[

0any for ]2,[/1

/1

>∈

>∈jjLjj

l

llL

lj

l

aaamaaam

D

D

p(t)pp δγδ )( *J=DLinearized dual algorithm:

Equilibrium p is locally stable if

( ) 0 )( Re <pJλ

Local stability:`converse’

Theorem

� If all equilibria p are locally stable, then it is globally unique

LpI )1( )( −=Proof idea:

� For all equilibrium p:� Index theorem:

L

ppI )1( )(

eq−=∑

Outline

� Review: homogeneous case� Motivating experiments� Model� Equilibrium

� Existence, uniqueness, local stability� Efficiency, fairness

� Slow timescale control

Tang, Wang, Low, Chiang. Infocom 2005

Efficiency

Theorem

� Every equilibrium p* is Pareto efficient

Proof:

� Every equilibrium p* yields a (unique) rate x(p*)that solves

∑∑ ≤≥ j i

ji

ji

jix

cRxxUp t.s. )()(max *

Efficiency

Theorem

� Every equilibrium p* is Pareto efficient

� Measure of optimality

� Achieved:

∑∑ ≤=≥ j i

ji

jix

cRxxUV t.s. )(max : 0

*

∑∑=j i

ji

ji pxUpV ))(( : )( **

Efficiency

Theorem

� Every equilibrium p* is Pareto efficient� Loss of optimality:

� Measure of optimality

� Achieved:

∑∑ ≤=≥ j i

ji

jix

cRxxUV t.s. )(max : 0

*

∑∑=j i

ji

ji pxUpV ))(( : )( **

jl

jl

mm

VpV

D

D

max min )(

*

*

Efficiency

Theorem

� Every equilibrium p* is Pareto efficient� Loss of optimality:

e.g. A network of RED routers with default parameters suffers no loss of optimality

jl

jl

mm

VpV

D

D

max min )(

*

*

Intra-protocol fairness

Theorem� Fairness among flows within each type is

unaffected, i.e., still determined by their utility functions and Kelly’s problem with reduced link capacities

Proof idea:

� Each equilibrium p chooses a partition of link capacities among types, cj:= cj(p)

� Rates xj(p) then solve j

i

jjji

ji

xcxRxU

j≤∑

≥ t.s. )(max

0

Inter-protocol fairness

Theorem� Any fairness is achievable with a linear scaling of

utility functions

==

≤=

∑≥

j

jj

i

jjji

ji

x

j

xaxX

cxRxUxj

: rates achievable all

t.s. )(maxarg : 0

Inter-protocol fairness

Theorem� Any fairness is achievable with a linear scaling of

utility functions� i.e. given any x in X, there exists µ s.t. an

equilibrium p has x(p) = x

( )llll

ll

jllij

i

ji

ji

ctpyp

tpmRftpx

−=

= ∑

))((

))((1 ))((

γµ

Outline

� Review: homogeneous case� Motivating experiments� Model� Equilibrium

� Existence, uniqueness, local stability� Efficiency, fairness

� Slow timescale control

Tang, Wang, Low, Chiang. Infocom 2005

Slow timescale control

Slow timescale scaling of utility function

∑−+=+

=

ll

ll

jl

ji

ji

ji

ji

ji

jij

ij

i

tp

tpmt

ttqftx

)(

))(()1()( 1)(t

)()( )(

κµκµ

µ scaling of end--to-end price

slow timescale update of scaling factor

ns2 simulation: buffer=80pks

0 200 400 600 800 1000 1200 1400 1600 18000

1

2

3

4

5

6

7

time(sec)

thro

ug

hp

ut

(pkt

/ m

s)

FASTReno

FAST throughput

without slow timescale control with slow timescale control

ns2 simulation: buffer=400pks

FAST throughput

without slow timescale control with slow timescale control

0 200 400 600 800 1000 1200 1400 1600 18000

1

2

3

4

5

6

7

time(sec)

thro

ug

hp

ut

(pkt

/ m

s)

FASTReno

Summary: equilibrium structure

Uni-protocol�Unique bottleneck

set� Unique rates &

prices

Multi-protocol� Non-unique bottleneck

sets � Non-unique rates &

prices for each B.S.

� always odd� not all stable� uniqueness

conditions

Reno First

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

thro

ughput (p

kt / m

s)

FASTReno

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

thro

ughput (p

kt / m

s)

FASTReno

FAST First

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

thro

ughput (p

kt / m

s)

FASTReno

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

thro

ughput (p

kt / m

s)

FASTReno

Alpha trajectory

0 1000 2000 3000 4000 5000 6000 7000 80000

50

100

150

time(sec)

α (

pkt)

Fast FirstReno First

0 1000 2000 3000 4000 5000 6000 7000 80000

50

100

150

time(sec)

α (

pkt)

Fast FirstReno First