38
APPLICATION NOTE AN-00987-19 HIGH EFFICIENCY HIGH VOLTAGE FLYBACK By EASII-IC, X-REL Semiconductor AN-00987-19 rev1A 2019-07-25 1 of 38 PROPRIETARY INFORMATION www.x-relsemi.com © 2019 X-REL Semiconductor TABLE OF CONTENTS 1 Introduction ...................................................................................................................................... 4 2 Main Features................................................................................................................................... 4 3 Flyback diagram............................................................................................................................... 5 4 Design consideration........................................................................................................................ 6 4.1 Start-up .................................................................................................................................. 6 4.2 After start-up of the xtr30014 ................................................................................................ 6 5 Component and characteristics choice ............................................................................................. 7 5.1 Start-Up Phase ....................................................................................................................... 7 5.2 XTR30014 settings ................................................................................................................ 8 5.2.1 XTR30014 characteristics: ........................................................................................ 8 5.2.2 FB voltage ................................................................................................................. 8 5.2.3 SWT resistor .............................................................................................................. 8 5.2.4 SSTR resistor............................................................................................................. 8 5.2.5 R sense calculation for over current .......................................................................... 9 5.3 Switching MOSFET: xtr20411............................................................................................ 10 5.4 Transformer characteristics ................................................................................................. 11 5.5 JFET..................................................................................................................................... 12 5.6 Snubber Network ................................................................................................................. 13 5.7 D_out and D_aux (D1,D2) size ........................................................................................... 13 5.8 COUT calculation ................................................................................................................ 13 6 Power supply Performances and waveforms ................................................................................. 14 6.1 Introduction ......................................................................................................................... 14 6.2 Start-up waveform ............................................................................................................... 14 6.3 Voltage Regulation Accuracy.............................................................................................. 15 6.4 Power-good flag from the XTR30014 ................................................................................. 15 6.5 Load Transient Response..................................................................................................... 16 6.6 Input Transient Response .................................................................................................... 17 6.7 Output Protection................................................................................................................. 18 6.7.1 MAX output load protection: Fold back point ........................................................ 18 6.7.2 Secondary protection: short circuit.......................................................................... 20 6.7.3 Secondary protection: Over Voltage on Vout ......................................................... 20 7 Efficiency measurement................................................................................................................. 21 7.1 Efficiency vs I LOAD .............................................................................................................. 21 7.2 Efficiency vs P OUT ............................................................................................................... 23 7.3 Efficiency vs V IN ................................................................................................................. 25 8 Vout measurement ......................................................................................................................... 27 8.1 V OUT vs I LOAD ....................................................................................................................... 27 8.2 V OUT vs P OUT ........................................................................................................................ 29 8.3 V OUT vs V IN .......................................................................................................................... 31 9 Ripple measurement....................................................................................................................... 33 9.1 RIPPLE vs I LOAD .................................................................................................................. 33 9.2 RIPPLE vs V IN ..................................................................................................................... 33 10 Duty cycle measurement ................................................................................................................ 34

High Efficiency High Voltage Flyback - easii-ic.com

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High Efficiency High Voltage Flyback - easii-ic.com

APPLICATION NOTE

AN-00987-19

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK

By EASII-IC, X-REL Semiconductor

AN-00987-19 rev1A 2019-07-25 1 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

TABLE OF CONTENTS

1 Introduction ...................................................................................................................................... 4

2 Main Features................................................................................................................................... 4

3 Flyback diagram............................................................................................................................... 5

4 Design consideration ........................................................................................................................ 6

4.1 Start-up .................................................................................................................................. 6

4.2 After start-up of the xtr30014 ................................................................................................ 6

5 Component and characteristics choice ............................................................................................. 7

5.1 Start-Up Phase ....................................................................................................................... 7

5.2 XTR30014 settings ................................................................................................................ 8

5.2.1 XTR30014 characteristics: ........................................................................................ 8

5.2.2 FB voltage ................................................................................................................. 8

5.2.3 SWT resistor .............................................................................................................. 8

5.2.4 SSTR resistor ............................................................................................................. 8

5.2.5 R sense calculation for over current .......................................................................... 9

5.3 Switching MOSFET: xtr20411 ............................................................................................ 10

5.4 Transformer characteristics ................................................................................................. 11

5.5 JFET..................................................................................................................................... 12

5.6 Snubber Network ................................................................................................................. 13

5.7 D_out and D_aux (D1,D2) size ........................................................................................... 13

5.8 COUT calculation ................................................................................................................ 13

6 Power supply Performances and waveforms ................................................................................. 14

6.1 Introduction ......................................................................................................................... 14

6.2 Start-up waveform ............................................................................................................... 14

6.3 Voltage Regulation Accuracy .............................................................................................. 15

6.4 Power-good flag from the XTR30014 ................................................................................. 15

6.5 Load Transient Response ..................................................................................................... 16

6.6 Input Transient Response .................................................................................................... 17

6.7 Output Protection ................................................................................................................. 18

6.7.1 MAX output load protection: Fold back point ........................................................ 18

6.7.2 Secondary protection: short circuit.......................................................................... 20

6.7.3 Secondary protection: Over Voltage on Vout ......................................................... 20

7 Efficiency measurement................................................................................................................. 21

7.1 Efficiency vs ILOAD .............................................................................................................. 21

7.2 Efficiency vs POUT ............................................................................................................... 23

7.3 Efficiency vs VIN ................................................................................................................. 25

8 Vout measurement ......................................................................................................................... 27

8.1 VOUT vs ILOAD....................................................................................................................... 27

8.2 VOUT vs POUT ........................................................................................................................ 29

8.3 VOUT vs VIN .......................................................................................................................... 31

9 Ripple measurement....................................................................................................................... 33

9.1 RIPPLE vs ILOAD .................................................................................................................. 33

9.2 RIPPLE vs VIN ..................................................................................................................... 33

10 Duty cycle measurement ................................................................................................................ 34

Page 2: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 2 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

10.1 DUTY CYCLE vs ILOAD ...................................................................................................... 34

10.2 DUTY CYCLE vs VIN ......................................................................................................... 34

11 System design guidelines/Layout recommendation....................................................................... 35

11.1 Design consideration ........................................................................................................... 35

11.2 Typical Flyback Schematic ................................................................................................. 35

11.3 Bill of Material .................................................................................................................... 35

12 Board Photos .................................................................................................................................. 36

12.1 Board drawing ..................................................................................................................... 36

12.2 Thermal photos .................................................................................................................... 36

13 Conclusion ..................................................................................................................................... 37

14 Important Notice & Disclaimer ..................................................................................................... 38

15 Contact Us ...................................................................................................................................... 38

Page 3: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 3 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

ABSTRACT

This application note describes how to design and use a high voltage Flyback with the XTR30014,

XTR20411, 2K1208, 1K1210, XTR431 and XTR1N0850. This covers. This application note de-

scribes how the schematic has been built and the measurement result.

Page 4: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 4 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

1 INTRODUCTION

This document is application to show a flyback architecture that could be used for high voltage (up to

600V), high out power (<30W) and high temperature (max 175°C).

This application note describes the design of a Flyback power supply able to work in extreme tem-

perature environment. It is designed to accommodate the requirements for markets needed wide range

of input voltage and high temperature environment. These devices are designed to achieve fast transient response, high efficiency, very good thermal per-

formance, and high output voltage accuracy. Its main purpose is to convert a DC Input voltage to DC

regulated output voltage. The power supply provides input and output protections. The rest of the

network is isolates from the output. This power supply limits the transient input voltage and protects

against inrush current at plug in. The secondary side is regulated at 24V in this version. The control-

ler, the PWM XRT30014 from easii-ic, is able to switch up to 1000 kHz and stay the heart of the

power supply.

An evaluation board could be available.

2 MAIN FEATURES

Input: VIN (DC) = 30V to 600V

Output: IOUT = 1.25A; 30W; 24V

Large range of ambient Temperature Range: TEMP = -60 to 175°C

Standard flyback architecture

Output regulated voltage easy to adapt

Page 5: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 5 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

3 FLYBACK DIAGRAM

XTR2K1208

XTR2K1208

XTR431

XTR30014

Cout1

X7R

Resr

Cout2

NP0

C30

Cvdd

Cvau

xR

vin

Cpvin

ENABLE

GND

VIN

OCS

HDrv

COMP

VDD

VOUT

VIN

30-600v

Rocs

Cp

vd

d

Rsense

XTR20411V

DD

DR

AIN

SO

UR

CE

IN

GN

D

PV

DD

Normally-ON

SiC jFET

J2

Cvin

VAUX

Normally-ON

SiC jFET

J1Rpvdd

FB

C28 R23 R24

C31

R25

R26+R27

XTR1N0850

ANCA

Rvaux

SWT

Rswt

XTR1N0850

AN CA

VOUT

C17

R9+R6

R11

RLIMOver voltage

protection

D2

D1

Snubber network

R12

Page 6: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 6 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

4 DESIGN CONSIDERATION

4.1 Start-up

Maximum voltage for X-REL drivers is less than 80V. In a flyback architecture, during the switching,

an usual driver will see the supply voltage, plus the transformer reflected output voltage, plus voltage

spikes related to leakage inductors. If the input is more than 80V a cascode must be used. Due to this,

an external (non X-REL) switching device is required for the 70V input constraint. We propose the

use a Silicon Carbide normally-ON

In this schematic 2 JFET have been used. One is for the start-up functionality; the second is to “view”

the high voltage for the switching. Indeed the first JFET will be on during the start-up phase and it

will off during normal phase. Without this transistor the circuitry cannot work. Also due to the fact the

transistor is used for the start-up a resistor can be added directly between the drain and power supply

to limit the inrush current.

For the calculation of the resistor see the Start-Up Phase

The PWM controller is also not able to sustain directly the high input voltage (>35V). In order to turn-

around this limitation, the normally ON JFET threshold voltage can be advantageously used.

The capacitor CVIN should be as high as possible compare to the capacitors on VDD & PVDD (CVDD

& CPVDD). Indeed, once the enable upper threshold is reached, the XTR30014 internal LDO turns ON

and will promptly charge capacitors on VDD & PVDD. This fast charge transfer between CVIN and

CVDD makes a fast voltage drop on the PWM VIN voltage. If this input voltage drop is larger than 2V

within few µs, the internal reference of the XTR30014 can be briefly turned-off, so that the full sys-

tem could never start as expected. In order to avoid this, it is recommended to use at least 3.3uF on the

VIN input and about 220nF on VDD & PVDD.

At start-up, when VIN is set, we assume that all capacitors are discharged. The PWM controller is

therefore not supplied, so that VDD remains at zero and both drivers are off. The system will however

be initialized thanks to the internal reverse diode (source to drain) of the upper driver. Indeed, at turns

on, the JFET source is at zero, so that the JFET is strongly ON. A DC current path is created from

VIN, across the transformer primary winding, the JFET, the upper driver body diode, Rlim1 (responsible

for limiting the start-up DC current in the transformer) and CVIN. The Capacitor CVIN will therefore

start charging with an initial rate (V/s) of about VIN /(CVIN*RLim1). When the ENABLE voltage will

pass the XTR30014 ENABLE upper threshold (about 1.5V), the internal LDO will turns on and pro-

vides 5V on VDD. At that moment, the JFET should be about OFF as its source voltage should be

high. Now, the PWM will initiate a soft-start period, with progressively increasing duty cycle. When

the PWM pulse is high, the JFET source is tight to ground across the lower driver (controlled by

BDRV). The transformer primary winding is stocking energy in the magnetic core. When the PWM

pulse goes OFF, the JFET must now be turned as fast as possible. This is the purpose of the upper

driver (controlled by ADRV) thanks to the voltage on CVIN and the diode which is in parallel with

RLIM1.

4.2 After start-up of the xtr30014 During normal working when there is no load on the output, the VOUT is go over the regulation , to limit the ef-

fect an Zener diode (like xtr431) has been added. There is a double effect; the first is to limit the voltage by the

XTR431 and also due to the current that decrease the voltage.

Page 7: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 7 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

5 COMPONENT AND CHARACTERISTICS CHOICE

5.1 Start-Up Phase

At plug in, the input voltage charges the input capacitor C2 to C5 and this voltage is applied on the

Transformer primary which is ready to start when the PWM will provide BDrv command.

Few milliseconds later the PWM starts, fed by Q1.

As soon as the PWM runs and Vaux is available, Q1 is going off and XTR3014 is only supply by the

Vaux (24V).

As soon as the voltage on the pin 5 of XTR30014 reaches the upper voltage threshold of the UVLO

logic, the device turns into active mode and start switching smoothly due to the internal soft start.

In order to limit the Inrush current at start up, R3 must be adjusted to provide minimum input voltage

to the XTR30014. This value is specified at 6V.

So, the maximum value for the resistance on VIN is defined by the following equation:

The consumption of the XTR3001X being (in typical) of the order of 3mA. With the margin of 2mA

(for the worst case process and temperature). We obtain a maximum resistance for VIN = 32V with &

5mA current:

So, R3=5.1KΩ

Page 8: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 8 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

5.2 XTR30014 settings

The PWM is equipped with lot of functions, here we use it in flyback mode with LDrv permanently

off.

See the datasheet of the XTR30010

http://www.x-relsemi.com/EN/Products/Product/?Ref=XTR30010

5.2.1 XTR30014 characteristics:

VIN: 6V min at start-up then 24V (VAUX) in steady state.

Fsw=50KHz theorical, but 45KHz real due to parasitic capacitor

FB ref=1.2V

Desired Functionality OCPMode PSkipEnbl AsyncEnbl IntlvMode

Boost, buck-boost, flyback modes with LDrv permanently off.

Pulse skipping mode disabled. 0 0 0 0

5.2.2 FB voltage

PWM output controller is regulated on VAUX Feedback voltage.

FB reference is 1.2V so, we set R24 = 100K then R26+R27 (VREF/( VAUX - VREF)) = 5.26K

We set R26 = 3.6K so R27 = 1.69K

5.2.3 SWT resistor

The SWT resistor is the resistor use on the SWT pin to control the slope of the XTR30014 saw tooth.

Following our startup measurement the choice made is 330kohms. If the frequency changes the resis-

tor must be adapted with the startup sequence and also the duty cycle to avoid any stability issue.

5.2.4 SSTR resistor

A resistor could be added on the pin SSTR and GND to decrease the startup time (see the datasheet of

the XTR30010)

XTR30014Cvau

x

GND

VIN

FB

VAUX

R24

R26+R27

1.2V

Page 9: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 9 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

5.2.5 R sense calculation for over current

For OCP_MODE=0

With ROCS = 1K; IOCS = 48µA, VTHOCS = 370mV, ŋ=80% I_IN_avg_max=Vout*Iout/VIN_MIN/ŋ = (24*0.5)/0.8/30=0.5A IOCP peak = 2*I_IN_avg_max /Duty_cycle = 2*0.5/0.5 = 2A Assuming margin IOCP peak = 3.2A then, Rsense = (VTHOCS – (IOCS*ROCS))/IOCP=0.107 Ohms So, Rsense=R21=100mΩ

OCSOCP

Timing VTHOCS

OCP Fault

OCPMode

IOCS

Comp

Rsense

Rocs

Page 10: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 10 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

5.3 Switching MOSFET: xtr20411

The schematic contains a 40V N-Channel MOSFET instance Q5 in a cascode structure with a 1200V

JFET instance Q3. This cascode aims to accumulate energy in transformer primary.

When Q3 is blocked, to prevent this JFET Drain-Source leakage current from charging the N-Channel

MOSFET Q5 Drain capacitor to a damaging voltage value above 55V damaging definitely the device,

a resistor R12 from Q3 Source to the Ground is present.

R12 value is calculated to insure a Q3 maximum voltage Vgs of -10V when Q3 is blocked and only

the Q3 Drain-Source leakage current is flowing through R12. At ambiant temperature this leakage

current is in the range of 1.0mA which means R12 value must be at least:

R12=10V/1.0mA=10kOhms

When the circuit is at High Temperature 175°C, the leakage current increases towards 1.5mA.

When at 175°C and Q3 blocked, Q5 Vds will be:

Vds=R12*Ileak=10k*1.5mA=15V

To be accurate you have also to tweak R12 value to what this resistance value is at 175°C and verify

Q5 Vds will not exceed XTR2N20411 Maximum Absolute Ratings.JFET Drain-source voltage cycle.

Page 11: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 11 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

5.4 Transformer characteristics

The transformer has been choiced to fit the VIN 600V characteristics.

Electrical Specification@25C:

Inductance (1-3): 3mH ±12% @ 100kHz with 0.1V

Leakage inductance (1-3): 50µH Max @ 100kHz with 0.1V with all pins shorted

RDC: (1-3): 3.35Ω Max

(4-5): 0.40Ω Max

(6-10): 50.0mΩ Max

Turn Ratio: @100kHz with 0.1V

(1-3): (4-5)=1:0.12±5%

(1-3): (6-10)=1:0.12±5%

Hipot: Pins (1-3) to (6-10): 2500VDC for 2 seconds @0.5mA

1

2

3

4

5

6

10

SEC

PRI

Page 12: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 12 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

5.5 JFET

The choice of the JFET is depending of transformer.

The Jfet is depend on the voltage peak, the peak voltage must be lower than the voltage breakdown of

the JFET.

The purpose is this Jfet is to use as a cascode for the xtr20411( for the J2), the maximum voltage on

the XTR201411 is 35V on the drain-source.

Vds_max = Vin_max + Vout/Nr + Vspike = 600+24/0.12=800Vmax

Assuming Vspike = 100V with margin,

Vds_max = 600+24/0.12+100 =900Vmax

The JFET (XTR1208) used is a 1200V Breakdown voltage.

The following plot shows the drain-source voltage and the image of drain current of Q3 (JFET) for

one complete cycle. The different phases of the cycle are:

1. Conducting phase

2. Off phase with two parts

a. Energy transfer phase

b. Dead time

No relevant overshoot detected on JFET for this condition

a b

1

2

Page 13: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 13 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

5.6 Snubber Network

This schematic uses and RDC Snubber network in order to limit destructive overvoltage for the cas-

code.

Indeed, in switched mode power supplies, there is a high dV/dt across the FET when it switches off.

This is caused by abruptly cutting off the current through the primary inductance of the transformer.

This high dV/dt is undesirable for a number of reasons:

High switching losses in the FET

Cause EMI Emission

High output ripple

This high dV/dt can be reduced by a clamp network/Snubber.

There is a snubber network on the primary side with a D3, R7, C2 and also a pcb footprint snubber

across the secondary diode D1 and D2.

As the JFET use in this DC/DC as a large Vds capability we do not need to be tied, as energy losses

impact the efficiency. This snubber must be perfectly appaired with the FET to damp or lower the

Vspike.

5.7 D_out and D_aux (D1,D2) size

The choice of the Diode is related to the maximum voltage on the anode-cathode.

VBREAKDOWN_MAX = Vout +VIN_max*Nr=24+600*0.12=96V

IOUT_MAX = 1.3A

So D1 =D2 =XTR1N850

5.8 COUT calculation

We want Vripple = 600mV max

COUT = IOUT_PEAK*dt/dv

IOUT_PEAK = IIN_PEAK/Nr = 2/0.12 = 17A

Duty_cy = 40% then dt = 0.4/50E3 = 8µs

COUT = 17*8E-6/600E-3 = 226µF

1K1210

R2 C7

D3

VDRAIN J2

VIN

Page 14: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 14 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

6 POWER SUPPLY PERFORMANCES AND WAVEFORMS

6.1 Introduction

Functional tests to ensure full reliability have been done with DC input voltage from 30V to 600V

with an output current of 1200mA and 24V on the output (30W) over an ambient temperature range

from -60°C to +175°C.

6.2 Start-up waveform

The following plot shows the voltage on (Vin, Vout, Pgood, JFET_Drain) during start-up phase. It can

be seen from the plots that it takes around 240ms for the power supply to regulate.

Red arrow shows transition when Q1 is going off and Vaux is going on.

Conditions: VIN=150V noLoad

Yellow: Vin =Vaux; green: Vout ; Blue : Pgood

Time=100ms/ div Time=20ms/div

Conditions: VIN=600V ILOAD=1A

Yellow: Vin =Vaux; green: Vout ; Blue : Pgood

Time=100ms/ div Time=20ms/div

Time delay after plug in:

Before starting the DC/DC converters and to avoid disturbing the line during plug in, the power sup-

ply should wait a minimum time, at least 240ms. This is to ensure that all of the input storage capaci-

tors have charged up to the full available source power supply voltage before starting up. This is done

by adding R3 and C22 on the VIN pin. The following plots show the timing between the plug in and

the 24V output at full load with 30V and 600V input voltage.

Page 15: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 15 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

6.3 Voltage Regulation Accuracy

Due to continuous improvement CAO, systems require good voltage accuracy to operate properly.

Every system documentation specifies the voltage tolerance over the entire operating temperature

range. To keep a good level of accuracy, components are selected in accordance, and the routing of

the printed circuit board must be carefully realized. The variations of the application, like the input

voltage variations, temperature swings, and fast changes in the load must take account too.

The following graphs show the output voltage regulation accuracy.

6.4 Power-good flag from the XTR30014

PGood is an active-HIGH output flag indicating that the DC-DC output is within a given range of val-

ues and that no over current event is present. Output voltage sensing is performed on node FB. When-

ever FB goes outside the range 90-120% of VREF (1.2V), PGood is immediately pulled down. In case

of an overvoltage on FB (>120%Vref), the high-side output driver (HDrv) is turned off until FB

reaches 90% of VREF, in which case the controller enters again into normal operation. Once that FB

goes back above 90% of VREF, the PGood flag remains low for a period of about 256 clock cycles.

The following graphs show the power good flag operating:

Page 16: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 16 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

6.5 Load Transient Response

As systems are more and more speed and solicited nowadays, consumption is very impacted and so

the load variation. That is why it is important to consider AC transient performance. A DC/DC con-

verter with a fast-transient response is important to ensure the system is functional in all specified

conditions.

The following graphs show the output load transient response.

Conditions: VIN=400V IOUT transition from 0.4A to 1A

Yellow: VAUX green: VOUT

Conditions: VIN=600V IOUT transition from 0.4A to 1A

Yellow: VAUX green: VOUT

Conditions: VIN=600V IOUT transition 0.4A to 0.8A

Yellow: VAUX green: VOUT

Page 17: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 17 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

6.6 Input Transient Response

As for the load transient the power supply should be able to operate even if the acceptable input volt-

age in going up or down for any reason.

The following graphs show the output response vs input line variation.

Conditions:

ILOAD =0.5A VIN 100V to 500V ILOAD=1A VIN 400V to 600V

Yellow: VAUX green: VOUT Pink : VIN Yellow: VAUX green: VOUT Pink : VIN

Conditions:

ILOAD=1.2A VIN 200V to 600V ILOAD=1.2A VIN 600V to 200V

Yellow: VAUX green: VOUT Pink : VIN Yellow: VAUX green: VOUT Pink : VIN

Conditions: ILOAD=1A VIN 120V to 50V

Yellow: VAUX green: VOUT Pink : VIN

Page 18: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 18 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

6.7 Output Protection

6.7.1 MAX output load protection: Fold back point

XTR30014 is equipped with the programmable over-current protection level function (OCP). If cor-

rectly setting, that means the power supply cannot be damaged. As soon as the over current disappears

on output, the power supply will go back to the 24V regulated voltage.

Concerning power supply the fold back point is well known and is where the load on the output of the

power supply is increased until the Power supply can no longer regulate and the voltage starts to fall.

The reason is that the drain current of the JFET(Q2) is so large (maximum duty cycle reached) that the

current limit threshold is reached. This limits the energy that can be stored in the transformer TRF1

and hence the energy that can be transferred to the secondary side. The fold back point is a measure of

the max output power of the power supply and represents the worst-case load on the power supply.

The following graphs show the maximum output response depending on condition of input voltage,

load and temperature.

Example of short-circuit detection

Full range Zoom on the left side

Yellow: VAUX; green: VOUT ; blue : SSTR ; pink : HDRV

Zoom on the right side with restart

Yellow: VAUX; green: VOUT ; blue : SSTR ; pink : HDRV

Page 19: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 19 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

Yellow: VAUX; green: VOUT ; blue : SSTR ; Yellow: VAUX; green: VOUT ; blue : SSTR

pink : VDD pink :CK

Zoom on previous to measure the frequency

Yellow: VAUX; green: VOUT ; blue : SSTR ; pink :CK

The frequency clock is 45.5kHz.

The number of CK period is 16100; that means the restart will be happened 353.8ms as at is on the

first snapshot. The starting point is when the HDRV is off and the final point is the start of SSTR

slope. That could be seen on the first graph.

Page 20: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 20 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

6.7.2 Secondary protection: short circuit

At short circuit and general safety reasons requirements, it has been ensured that no component can

overheat or burn in case of short circuit. At short circuit the power supply reaches the fold back point

and provides a defined maximum current. So, the power supply cannot be damaged. As soon as the

short circuit is removed from the output, the power supply will go back to the 24V regulated voltage.

6.7.3 Secondary protection: Over Voltage on VOUT

In case of an overvoltage on output, active XTR431 shunt regulator is able to pull down and hold the

output voltage to a reasonable and acceptable value. This is the case when no load is applied.

The setting method is given in its datasheet:

In the standard shunt regulator, the output voltage can be obtained from:

We set VOUT=VKA=26.5V

VREF=2.55V

We set R2=10KΩ => R1=94KΩ

We set VIN max=30V and set IKA=10mA => Rlim = (VIN-VOUT) / IKA =350Ω (P=35mW)

Results are represented below:

Yellow : Vaux ; Green : VIN ; Blu : VOUT ; Pink : VREF

VIN=600V; No load

Without XTR431 With XTR431

XTR431

Rlim

R1

R2

P24V_SEC

Cout

P26V5_SECIKA

Page 21: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 21 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

7 EFFICIENCY MEASUREMENT

7.1 Efficiency vs ILOAD (with different VIN)

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1

Eff

icie

nc

y (

%)

Iload (A)

EFFICIENCY Vs ILOAD T=-60°C

30

50

150

400

600

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1

Eff

icie

nc

y (

%)

Iload (A)

EFFICIENCY Vs ILOAD T=25°C

30

50

150

400

600

Page 22: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 22 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1

Eff

icie

nc

y (

%)

Iload (A)

EFFICIENCY Vs ILOAD T=175°C

30

50

150

400

600

Page 23: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 23 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

7.2 Efficiency vs POUT (with different VIN)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Eff

icie

nc

y (

%)

POUT (W)

EFFICIENCY Vs POUT T=-60°C

30

50

150

400

600

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Eff

icie

nc

y (

%)

POUT (W)

EFFICIENCY Vs POUT T=25°C

30

50

150

400

600

Page 24: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 24 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Eff

icie

nc

y (

%)

POUT (W)

EFFICIENCY Vs POUT T=175°C

30

50

150

400

600

Page 25: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 25 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

7.3 Efficiency vs VIN (with different ILOAD)

50

55

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600

Eff

icie

nc

y (

%)

VIN (V)

EFFICIENCY Vs VIN T=-60°C

0.1

0.2

0.5

1

1.3

50

55

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600

Eff

icie

nc

y (

%)

VIN (V)

EFFICIENCY Vs VIN T=25°C

0.1

0.2

0.5

1

1.3

Page 26: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 26 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Eff

icie

nc

y (

%)

VIN (V)

EFFICIENCY Vs VIN T=175°C

0.1

0.2

0.5

1

1.3

Page 27: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 27 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

8 VOUT MEASUREMENT

8.1 VOUT vs ILOAD (with different VIN)

18

20

22

24

26

28

30

32

0 0,5 1

VO

UT

(V

)

Iload (A)

VOUT Vs ILOAD T=-60°C

30

50

150

400

600

18

20

22

24

26

28

30

32

0 0,5 1

VO

UT

(V

)

Iload (A)

VOUT Vs ILOAD T=25°C

30

50

150

400

600

Page 28: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 28 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

18

20

22

24

26

28

30

32

0 0,5 1

VO

UT

(V

)

Iload (A)

VOUT Vs ILOAD T=175°C

30

50

150

400

600

Page 29: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 29 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

8.2 VOUT vs POUT (with different VIN)

18

20

22

24

26

28

30

32

0 5 10 15 20 25 30

VO

UT

(V

)

POUT (W)

VOUT Vs POUT T=-60°C

30

50

150

400

600

18

20

22

24

26

28

30

32

0 5 10 15 20 25 30

VO

UT

(V

)

POUT (W)

VOUT Vs POUT T=25°C

30

50

150

400

600

Page 30: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 30 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

18

20

22

24

26

28

30

32

0 5 10 15 20 25 30

VO

UT

(V

)

POUT (W)

VOUT Vs POUT T=175°C

30

50

150

400

600

Page 31: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 31 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

8.3 VOUT vs VIN (with different ILOAD)

20

21

22

23

24

25

26

0 100 200 300 400 500 600

VO

UT

(V

)

VIN (V)

VOUT Vs VIN T=-60°C

0.1

0.2

0.5

1

1.3

18

19

20

21

22

23

24

25

26

0 100 200 300 400 500 600

VO

UT

(V

)

VIN (V)

VOUT Vs VIN T=25°C

0.1

0.2

0.5

1

1.3

Page 32: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 32 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

18

19

20

21

22

23

24

25

26

0 100 200 300 400 500 600

VO

UT

(V

)

VIN (V)

VOUT Vs VIN T=175°C

0.1

0.2

0.5

1

1.3

Page 33: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 33 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

9 RIPPLE MEASUREMENT

9.1 RIPPLE vs ILOAD (with different VIN)

9.2 RIPPLE vs VIN (with different ILOAD)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,5 1 1,5

RIP

PL

E (

V)

ILOAD (A)

RIPPLE Vs ILOAD (@25°C)

30

50

150

400

600

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 100 200 300 400 500 600

RIP

PL

E (

V)

VIN (V)

RIPPLE Vs VIN (@25°C)

0.1

0.2

0.5

1

1.3

Page 34: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 34 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

10 DUTY CYCLE MEASUREMENT

10.1 DUTY CYCLE vs ILOAD (with different VIN)

10.2 DUTY CYCLE vs VIN(with different ILOAD)

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1 1,5

DU

TY

CY

CL

E (

%)

ILOAD (A)

DUTY CYCLE Vs ILOAD (@25°C)

30

50

150

400

600

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

DU

TY

CY

CL

E (

%)

VIN (V)

DUTY CYCLE Vs VIN (@25°C)

0.1

0.2

0.5

1

1.3

Page 35: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 35 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

11 SYSTEM DESIGN GUIDELINES/LAYOUT RECOMMENDATION

11.1 Design consideration

Most sensitive external components and tracks connected to OCS, COMP, and FB should be very

carefully place close to the XTR30014 and in a non-noisy area.

Components connected to RT/SYNC (R, C) should be properly placed in order to avoid parasitic

capacitor which will change the choosy operate frequency.

FB, COMP and OCS terminals are sensitive to system noise. Layout these terminals with mini-

mum parasitic capacitance and avoid any possible coupling with SW, HDrv, LDrv, CKOUT and

PGOOD signals.

Noise on RT/SYNC could cause erratic behaviour of the internal clock generator. Avoid any pos-

sible coupling with SW, HDrv, LDrv, CKOUT and PGOOD signals. In case a capacitor is con-

nected to RT/SYNC to slow down the clock, connect the capacitor to a noiseless GND. Do not

connect this capacitor to PGND under any condition.

Notice that terminal OCS is relative to PGND (not GND).

When using “input voltage feed forward”, connect SWT to VIN through a resistor of at least

100Ω.

Printed board with internal layer reference GND and VDD will be preferred.

D1 and Q4 placed close to the transformer will optimize the efficiency (less power losses).

Appropriate track dimensions will help the electrical and thermal performance. Enlarge the Source

area for better thermal performance.

11.2 Typical Flyback Schematic

Schematic below is a typical flyback application circuit built around the XRT30014 with the compo-

nent names used in the layout Bill of Material.

The schematic could be provided in pdf format.

XTDB30007_Flyback_Application_E.1.2.pdf

11.3 Bill of Material

The BOM could be provided in an excel spreadsheet:

XTDB30007_Flyback_Application_E.1.2.xls

Page 36: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 36 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

12 BOARD PHOTOS

12.1 Board drawing

12.2 Photo

12.3 Thermal photo

Page 37: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 37 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

13 CONCLUSION

This power supply comply the specification in very harsh environment. All performances measured

are good as well as electrical (Iout, Vout) than Thermal (temperature resistance).

This power supply is an example of feasibility and can be adjusted for different output voltages. The

feedback of the XTR30014 and over-voltage protection should be adjusted to reach the voltage.

Page 38: High Efficiency High Voltage Flyback - easii-ic.com

HIGH EFFICIENCY HIGH VOLTAGE FLYBACK AN-00987-19

AN-00987-19 rev1A 2019-07-25 38 of 38

PROPRIETARY INFORMATION www.x-relsemi.com

© 2019 X-REL Semiconductor

14 IMPORTANT NOTICE & DISCLAIMER

EASii IC PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS),

DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DE-

SIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”

AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED,

INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABIL-

ITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY

INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with EASii IC products. You are solely

responsible for (1) selecting the appropriate EASii IC products for your application, (2) designing,

validating and testing your application, and (3) ensuring your application meets applicable standards,

and any other safety, security, or other requirements. These resources are subject to change without

notice. EASii IC grants you permission to use these resources only for development of an application

that uses the EASii IC products described in the resource. Other reproduction and display of these re-

sources is prohibited. No license is granted to any other EASii IC intellectual property right or to any

third party intellectual property right. EASii IC disclaims responsibility for, and you will fully indem-

nify EASii IC and its representatives against, any claims, damages, costs, losses, and liabilities arising

out of your use of these resources. EASii IC’s products are provided subject to EASii IC’s Terms of Sale (www.easii-ic.com/en/legal/termsofsale.php) or other applicable terms available either on

easii-ic.com or provided in conjunction with such EASii IC products. EASii IC’s provision of these

resources does not expand or otherwise alter EASii IC’s applicable warranties or warranty disclaimers

for EASii IC products.

15 CONTACT US

For more information on X-REL Semiconductor’s products, technical support or ordering:

Web: www.x-relsemi.com/products

Tel: +33 456 580 580

Fax: +33 456 580 599

Sales: [email protected]

www.x-relsemi.com/EN/Sales-Representatives

Information: [email protected]

Support: [email protected]

X-REL Semiconductor

90, Avenue Léon Blum

38100 Grenoble

France