14
High Rate Growth of SiO 2 by Thermal ALD Using Tris(di- methylamino)silane and Ozone Guo Liu, Ritwik Bhatia, Eric W. Deguns, Mark J. Dalberth, Mark J. Sowa, Adam Bertuch, Laurent Lecordier, Ganesh Sundaram, Jill S. Becker Cambridge NanoTech Inc. ALD 2011 Cambridge, MA, USA June 26-29, 2011

High Rate Growth of SiO2 by Thermal ALD Using Tris(di- methylamino)silane and Ozonenanosop/documents/SiO2fromT... · 2015. 4. 8. · High Rate Growth of SiO 2 by Thermal ALD Using

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • High Rate Growth of SiO2 by

    Thermal ALD Using Tris(di-

    methylamino)silane and Ozone

    Guo Liu, Ritwik Bhatia, Eric W. Deguns, Mark J.

    Dalberth, Mark J. Sowa, Adam Bertuch, Laurent

    Lecordier, Ganesh Sundaram, Jill S. Becker

    Cambridge NanoTech Inc.

    ALD 2011

    Cambridge, MA, USA

    June 26-29, 2011

  • Many Existing SiO2 ALD Processes are Unsatisfactory

    A few examples

    (1) TEOS Process, tetraethoxysilane, Si(OCH2CH

    3)4

    - Reacts with H2O when catalyzed by NH

    3 or amines, even

    at room temperature

    - 0.07-0.08 nm/cycle at 300 K

    J. D. Ferguson,a E. R. Smith,a A. W. Weimer,b and S. M. George, J.

    Electrochem. S., 151 (8), G528-G535 (2004)

    • Too slow, required large exposures (∼1010 L) for surface

    reactions to reach completion (1 L =10-6

    Torr-s)

    Introduction: Thermal ALD of SiO2

    1

  • (2) 3-aminopropyltriethoxysilane process, O3 and H

    2O:

    H2N(CH

    2)3Si(OCH

    2CH

    3)3

    - Self-catalyzed hydrolysis due to existence of amino group

    - 120-250°C, GPC=0.05~0.06nm/cycle

    J. Bachmann, R. Zierold, Y. T. Chong, R. Hauert, C. Sturm, R. Schmidt-Grund, B.

    Rheinlnder, M. Grundmann, U. Gosele, and K. Nielsch, Angew. Chem. Int. Ed. 47,

    6177-6179 (2008).

    • High quality SiO2

    • Slow process (requires two oxidants H2O and O

    3)

    • Unreacted precursor caused frequent damages to vacuum

    pumps

    Introduction: Thermal ALD of SiO2

    2

  • (3) TDMAS (or 3DMAS)-H2O

    2 Process:

    tris(dimethylamino)silane, [(CH3)2N]

    3SiH

    - First reported to be a reactive precursor with H2O

    2 oxidant

    B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, J. Phys. Chem. C 113,

    8249–8257 (2009)

    • Precursor can be used in a wide temperature range: 150-550°C

    • Inability of H2O

    2 to remove all Si-H bonds at lower temperatures

    usable temperature ≥ 450°C

    • Low thermal stability of H2O

    2

    Introduction: Thermal ALD of SiO2

    3

  • The TDMAS – O3 Process

    TDMAS, [(CH3)2N]

    3SiH

    • High vapor pressure at ambient

    temperature

    BP=145-148°C, 16mmHg at 4°C

    no heating needed

    • Insoluble in H2O

    • No reaction with H2O or O

    2 up to 350°C

    4

  • Three Different Reaction Modes

    Cambridge NanoTech’s

    ALD Reactors

    (1) Continuous Mode

    • Normal pulse/purge steps for all

    precursors

    (2) Partial Exposure Mode

    • One precursor with an extra hold step

    (pulse/hold/purge), staying in reactor

    longer to increase residence time

    • Different from an extended pulse time

    (3) Full Exposure Mode

    • All precursors with pulse/hold/purge

    steps

    0.20

    0.30

    0.40

    0.50

    0.60

    20 40 60 80 100

    Continuous Mode

    Pre

    ssu

    re

    Time

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    0 20 40 60 80

    Partial Exposure (pusle 2)

    Pre

    ssu

    re

    Time

    0.0

    1.0

    2.0

    3.0

    4.0

    0 20 40 60 80 100 120

    Full Exposure (both pulses)

    Pre

    ssu

    re

    Time 5

  • Continuous: very low growth rate ~ 0.02 nm/cycle Partial Expo: TDMAS exposure (28 sec.) key to high growth rate Full Expo: O3 exposure (7 sec.) further increased growth rate Growth rate much lower with H2O2

    The TDMAS – O3 Process

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0 100 200 300 400

    SiO2 from [(CH3)2N]3SiH and O3 in Various ALD Modes

    Full ExposurePartial Expo. (TDMAS)Continuous ModeFull Expo. with H2O2

    SiO

    2G

    row

    th R

    ate

    (n

    m/c

    ycle

    )

    Deposition Temperature (oC)

    6

  • TDMAS Saturation and Linear Growth

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.000 0.010 0.020 0.030 0.040 0.050

    Saturation Curve of [(CH3)2N]3SiH at 250°C

    SiO

    2G

    row

    th R

    ate

    (nm

    /cyc

    le)

    [(CH3)2N]3SiH Pulse Time (sec.)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 100 200 300 400 500 600 700

    Full EXPO SiO2 from [(CH3)2N]3SiH and O3 at 200°C

    SiO

    2Th

    ickn

    ess

    (nm

    )

    Number of Cycles

    • Deviation from a flat saturation curve with TDMAS dose could be

    due to less than full saturation from limited exposure time

    • Growth is linear without nucleation delay

    • Process completely repeatable

    7

  • Electrical Properties by mercury probe

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    0 100 200 300 400

    SiO2 from [(CH3)2N]3SiH and O3 Full Expo

    Leak

    age

    Cu

    rre

    nt a

    t 2

    MV

    /cm

    (A/c

    m2)

    Deposition Temperature (°C)

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    0 100 200 300 400

    SiO2 from [(CH3)2N]3SiH and O3 Full Expo

    Bre

    akd

    ow

    n F

    ield

    (MV

    /cm

    )

    Deposition Temperature (°C)

    Leakage Current and Breakdown Strength

    • Data scattered due to changing properties with time

    • 80-120°C process produced SiO2 films with lowest leakage

    current and highest breakdown strength; 200°C the worst

    8

  • SiO2 films absorb H

    2O in air

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    0 2 4 6 8 10 12

    Full Expo SiO2 from [(CH3)2N]3SiH and O3 at 100°C

    5 days laterNext dayfreshD

    iele

    ctri

    c C

    on

    stan

    t at

    10

    kHz

    Voltage (V)

    1.0E-09

    1.0E-08

    1.0E-07

    1.0E-06

    1.0E-05

    1.0E-04

    1.0E-03

    1.0E-02

    1.0E-01

    1.0E+00

    0 1 2 3 4 5 6 7

    Full Expo SiO2 from [(CH3)2N]3SiH and O3 at 100°C

    Fresh

    5 days later

    Cu

    rre

    nt (

    A/c

    m2)

    Electric Field (MV/cm)

    Change in Dielectric Constant, Leakage Current and

    Breakdown Field with Time

    • Dielectric constant of fresh 100°C SiO2 close to ideal value of 3.9

    • It increased with air exposure time until reached a saturated state

    9

  • SIMS Analysis

    0

    5

    10

    15

    20

    25

    0 100 200 300 400

    H

    C

    N

    Deposition Temperature (°C)

    H, C

    , N C

    on

    cen

    trat

    ion

    (at

    %)

    Imprity Levels in SiO2 from

    [(CH3)2N]3SiH and O3 by SIMS

    1.0E+18

    1.0E+19

    1.0E+20

    1.0E+21

    1.0E+22

    1.0E+23

    1.0E+24

    0 100 200 300 400 500 600 700

    SIMS Profiles of SiO2 deposited at 350°C

    C N O Si H

    Inte

    grat

    ed

    Co

    un

    ts

    Depth (Å)

    • Very Low C impurity (highest at 0.2 at% with 100°C SiO2)

    • Low N at high temperatures (highest at 3.6 at% with 100°C SiO2)

    • High concentrations of H (highest with 200°C SiO2)

    10

  • 30

    32

    34

    36

    38

    40

    42

    -5 0 5 10 15 20 25 30 35

    300°C annealed in NH3

    80C SiO2

    100C SiO2

    150C SiO2

    Thic

    kne

    ss (

    nm

    )

    # of days after anneal

    Before anneal

    immediately after anneal

    1.37

    1.39

    1.41

    1.43

    1.45

    1.47

    -5 0 5 10 15 20 25 30 35

    300°C annealed in NH3

    80C SiO2

    100C SiO2

    150C SiO2R

    efr

    acti

    ve I

    nd

    ex

    n a

    t 6

    33

    nm

    # of days after anneal

    Before anneal

    immediately after anneal

    • Annealing at ≥300°C led to 3-5% decrease in thickness and a

    slight drop in refractive index

    • Refractive index partially reversible upon re-exposure to air

    H2O-saturated SiO

    2 films:

    annealing in vacuum or NH3

    11

  • 0

    2

    4

    6

    8

    10

    12

    -5 0 5 10 15 20 25 30 35

    300°C annealed in vacuum

    80C SiO2100C SiO2 150C SiO2

    Die

    lect

    ric

    Co

    nst

    ant

    at

    10

    kHz

    # of days after anneal

    Before anneal

    immediately after anneal

    0

    2

    4

    6

    8

    10

    12

    -5 0 5 10 15 20 25 30 35

    300°C annealed in NH3

    80C SiO2100C SiO2150C SiO2

    Die

    lect

    ric

    Co

    nst

    ant

    at10

    kHz

    # of days after anneal

    Before anneal

    immediately after anneal

    Before anneal

    H2O-saturated SiO

    2 films:

    annealing in vacuum or NH3

    • 300°C anneal in NH3 was more effective than vacuum anneal

    Dielectric constant dropped to 3.9 for NH3-annealed 80-120°C SiO

    2

    • NH3 facilitates removal of OH groups?

    • Reversible dielectric constant with re-exposure to air

    12

  • Summary

    • TDMAS-O3 a good ALD process for SiO

    2

    • Full exposure mode helps growth saturation

    • 80-120°C SiO2 films have better electrical properties

    • Uncapped ALD SiO2 absorbs H

    2O in air

    • Annealing of H2O-absorbed SiO

    2 films in NH

    3 at 300-

    350°C restores electrical properties

    13