58
U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 1 High Current Ion Acceleration 430. WE-HERAEUS-SEMINAR “Accelerators and Detectors at the Technology Frontier” Physikzentrum Bad Honnef, April 27’th, 2009 U.Ratzinger

High Current Ion Acceleration U.Ratzinger · 2018. 8. 16. · U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 1 High Current Ion Acceleration 430. WE-HERAEUS-SEMINAR

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 1

    High Current Ion Acceleration

    430. WE-HERAEUS-SEMINAR“Accelerators and Detectors at the Technology Frontier”

    Physikzentrum Bad Honnef, April 27’th, 2009

    U.Ratzinger

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 2

    Outline

    1. Activities at Goethe University Frankfurt,Institute of Applied Physics

    2. E - field limits in the low β-rangea) Superconducting structuresb) Room temperature structures

    3. Code development for high current beams

    4. High current projectsa) Ion source optionsb) FRANZc) Proton Linac for FAIRd) UNILAC Upgrade for FAIRe) FAIR Facilityf) RF acceleration of p from laser source

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 3

    • New Physics Faculty building in Frankfurt-Riedberg with 1100 m2

    Experimental Hall.- First occupancy in March 2005.- Experiments in accelerator, atomic, nuclear and plasma physics.

    • FRANZ (Frankfurt Neutron Source at the Stern-Gerlach-Zentrum) is the first lighthouse project within the Stern-Gerlach-Center.

    Frankfurt Physics Faculty

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 4

    Accelerator physics

    U. RatzingerA. SchemppN. N.N. N.

    Plasma physics(in house plasmas and ion beam drivenexperiments at GSI, FAIR)

    J. JacobyN. N.

    Astrophysics(detector development,Exp. at FAIR, FRANZ)

    N. N.

    Institute of Applied Physics (IAP) Structure

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 5

    IAP Structure

    r process

    fusion up to iron

    p process

    rp process

    number of neutrons

    num

    ber

    of p

    roto

    ns

    s process

    r process

    fusion up to iron

    p process

    rp process

    number of neutrons

    num

    ber

    of p

    roto

    ns

    s process

    • Investigation of stellar r - and s - processes at FRANZ and FAIR.

    • Investigations relevant to states of matter within planets.

    • Acceleration and accumulation of high current ion beams.

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 6

    Cosmic Particle Acceleration

    γ-Astronomy gives evidence for several 100 TeV particle energies !

    High Energy Stereoscopic System H.E.S.S., Namibia

    γ-quants originate from particle-particle interactions close to the source of high energy protons(Cosmic Accelerator).

    Identification of 3 source types:

    - γ‘s from shock wave, originating from a former supernova explosion.

    - γ‘s from pulsars within a former supernova explosion (e- e+ - generation and acceleration within shockwaves and rotating magnetic dipole field).

    - γ‘s from our galactic centre (super massive black hole).C. v. Eldik, W. Hofmann, Physik Journal Jan. 2008

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 7

    Linac Development

    Aiming for high voltage gains per meter

    Fowler-Nordheim eq. for rf-operation:

    ;/)/1(/)/(ln( 5.2 βkEdEId F −=

    field emission current;=FI electric field;=Ematerial dependent;)(Φ= fk

    field enhancement factor;=β

    for ideal surfaces

    ;EEF ⋅= β

    surfEE =

    Typical β-range: 100 - 1000

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 8

    Linac Development

    Aiming for high voltage gains per meter

    Kilpatrick criterion for the limiting electric field E = V/g, gap width g

    ;64.15.8

    2 EeEf−

    ⋅= MHzfmMVE /;//

    14030250

    12022001

    10015063

    809438

    402122

    20429

    1070

    57.5

    E / MV/mf / MHz

    GSI-HSI, 36 MHztoo pessimistic

    DESY-Tesla, 1.3 GHzSLAC

    too optimisticCERN CLIC-TF

    Fit to experiments

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 9

    S.C. Electron Linac Development

    Examples: XFEL, s.c. elliptical cavities

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 10

    S.C. Electron Linac Development

    Aiming for high voltage gains per meter

    Accelerating gradient / MV/m

    Achieved Q/E curves for Tesla cavities at DESY, D.Reschke et al.

    At ~ 50 MV/m the magnetic field limit of Nb (~ 200 mT) is reached for the TESLA type cavity.

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 11

    Ion Linac DevelopmentComparison with actually applied and / or prototyped

    s.c. low energy structures

    Legnaro-type QWR

    Argonne-type QWR and HWR(with field asymmetry compensation)

    Jülich, 3-Spoke, f = 760 MHz, β = 0.2

    ANL, 3-Spoke, f = 345 MHz, β = 0.5

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 12

    Ion Linac Development

    S.C. low energy structure development at IAP Frankfurt

    Cylindrical girder inserts :

    • Easy e-beam welding.• Large frequency range.• Suited for tuning the gap voltage distribution.

    β2006 = 350β2007 = 200

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 13

    Superconducting CH Cavity Development

    Incoupled (yellow), reflected (blue) andoutcoupled (pink) rf signal; 100 ms per div.

    Quality factor against effective field gradient.

    Status of measurements at IAP Frankfurt.

    GSI Collaborations with Universities

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 14

    Ion Linac Development

    • Expertise of IAP in linac design and construction.

    r.t. IH-DTLW < 30 MeV30-250 MHz

    r.t. CH-DTLW < 150 MeV150-700 MHz

    s.c. CH-DTLW < 150 MeV150-700 MHz

    copper plated steel bulk niobium

    • IAP contributions to: GSI injectors, CERN Linac 3, Medical Injector Linacs

    • Actual involvement in the development of a novel Proton Injector for GSI.

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 15

    H-type DTL’s

    Tloss

    gain

    seff lP

    VZ

    ⋅=⋅

    2

    2cos φ

    Shunt Impedances

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 16

    Ion Linac Development

    CERN Linac 3, 33 MV, 1% duty cycle

    101 / 202 MHz combination, in operation since 1994.

    IH-Tank 2

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 17

    Ion Linac Development

    High power tests on CERN Linac 3, IH-Tank 2

    Surface fields up to 54 MV/m, eff. acceleration up to 10.7 MV/m

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 18

    Beam Dynamics Code Development

    Main issues and perspectives

    1. Available elements

    - rf gaps and cavities- radio frequency quadrupole (RFQ)- magnetic lenses (quadrupole, solenoid)- bending magnets

    2. Field modeling

    - hard edge models- analytic, approximate representations- field maps for rf gaps or magn. focusing elements

    from numeric solvers

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 19

    3. Space charge solver

    - Direct particle-particle (PP) interaction- 2 D r-z (for radial symmetric distributions only)- 3 D PIC Poisson spectral solver with open or closed boundary conditions

    Beam Dynamics Code Development

    Main issues and perspectives (continued)

    x

    y

    z

    ρ

    0xL

    zL

    yL

    x∆ j

    z∆ly∆

    k

    x

    y

    z

    ρ

    lk

    jr,

    ,

    G

    ∞→=∂=Ω∂=

    Rat

    Gon

    on

    0

    0

    0

    ϕϕϕ

    possible cases:

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 20

    4. Parallel processing

    5. Number of simulation particles

    - Up to 106 on scalar codes,mainly limited by efficiency of space charge calculation

    - Up to 108 on high level parallel codes

    6. Machine error simulation tools

    - misalignment of focusing elements- rf tuning errors (single gaps or whole cavities)- ……

    Beam Dynamics Code Development

    Main issues and perspectives (continued)

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 21

    Beam Dynamics Code Development

    Code examples

    openclosed

    3D PIC FFTnoUnixIMPACT [iii]

    closed3D PIC FFTapartUnixHALODYN [ii]

    openPPnoWindows

    UnixDYNAMION [i]

    BoundarySpace charge

    solverGUIPlatformCode name

    [i] A. Kolomiets, V. Pershin, I. Vorobyov, S. Yaramishev, J. Klabunde,„DYNAMION – The Code for Beam Dynamics Simulations in High Current Ion Linac“Proc. of the 1998 EPAC Conf., Stockholm, p. 1201-1203.

    [ii] A. Franchi, M. Comunian, A. Pisent, G. Turchetti, S. Rambaldi, A. Bazzani,„HALODYN: A 3D Poisson-Vlasov Code to Simulate the Space Charge Effects in the High Intensity TRASCO Linac“Proc. of the 2002 LINAC Conf., Gyeongju, p. 653-655.

    [iii] J. Qiang, R. D. Ryne, S. Habib, V. Decykz,„An Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators“J. Comput. Phys. 163, p. 434–451 (2000).

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 22

    Beam Dynamics Code Development

    Code examples (continued)

    openPP;

    2D R-Z („SCHEFF“)yesWindowsPATH

    open3D PIC („PICNIC“);2D R-Z („SCHEFF“)

    apartWindowsPARTRAN [iii]

    open3D PIC („PICNIC“);2D R-Z („SCHEFF“)

    apartWindowsPARMILA [ii]

    closed3D PIC FFTyesWindows

    UnixLORASR [i]

    BoundarySpace charge solverGUIPlatformCode name

    [i] R. Tiede, G. Clemente, H. Podlech, U. Ratzinger, A. Sauer, S. Minaev„LORASR Code Development“Proc. of the 2006 EPAC Conf., Edinburgh, p. 2194-2196.

    [ii] H. Takeda,„Parmila“Los Alamos National Laboratory Report, LA-UR-98-4478 (2005).

    [iii] R. Duperrier, N. Pichoff, D. Uriot,„CEA Saclay Codes Review for High Intensities Linacs Computations“Proc. of the 2002 International Conference on Computational Science ICCS, Amsterdam, p. 411-418.

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 23

    Beam Dynamics Code Development

    Flow chart for linac design

    effective gap voltage values

    drift tube array with transverse focusing

    space charge action

    check of field levels

    drift tube structures and focusing elements

    technical design

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 24

    Linac Development

    RF amplifier power limits

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 25

    Ion Source Options

    10 4 10 6 10 8 10 10 10 12 10 14

    10 2

    1

    10

    10 3

    10 4

    10 5

    neτc /cm-3·s

    Ee

    /eV

    SINGLY CHARGED IONS

    HIGH CURRENT

    MULTIPLY CHARGED IONS

    MEDIUM CURRENT

    HIGHLY CHARGED IONS

    LOW CURRENT

    Types :

    ECRLASEREBIS

    PENNINGLASER

    MEVVACHORDIS

    10 4 10 6 10 8 10 10 10 12 10 14

    10 2

    1

    10

    10 3

    10 4

    10 5

    neτc /cm-3·s

    Ee

    /eV

    SINGLY CHARGED IONS

    HIGH CURRENT

    MULTIPLY CHARGED IONS

    MEDIUM CURRENT

    HIGHLY CHARGED IONS

    LOW CURRENT

    Types :

    ECRLASEREBIS

    PENNINGLASER

    MEVVACHORDIS

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 26

    ECR Sources

    20 25 30 35 40 45 50

    1

    10

    100

    1000 28 GHz SC-ECRIS (extrapolated) 28 GHz SERSE 18 GHz SERSE 18 GHz RT-ECRIS 14 GHz GSI-CAPRICE II

    inte

    nsity

    (eµ

    A)

    Xe charge state

    Ion Source Options

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 27

    GSI-CAPRICE ECR Ion Source

    7070Zn10+

    5058Fe9+

    4050Cr8+

    8026Mg5+

    Intensity

    (eµA)Ion Species

    7070Zn10+

    5058Fe9+

    4050Cr8+

    8026Mg5+

    Intensity

    (eµA)Ion Species

    ■ Technical standard of 1990and status quo until now at GSI

    ■ Continuously improved oventechnology

    M8

    ЈЈ

    Ј

    14.5 GHzMICROWAVEIRON YOKE

    IRON

    PLASMA CHAMBER

    ID 66 x 160 mm

    IRONPUMP

    HV BREAK

    WINDOW

    INSULATOR

    HEXAPOLE

    100 mm

    OVEN

    Ion Source Options

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 28

    ECR Sources

    The GyroSerse Project

    Sectional View

    Magnetic System

    2150 mmL cryostat

    1000 mmφ cryostat

    700 mmL chamber

    180 mmφ chamber

    3.5 TB2(extraction)

    4.5 TB1 (injection)

    3 TBradial

    10 kWMax. RF power

    28-37 GHzFrequency

    2150 mmL cryostat

    1000 mmφ cryostat

    700 mmL chamber

    180 mmφ chamber

    3.5 TB2(extraction)

    4.5 TB1 (injection)

    3 TBradial

    10 kWMax. RF power

    28-37 GHzFrequency

    S. Gammino, private communication

    Ion Source Options

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 29

    Metal Vapor Vacuum Arc source MEVVA

    Ion Source Options

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 30

    Metal Vapor Vacuum Arc source MEVVA

    Extracted beam current: 100 mA

    Flat top: about 200 µs

    Ion Source Options

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 31

    Metal Vapor Vacuum Arc source MEVVA

    Ion Source Options

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 32

    Multi Cusp Ion Source MUCIS

    Extracted beam current: 30 mA, Ar1+

    Pulse length (HSI operation): 1 ms

    Ion Source Options

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 33

    W = 120 keV P = 2.4 x 10 W

    b

    b

    4

    Chopper f = 250 kHz

    Steerer

    Beam DumpDetector Development

    high n - flux (dc)7Li Target

    BunchCompressor

    W = 1.87 - 2.1 MeVbP = 2.1 x 10 Wb,max

    4

    DipoleMagnet

    IH

    W = 0.7 MeVbP = 7 x 10 Wb,max

    3

    Chopper t = 50-100ns

    f = 250kHz∆

    Volume TypeIon Source

    150 kVTerminal

    Rebuncher

    7Li Target

    FRANZ Key Parameters

    FRANZ Overview

    • Extracted source current : 200 mA dc

    • Pulsed beam target : 107 n / cm2s at l=0.8 m

    • ‘Straight’ beam target : 108 n / cm2s

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 34

    FRANZ Design and ConstructionIH-DTL acceleration with rebuncher for final energy adjustment

    Resulting normalizedrms-emittance areas:

    εx,rms = εy,rms = 1.4 mm mradεz,rms = 8 keV ns

    RFQ IH tank RebuncherQuadrupole lens

    10

    -20

    -10

    0

    20

    0 0.2 Z, m0.4 0.6 0.8 1.0 1.2 1.4 1.6

    Xm , ymmm

    10

    -20

    -10

    0

    20

    0 0.2 Z, m0.4 0.6 0.8 1.0 1.2 1.4 1.6

    10

    -20

    -10

    0

    20

    0 0.2 Z, m0.4 0.6 0.8 1.0 1.2 1.4 1.6

    Xm , ymmm

    30

    -60

    -30

    0

    60

    0 0.2 Z, m0.4 0.6 0.8 1.0 1.2 1.4 1.6

    ∆Φm ,deg

    30

    -60

    -30

    0

    60

    0 0.2 Z, m0.4 0.6 0.8 1.0 1.2 1.4 1.6

    30

    -60

    -30

    0

    60

    0 0.2 Z, m0.4 0.6 0.8 1.0 1.2 1.4 1.6

    ∆Φm ,deg

    95% Transverse Envelopes95% Transverse Envelopes

    95% Longitudinal Envelope95% Longitudinal Envelope

    I = 150 mA

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 35

    FRANZ Design and ConstructionPulse structure

    (LEBT)

    At the targetafter bunch compressor: 1 ns, 4⋅1010 protons

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 36

    FRANZ Design and ConstructionPulse structure, bunch compressor

    Dipolmagnete

    TargetmagnetischerChopper

    Mobley-type scheme extended for high space charge load, will include rebunching in the symmetry plane.

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 37

    FAIR Proton Linac

    Parameter list and DTL layout

    0.2Duty Factor [%]

    4.2Norm. Transv. emittance [µm]

    17Norm. Long. emittance [keV ns]

    325.244Frequency [MHz]

    4Repetition Rate [Hz]

    36Beam Pulse Length [µs]

    7.8Protons per Pulse [1012]

    35 (70 design)Peak Current [mA]

    70Output Energy [MeV]

    30Length [m]

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 38

    FAIR Proton Linac

    Parameter list and layout of prototype cavity 2

    3000Total Length [mm]

    20Aperture [mm]

    0.3Coupling Constant [%]

    6.4 - 5.8Average E0T [MV/m]

    60Effective Shunt Impedance [MΩ/m]

    15300Q0-Value

    1.35Heat Loss [MW]

    882.6beam loading [kW]

    11.7-24.3Energy range [MeV]

    27 (13+14)No. of gaps

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 39

    FAIR Proton Linac

    Inter tank section with quadrupole lens

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 40

    UNILAC Upgrade for FAIR

    Present status: HSI and HLI into Alvarez section

    High Duty Cycle RF-Operation of the GSI- High Charge State Injector (HLI) and the Alvarez-accelerator

    Alvarez

    Rebuncher

    Presently:

    duty factor (beam)= 25 % (rf: 35 %),A/ξ ≤ 8

    Upgrade:

    (new RFQ-structure, highercharge state from 28 GHz-ECR)

    A/ξ ≤ 6.5, duty factor = 50 % (rf: 60 %)

    Performance of all rf-tube-amplifiers([email protected] MW, IH+RFQ+Single Gap@200 kW, Rebuncher@ 4 kW) is sufficient to meet therequirements

    Rebuncher

    HSI

    11.4 AMeV1.4 AMeV

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 41

    UNILAC Upgrade for FAIR

    Present status: HSI close to specifications for FAIR injection (20 mA U4+)

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 42

    UNILAC Upgrade for FAIR

    Mid and long term design options (together with W. Barth et. al., GSI)

    Status Quo

    HSI Stripper Alvarez ERs

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HE-Linac

    Ausbauoption

    HSI IH Stripper CH1 CH2

    SIS 90

    SIS 18

    Status Quo

    HSI Stripper Alvarez ERs

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HE-Linac

    Ausbauoption

    HSI IH Stripper CH1 CH2

    SIS 90

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HSI IH Stripper CH

    SIS 18

    Hochladungs-cw-Injektor

    Materialforschung/ISL

    SHIP

    TASCAX1HSI IH Stripper CH

    SIS 18

    HSI IH Stripper CH

    SIS 18

    Hochladungs-cw-Injektor

    Materialforschung/ISL

    SHIP

    TASCAX1

    Status Quo

    HSI Stripper Alvarez ERs

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HE-Linac

    Ausbauoption

    HSI IH Stripper CH1 CH2

    SIS 90

    SIS 18

    Status Quo

    HSI Stripper Alvarez ERs

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HE-Linac

    Ausbauoption

    HSI IH Stripper CH1 CH2

    SIS 90

    SIS 18

    Status Quo

    HSI Stripper Alvarez ERs

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HE-Linac

    Ausbauoption

    HSI IH Stripper CH1 CH2

    SIS 90

    SIS 18

    Status Quo

    HSI Stripper Alvarez ERs

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HE-Linac

    Ausbauoption

    HSI IH Stripper CH1 CH2

    SIS 90

    SIS 18

    Status Quo

    HSI Stripper Alvarez ERs

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HE-Linac

    Ausbauoption

    HSI IH Stripper CH1 CH2

    SIS 90

    SIS 18

    HSI IH Stripper CH

    SIS 18

    HSI IH Stripper CH

    SIS 18

    Hochladungs-cw-Injektor

    Materialforschung/ISL

    SHIP

    TASCAX1HSI IH Stripper CH

    SIS 18

    HSI IH Stripper CH

    SIS 18

    Hochladungs-cw-Injektor

    Materialforschung/ISL

    SHIP

    TASCAX1

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 43

    UNILAC Upgrade for FAIR

    3.5 – 7.3 CW-Linac design with 216 MHz s.c. CH cavities

    Quadrupole triplet Solenoid Accelerating cavity

    QT S1

    B1 C1 C2 C3

    Rebuncher

    S2 S3

    C4 C5

    Variable part

    C6 C7 C8 C9 B2

    S5 S6 S7 S4

    Diagnostics

    0 5 10 15 Z, m

    5

    -5

    0

    Transverse envelope, mm

    50

    0

    Longitudinal envelope; deg

    -50

    HLI

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 44

    UNILAC Upgrade for FAIR

    Equidistant gap structure EQUUS

    cφ∆

    ψm ψo

    ψ, deg -900 -180 -270

    0.01

    -0.01

    ∆β

    βs

    Z βλ/40 βλ/2−βλ/4

    Travelling waveEo,MV/m

    7

    -7

    2

    1

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 45

    UNILAC Upgrade for FAIR

    CW Linac design with a long cryostat

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 46

    UNILAC Upgrade for FAIR

    Related international activities

    E=200 MeV/u

    Pmax=400 kW

    Spiral 2, GANIL, CaenFRIB, MSU, Michigan

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 47

    UNILAC Upgrade for FAIR

    Related international activities

    Spiral 2, GANIL, CaenFRIB, MSU, Michigan

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 48

    FAIR Facility

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 49

    FAIR Facility

    Superconducting magnets for fast rampingSIS100 Magnet R&D

    Nuclotron Cable Nuclotron D ipole in Cryostat

    � Main R&D goal: Reduction of AC losses during ramping by improved i ron yoke design 40 W/m > 13 W/m B max= 2 T, dB/dt= 4T/s, f= 1 Hz

    Window frame magnet with superconducting coil

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 50

    FAIR Facility

    Actual status, see new magazine “target”

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 51

    Superconducting magnets for fast rampingSIS300 Magnet R&D (GSI/BNL – GSI/IHEP)

    FAIR Facility

    Rutherford cable RHIC dipole (4T) UNK dipole (6T)

    � Main R&D goal: Reduction of AC losses during ramping by improved c able and coil design

    � Efficient conductor cooling Bmax = 6 T – dB/dt = 1 T/s

    (HERA: 4 mT/s, RHIC; 42 mT/s, LHC; 8 mT/s)

    Cosθθθθ - magnet with a two layer coil

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 52

    FAIR Facility

    900Impedance seen by thebeam (Ω)

    1,2; 0,8; 1,3Dimensions (l,b,h) (m)

    890 ΩShuntimpedance RP48 µHInductivity LP825 pFCapacity CP

    235, => 12/Corecooling power (W)

    Pulsed operationParameters

    0,8Frequency (MHz)

    40Gap-Voltage (kV)

    5*10-4Duty Cycle

    235Average Power (W)

    1,8shunt impedance (kΏ )

    (without final rf-stage)

    900Impedance seen by thebeam (Ω)

    1,2; 0,8; 1,3Dimensions (l,b,h) (m)

    890 ΩShuntimpedance RP48 µHInductivity LP825 pFCapacity CP

    235, => 12/Corecooling power (W)

    Pulsed operationParameters

    0,8Frequency (MHz)

    40Gap-Voltage (kV)

    5*10-4Duty Cycle

    235Average Power (W)

    1,8shunt impedance (kΏ )

    (without final rf-stage)

    Compact Metglas cavities for smooth bunching and bunch compressionSIS 18 h=1 MA-cavity

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 53

    Matching an CH-Linac to a 10 MeV Laser Driven Proton S ource

    A. Almomani, U. Ratzinger, I.Hofmann

    Experiments with PHELIX at GSI, M. Roth, TUD, et al.

    Ex. opening angle 200

    9.6... 10.4 MeV

    60 mm maximum radiusspot ~ 8 mm (closer to lens)

    Solenoid Ex. opening angle 200

    9.6... 10.4 MeV

    60 mm maximum radiusspot ~ 8 mm (closer to lens)

    Solenoid Ex. opening angle 200

    9.6... 10.4 MeV

    60 mm maximum radiusspot ~ 8 mm (closer to lens)

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 54

    CH-linac behind 10 MeV Laser Source, 95% - Transverse Envelopes, 20000 Particles

    10 MeV ± 500 keV 20 MeV ± 450 keV,“Single Bunch”, 1010 Protons ≙≙≙≙ 500 mA !!

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 55

    Transverse Cluster x-x’ and y-y’

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 56

    Longitudinal Cluster

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 57

    Emittance Growth

  • U. Ratzinger, Institute of Applied Physics (IAP), Goethe-University Frankfurt 58

    Summary and Outlook

    - Improved conditions for accelerator development at Goethe-University Frankfurt – Riedberg; In house facility FRANZ under construction.

    - Actually very intense international R&D activities on cw and pulsed ion linacs.

    - Challenging code development for loss predictions along high power linacs.

    - Fascinating accelerator facility FAIR, construction to be started!

    - Quite attractive activities around FAIR, like the PHELIX driven proton source and the unique pulsed neutron source FRANZ.