39
High Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation. Chubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV DC measurements. Standard sphere gap measurements of HV AC, HV DC, and impulse voltages; Factors affecting the measurements. Potential dividers-resistance dividers capacitance dividers mixed RC potential dividers.Measurement of high impulse currents-Rogogowsky coil and Magnetic Links 10Hours INTRODUCTION Transientmeasurementshavemuchincommonwithmeasurementsofsteadystatequantitiesbutthe short-livednatureofthetransientswhichwearetryingtorecordintroducesspecialproblems.Frequently the transient quantity to be measured is not recorded directly because of its large magnitudese.g. when ashuntisusedtomeasurecurrent,wereallymeasurethevoltageacrosstheshuntandthenweassume thatthevoltageisproportionaltothecurrent,afactwhichshouldnotbetakenforgrantedwithtransient currents.Oftenthevoltageappearingacrosstheshuntmaybeinsufficienttodrivethemeasuringdevice; itrequiresamplification.Ontheotherhand,ifthevoltagetobemeasuredistoolargetobemeasured withtheusualmeters,itmustbeattenuated.Thissuggestsanideaofameasuringsystemratherthana measuringdevice. Measurements ofhighvoltagesandcurrentsinvolvesmuchmorecomplexproblemswhicha specialist,incommonelectricalmeasurement,doesnothavetoface.Thehighvoltageequipments havelargestraycapacitanceswithrespecttothegroundedstructuresandhencelargevoltagegradients aresetup.Apersonhandlingtheseequipmentsandthemeasuringdevicesmustbeprotectedagainst theseovervoltages.Forthis,largestructuresarerequiredtocontroltheelectricalfieldsandtoavoid flashover betweentheequipmentandthegroundedstructures.Sometimes,thesestructuresarere- quiredtocontrolheatdissipationwithinthecircuits.Therefore,thelocationandlayoutoftheequipments is very important to avoid these problems. Electromagnetic fields create problems in the measurements ofimpulsevoltagesandcurrentsandshouldbeminimized. Thechapterisdevotedtodescribingvariousdevicesandcircuitsformeasurementofhighvoltages andcurrents.Theapplicationofthedevicetothetypeofvoltagesandcurrentsisalsodiscussed. ELECTROSTATICVOLTMETER

High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

Embed Size (px)

Citation preview

Page 1: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 100

UNIT- 6

MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction

and limitation. Chubb and Fortescue method for HV AC measurement. Generating voltmeter-

Principle, construction. Series resistance micro ammeter for HV DC measurements. Standard

sphere gap measurements of HV AC, HV DC, and impulse voltages; Factors affecting the

measurements. Potential dividers-resistance dividers capacitance dividers mixed RC potential

dividers.Measurement of high impulse currents-Rogogowsky coil and Magnetic Links

10Hours

INTRODUCTION

Transientmeasurementshavemuchincommonwithmeasurementsofsteadystatequantitiesbutthe

short-livednatureofthetransientswhichwearetryingtorecordintroducesspecialproblems.Frequently the

transient quantity to be measured is not recorded directly because of its large magnitudese.g. when

ashuntisusedtomeasurecurrent,wereallymeasurethevoltageacrosstheshuntandthenweassume

thatthevoltageisproportionaltothecurrent,afactwhichshouldnotbetakenforgrantedwithtransient

currents.Oftenthevoltageappearingacrosstheshuntmaybeinsufficienttodrivethemeasuringdevice;

itrequiresamplification.Ontheotherhand,ifthevoltagetobemeasuredistoolargetobemeasured

withtheusualmeters,itmustbeattenuated.Thissuggestsanideaofameasuringsystemratherthana

measuringdevice.

Measurements ofhighvoltagesandcurrentsinvolvesmuchmorecomplexproblemswhicha

specialist,incommonelectricalmeasurement,doesnothavetoface.Thehighvoltageequipments

havelargestraycapacitanceswithrespecttothegroundedstructuresandhencelargevoltagegradients

aresetup.Apersonhandlingtheseequipmentsandthemeasuringdevicesmustbeprotectedagainst

theseovervoltages.Forthis,largestructuresarerequiredtocontroltheelectricalfieldsandtoavoid flashover

betweentheequipmentandthegroundedstructures.Sometimes,thesestructuresarere-

quiredtocontrolheatdissipationwithinthecircuits.Therefore,thelocationandlayoutoftheequipments is very

important to avoid these problems. Electromagnetic fields create problems in the measurements

ofimpulsevoltagesandcurrentsandshouldbeminimized.

Thechapterisdevotedtodescribingvariousdevicesandcircuitsformeasurementofhighvoltages

andcurrents.Theapplicationofthedevicetothetypeofvoltagesandcurrentsisalsodiscussed.

ELECTROSTATICVOLTMETER

Page 2: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 101

The electricfieldaccordingtoCoulombisthefieldofforces.Theelectricfieldisproducedbyvoltage

and,therefore,ifthefieldforcecouldbemeasured,thevoltagecanalsobemeasured.Whenevera

voltageisappliedtoaparallelplateelectrodearrangement,anelectricfieldissetupbetweentheplates.

Itispossibletohaveuniformelectricfieldbetweentheplateswithsuitablearrangementoftheplates.

Thefieldisuniform,normaltothetwoplatesanddirectedtowardsthenegativeplate.IfAistheareaoftheplateand

Eistheelectricfieldintensitybetweentheplatesεthepermittivityofthemediumbetweentheplates,weknowtha

ttheenergydensityoftheelectricfieldbetweentheplatesisgivenas,

1 2

Wd=

2 εE

Consideradifferentialvolumebetweentheplatesandparalleltotheplateswitharea Aand

thicknessdx,theenergycontentinthisdifferentialvolumeAdxis

Electrostaticvoltmetersmeasuretheforcebasedontheaboveequationsandarearrangedsuch

thatoneoftheplatesisrigidlyfixedwhereastheotherisallowedtomove.Withthistheelectricfield

getsdisturbed.Forthisreason,themovableelectrodeisallowedtomovebynotmorethanafractionof

amillimetretoafewmillimetresevenforhighvoltagessothatthechangeinelectricfieldisnegligibly

small.AstheforceisproportionaltosquareofVrms

,themetercanbeusedbothfora.c.andd.c.voltage

measurement.

The forcedevelopedbetweentheplatesissufficienttobeusedtomeasurethevoltage.Various

designsofthevoltmeterhavebeendevelopedwhichdifferintheconstructionofelectrodearrangement

andintheuseofdifferentmethodsofrestoringforcesrequiredtobalancetheelectrostaticforceof

attraction.Someofthemethodsare

(i)Suspensionofmovingelectrodeononearmofabalance.

(ii)Suspensionofthemovingelectrodeonaspring.

(iii)Penduloussuspensionofthemovingelectrode.

(iv)Torsionalsuspensionofmovingelectrode.

Thesmallmovementisgenerallytransmittedandamplifiedbyelectricaloropticalmethods.If

theelectrodemovementisminimisedandthefielddistributioncanexactlybecalculated,themetercan

beusedforabsolutevoltagemeasurementasthecalibrationcanbemadeintermsofthefundamental

quantitiesoflengthandforce.

Fromtheexpressionfortheforce,itisclearthatforagivenvoltagetobemeasured,thehigher

Page 3: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 102

theforce,thegreateristheprecisionthatcanbeobtainedwiththemeter.Inordertoachievehigher

forceforagivenvoltage,theareaoftheplatesshouldbelarge,thespacingbetweentheplates(d)

shouldbesmallandsomedielectricmediumotherthanairshouldbeusedinbetweentheplates.If

uniformityofelectricfieldistobemaintainedanincreaseinareaAmustbeaccompaniedbyanincrease

intheareaofthesurroundingguardringandoftheopposingplateandtheelectrodemay,therefore,

becomeundulylargespeciallyforhighervoltages.Similarlythegaplengthcannotbemadeverysmall

asthisislimitedbythebreakdownstrengthofthedielectricmediumbetweentheplates.Ifairisusedas

themedium,gradientsupto5kV/cmhavebeenfoundsatisfactory.ForhighergradientsvacuumorSF6

gashasbeenused.

The greatestadvantageoftheelectrostaticvoltmeterisitsextremelylowloadingeffectasonly

electricfieldsarerequiredtobesetup.Becauseofhighresistanceofthemediumbetweentheplates,

theactivepowerlossisnegligiblysmall.Thevoltagesourceloadingis,therefore,limitedonlytothe

reactivepowerrequiredtochargetheinstrumentcapacitancewhichcanbeaslowasafewpicofarads

forlowvoltagevoltmeters.

The measuringsystemassuchdoesnotputanyupperlimitonthefrequencyofsupplytobe

measured.However,astheloadinductanceandthemeasuringsystemcapacitanceformaseries resonance

circuit,alimitisimposedonthefrequencyrange.Forlowrangevoltmeters,theupperfrequencyis

generallylimitedtoafewMHz.

Fig.6.7showsaschematicdiagramofanabsoluteelectrostaticvoltmeter.Thehemispherical

metaldomeDenclosesasensitivebalanceBwhichmeasurestheforceofattractionbetweenthemovable

discwhichhangsfromoneofitsarmsandthelowerplateP.ThemovableelectrodeMhangswitha

clearanceofabove0.01cm,inacentralopeningintheupperplatewhichservesasaguard ring. The

diameterofeachoftheplatesis1metre.Lightreflectedfromamirrorcarriedbythebalancebeam serves to

magnify its motion and to indicate to the operator at a safe distance when a condition of

equilibriumisreached.Asthespacingbetweenthetwoelectrodesislarge(about100cmsforavoltage

ofabout300kV),theuniformityoftheelectricfieldismaintainedbytheguardringsGwhichsurround

thespacebetweenthediscsMandP.TheguardringsG aremaintainedataconstantpotentialinspace

byacapacitancedividerensuringauniformspatialpotentialdistribution.Whenvoltagesintherange

10to100kVaremeasured,theaccuracyisoftheorderof0.01percent.

Page 4: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 103

Hueterhasusedapairofspharesof100cmsdiameterforthemeasurementofhighvoltages

utilisingtheelectrostaticattractiveforcebetweenthem.Thespheresarearrangedwithaverticalaxis

andataspacingslightlygreaterthanthesparkingdistancefortheparticularvoltagetobemeasured. The

upperhighvoltagesphereissupportedonaspringandtheextensionofspringcausedbythe

electrostaticforceismagnifiedbyalamp-mirrorscalearrangement.Anaccuracyof0.5percenthas

beenachievedbythearrangement.

Electrostaticvoltmetersusingcompressedgasastheinsulatingmediumhavebeendeveloped.

Hereforagivenvoltagetheshortergaplengthenablestherequireduniformityofthefieldtobe

maintainedwithelectrodesofsmallersizeandamorecompactsystemcanbeevolved.

Onesuch voltmeter using SF6gashasbeenusedwhichcanmeasurevoltagesupto1000kVand

accuracyisoftheorderof0.1%.Thehighvoltageelectrodeandearthedplaneprovideuniformelectric

fieldwithintheregionofa5cmdiameterdiscsetina65cmdiameterguardplane.Aweighingbalanc

Page 5: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 104

arrangementisusedtoallowalargedampingmass.Thegaplengthcanbevariedbetween4.5,5and10cmsanddu

etomaximumworkingelectricstressof100kV/cm,thevoltagerangescanbeselected

to250kV,500kVand100kV.With100kV/cmasgradient,theaverageforceonthediscisfoundtobe0.8681Nequ

ivalentto88.52gmwt.Thediscmovementsarekeptassmallas1µmbytheweighingbalancearrangement.

Thevoltmetersareusedforthemeasurementofhigha.c.andd.c.voltages.Themeasurementof

voltageslowerthanabout50voltis,however,notpossible,astheforcesbecometoosmall.

GENERATINGVOLTMETER

Wheneverthesourceloadingisnotpermittedorwhendirectconnectiontothehighvoltagesourceisto

beavoided,thegeneratingprincipleisemployedforthemeasurementofhighvoltages,Agenerating voltmeter

is a variable capacitor electrostatic voltage generator which generates current proportional to

thevoltagetobemeasured.Similartoelectrostaticvoltmeterthegeneratingvoltmeterprovidesloss

freemeasurementofd.c.anda.c.voltages.Thedeviceisdrivenbyanexternalconstantspeedmotor

anddoesnotabsorbpowerorenergyfromthevoltagemeasuringsource.Theprincipleofoperationis

explainedwiththehelpofFig.6.8.Hisahighvoltageelectrodeandtheearthedelectrodeissubdivided

intoasensingorpickupelectrodeP,aguardelectrodeGandamovableelectrodeM,allofwhichare

atthesamepotential.ThehighvoltageelectrodeHdevelopsanelectricfieldbetweenitselfandthe

electrodesP,GandM.ThefieldlinesareshowninFig.6.8.Theelectricfielddensityσisalsoshown.

IfelectrodeMisfixedandthevoltageVischanged,thefielddensityσwouldchangeandthusacurrent

i(t)wouldflowbetweenPandtheground.

Fig.6.8Principleofgeneratingvoltmeter

z σ(a)da

Fig.6.10showsaschematicdiagramofageneratingvoltmeterwhichemploysrotatingvanes

Page 6: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 105

forvariationofcapacitance.ThehighvoltageelectrodeisconnectedtoadiscelectrodeD3

whichis

keptatafixeddistanceontheaxisoftheotherlowvoltageelectrodesD2,D1,andD0.TherotorD0is

drivenataconstantspeedbyasynchronousmotoratasuitablespeed.TherotorvanesofD0cause

periodicchangeincapacitancebetweentheinsulateddiscD2andthehighvoltageelectrodeD

5.The

numberandshapeofvanesaresodesignedthatasuitablevariationofcapacitance(sinusodialorlinear)

isachieved.Thea.c.currentisrectifiedandismeasuredusingmovingcoilmeters.Ifthecurrentis

smallanamplifiermaybeusedbeforethecurrentismeasured.

Fig.6.10Schematicdiagramofgeneratingvoltmeter

Generatingvoltmetersarelinearscaleinstrumentsandapplicableoverawiderangeofvoltages.

Thesensitivitycanbeincreasedbyincreasingtheareaofthepickupelectrodeandbyusingamplifier circuits.

Themainadvantagesofgeneratingvoltmetersare(i)scaleislinearandcanbeextrapolated

(ii)sourceloadingispracticallyzero(iii)nodirectconnectiontothehighvoltageelectrode.

However,theyrequirecalibrationandconstructionisquitecumbersome.

Thebreakdownofinsulatingmaterialsdependsuponthemagnitudeofvoltageappliedandthe

timeofapplicationofvoltage.However,ifthepeakvalueofvoltageislargeascomparedtobreakdown strength

of the insulating material, the disruptive discharge phenomenon is in general caused by the

instantaneousmaximumfieldgradientstressingthematerial.Variousmethodsdiscussedsofarcan

measurepeakvoltagesbutbecauseofcomplexcalibrationproceduresandlimitedaccuracycallformoreconven

ientandmoreaccuratemethods.Amoreconvenientthoughlessaccuratemethodwould

Page 7: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 106

betheuseofatestingtransformerwhereintheoutputvoltageismeasuredandrecordedandtheinput

voltageisobtainedbymultiplyingtheoutputvoltagebythetransformationratio.However,herethe

outputvoltagedependsupontheloadingofthesecondarywindingandwaveshapevariationiscaused

bythetransformerimpedancesandhencethismethodisunacceptableforpeakvoltagemeasurements.

THECHUBB-FORTESCUEMETHOD

ChubbandFortescuesuggestedasimpleandaccuratemethodofmeasuringpeakvalueofa.c.voltages. The

basiccircuitconsistsofastandardcapacitor,twodiodesandacurrentintegratingammeter

(MCammeter)asshowninFig.6.11(a).

v(t) C

C

ic (t) Rd

D1 D2

D1 D2

A A

(a) (b)

Fig.6.11(a)Basiccircuit(b)Modifiedcircuit

Thedisplacementcurrentic(t),Fig.6.12isgivenbytherateofchangeofthechargeandhence

thevoltageV(t)tobemeasuredflowsthroughthehighvoltagecapacitorCandissubdividedinto positive and

negative components by the back to back connected diodes. The voltage drop across these

diodescanbeneglected(1VforSidiodes)ascomparedwiththevoltagetobemeasured.Themeasuring

instrument(M.C.ammeter)isincludedinoneofthebranches.Theammeterreadsthemeanvalueof thecurrent.

I= 1

t2 dv(t) C C dt= .2V =2V fCorV =

I

T 1 dt T 2fC

Page 8: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 107

Therelationissimilartotheoneobtainedincaseofgeneratingvoltmeters.Anincreasedcurrent

wouldbeobtainedifthecurrentreacheszeromorethanonceduringonehalfcycle.Thismeansthe

waveshapesofthevoltagewouldcontainmorethanonemaximaperhalfcycle.Thestandarda.c.

voltagesfortestingshouldnotcontainanyharmonicsand,therefore,therecouldbeveryshortand

rapidvoltagescausedbytheheavypredischarges,withinthetestcircuitwhichcouldintroduceerrorsin

measurements.Toeliminatethisproblemfilteringofa.c.voltageiscarriedoutbyintroducingadamping

resistorinbetweenthecapacitorandthediodecircuit,Fig.6.11(b).

Fig.6.12

Also,iffullwaverectifierisusedinsteadofthehalfwaveasshowninFig.6.11,thefactor2in

thedenominatoroftheaboveequationshouldbereplacedby6.Sincethefrequencyf,thecapacitance

CandcurrentIcanbemeasuredaccurately,themeasurementofsymmetricala.c.voltagesusingChubb

andFortescuemethodisquiteaccurateanditcanbeusedforcalibrationofotherpeakvoltagemeasuring devices.

Fig.6.13showsadigitalpeakvoltagemeasuringcircuit.Incontrasttothemethoddiscussedjust

now,therectifiedcurrentisnotmeasureddirectly,insteadaproportionalanalogvoltagesignalisderived

whichisthenconvertedintoaproportionalmediumfrequencyforusingavoltagetofrequencyconvertor

(BlockAinFig.6.13).Thefrequencyratiofm/fismeasuredwithagatecircuitcontrolledbythea.c.

powerfrequency(supplyfrequencyf)andacounterthatopensforanadjustablenumberofperiod

∆t=p/f.Thenumberofcyclesncountedduringthisintervalis

Page 9: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 108

dq(t) d

Whereσ(a)istheelectricfielddensityorchargedensityalongsomepathandisassumedconstantover the

differential areadaof the pick up electrode. In this caseσ(a) is a function of time also and∫da the

areaofthepickupelectrodePexposedtotheelectricfield.

However,ifthevoltageVtobemeasuredisconstant(d.cvoltage),acurrenti(t)willflowonly

ifitismovedi.e.nowσ(a)willnotbefunctionoftimebutthechargeqischangingbecausetheareaof

thepickupelectrodeexposedtotheelectricfieldischanging.Thecurrenti(t)isgivenby

PeakVoltmeterswithPotentialDividers

Passivecircuitsarenotveryfrequentlyusedthesedaysformeasurementofthepeakvalueofa.c.or

impulsevoltages.Thedevelopmentoffullyintegratedoperationalamplifiersandotherelectroniccircuits

hasmadeitpossibletosampleandholdsuchvoltagesandthusmakemeasurementsand,therefore,

havereplacedtheconventionalpassivecircuits.However,itistobenotedthatifthepassivecircuitsare designed

properly,theyprovidesimplicityandadequateaccuracyandhenceasmalldescriptionof

thesecircuitsisinorder.Passivecircuitsarecheap,

reliable andhaveahighorderofelectromagnetic

compatibility. However, in contrast, the most

sophisticatedelectronicinstrumentsarecostlierand

theirelectromagneticcompatibility(EMC)islow.

The passive circuits cannot measure high

voltages directly and use potential dividers

preferablyofthecapacitancetype.

Fig. 6.14 shows a simple peak voltmeter

circuitconsistingofacapacitorvoltagedivider

whichreducesthevoltageVtobemeasuredtoa

lowvoltageVm.

Fig.6.14Peakvoltmeter

SupposeR2

andRd

are notpresentandthesupplyvoltageisV.Thevoltageacrossthestorage

capacitorCswillbeequaltothepeakvalueofvoltageacrossC

2assumingvoltagedropacrossthediode

tobenegligiblysmall.Thevoltagecouldbemeasuredbyanelectrostaticvoltmeterorothersuitable

voltmeterswithveryhighinputimpedance.Ifthereversecurrentthroughthediodeisverysmalland

Page 10: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 109

thedischarge time constant of the storage capacitor very large, the storage capacitor will not discharge

significantly for a long time and hence it will hold the voltage to its value for a long time. If now, Vis

decreased,thevoltageV2decreasesproportionatelyandsincenowthevoltageacrossC

2issmallerthan

thevoltageacross Cs

towhichitisalreadycharged,therefore,thediodedoesnotconductandthe

voltageacrossCsdoesnotfollowthevoltageacrossC

4.Hence,adischargeresistorR

d mustbeintroduced

intothecircuitsothatthevoltageacrossCsfollowsthevoltageacrossC

4.Frommeasurementpointof

viewitisdesirablethatthequantitytobemeasuredshouldbeindicatedbythemeterwithinafew

secondsandhenceRdissochosenthat R

dC

s≈1sec.Asaresultofthis,followingerrorsareintroduced.

WiththeconnectionofRd,thevoltageacrossC

swilldecreasecontinuouslyevenwhentheinputvoltage

iskeptconstant.Also,itwilldischargethecapacitorC2andthemeanpotentialofV

2(t)willgaina

negatived.c.component.HencealeakageresistorR2mustbeinsertedinparallelwithC

2toequalise

theseunipolardischargecurrents.Theseconderrorcorrespondstothevoltageshapeacrossthestorage

capacitorwhichcontainsrippleandisduetothedischargeofthecapacitorCs.Iftheinputimpedance ofthe

measuring device is very high, the ripple is independent of the meter being used. The error is

approximately proportional to the ripple factor and is thus frequency dependent as the discharge time-

constantcannotbechanged.IfRdC

s=1sec,thedischargeerroramountsto1%for50Hzand0.33%.

for150Hz.Thethirdsourceoferrorisrelatedtothisdischargeerror.Duringtheconductiontime

(whenthevoltageacrossCsislowerthanthatacrossC

2 becauseofdischargeofC

s throughR

d)ofthe

diodethestoragecapacitorCsis rechargedtothepeakvalueandthusC

sbecomesparallelwithC

4.If

dischargeerrorised,rechargeerrore

r isgivenby

C e =2e s

r d C +C +C

1 2 s

HenceCsshouldbesmallascomparedwith

C2tokeepdowntherechargeerror.

Ithasalsobeenobservedthatinorderto keep

the overall error to a low value, it is desirable

tohaveahighvalueofR4.Thesameeffectcanbe

obtainedbyprovidinganequalisingarmtothelow

voltagearmofthevoltagedividerasshownin

Fig.6.15.Thisisaccomplishedbytheadditionof

Fig.6.15Modifiedpeakvoltmetercircuit

asecondnetworkcomprisingdiode,CsandR

dfornegativepolaritycurrentstothecircuitshowninFig.

6.16.Withthis,thed.c.currentsinbothbranchesareoppositeinpolarityandequaliseeachother.The

errorsduetoR2

arethuseliminated.

RabusdevelopedanothercircuitshowninFig.6.16.toreduceerrorsduetoresistances.Two

Page 11: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 110

storagecapacitorsareconnectedbyaresistorRswithineverybranchandbotharedischargedbyonly

oneresistanceRd.

D2 D2

Rs

D1 D1

Cs2 Cs1 Rd Rd Cs1 Cs2 Vm

Fig.6.16Two-wayboostercircuitdesignedbyRabus

HerebecauseofthepresenceofRs,thedischargeofthestoragecapacitorC

s2isdelayedand

hencetheinherentdischargeerroredisreduced.However,sincethesearetwostoragecapacitorswithin

onebranch,theywoulddrawmorechargefromthecapacitorC2andhencetherechargeerrore

rwould

increase.Itis,therefore,amatterofdesigningvariouselementsinthecircuitsothatthetotalsumofall

theerrorsisaminimum.Ithasbeenobservedthatwiththecommonlyusedcircuitelementsinthe

voltagedividers,theerrorcanbekepttowellwithinabout1%evenforfrequenciesbelow20Hz.

ThecapacitorC1hastowithstandhighvoltagetobemeasuredandisalwaysplacedwithinthe

testareawhereasthelowvoltagearmC2includingthepeakcircuitandinstrumentformameasuring

unitlocatedinthecontrolarea.Henceacoaxialcableisalwaysrequiredtoconnectthetwoareas.The cable

capacitancecomesparallelwiththecapacitance C2

whichisusuallychangedinstepsifthe

voltage to be measured is changed. A change of the length of the cable would, thus, also require

recalibrationofthesystem.Thesheathofthecoaxialcablepicksuptheelectrostaticfieldsandthus

preventsthepenetrationofthisfieldtothecoreoftheconductor.Also,eventhoughtransientmagnetic

fieldswillpenetrateintothecoreofthecable,noappreciablevoltage(extraneousofnoise)isinduced due to the

symmetrical arrangement and hence a coaxial cable provides a good connection between the two

areas.Whenever,adischargetakesplaceatthehighvoltageendofcapacitor C1 tothecable

connectionwherethecurrentlooksintoachangeinimpedanceahighvoltageofshortdurationmaybe

builtupatthelowvoltageendofthecapacitorC1

whichmustbelimitedbyusinganovervoltage

protectiondevice(protectiongap).Thesedeviceswillalsopreventcompletedamageofthemeasuring

circuitiftheinsulationofC1fails.

Page 12: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 111

SPHEREGAP

Spheregapisbynowconsideredasoneofthestandardmethodsforthemeasurementofpeakvalueof

d.c.,a.c.andimpulsevoltagesandisusedforcheckingthevoltmetersandothervoltagemeasuring

devicesusedinhighvoltagetestcircuits.Twoidenticalmetallicspheresseparatedbycertaindistance

formaspheregap.Thespheregapcanbeusedformeasurementofimpulsevoltageofeitherpolarity

providedthattheimpulseisofastandardwaveformandhaswavefronttimeatleast1microsec.and

wavetailtimeof5microsec.Also,thegaplengthbetweenthesphereshouldnotexceedasphere

radius.Iftheseconditionsaresatisfiedandthespecificationsregardingtheshape,mounting,clearancesofthesp

heresaremet,theresultsobtainedbytheuseofspheregapsarereliabletowithin±3%.Ithas

beensuggestedinstandardspecificationthatinplaceswheretheavailabilityofultravioletradiationis

low,irradiationofthegapbyradioactiveorotherionizingmediashouldbeusedwhenvoltagesof magnitude less

than 50 kV are being measured or where higher voltages with accurate results are to be obtained.

In ordertounderstandtheimportanceofirradiationofspheregapformeasurementofimpulse

voltagesespeciallywhichareofshortduration,itisnecessarytounderstandthetime-laginvolvedin

thedevelopmentofsparkprocess.Thistimelagconsistsoftwocomponents—(i)Thestatisticaltime-

lagcausedbytheneedofanelectrontoappearinthegapduringtheapplicationofthevoltage.(ii)The

formativetimelagwhichisthetimerequiredforthebreakdowntodeveloponceinitiated.

Thestatisticaltime-lagdependsontheirradiationlevelofthegap.Ifthegapissufficiently

irradiatedsothatanelectronexistsinthegaptoinitiatethesparkprocessandifthegapissubjectedto

animpulsevoltage,thebreakdownwilltakeplacewhenthepeakvoltageexceedsthed.c.breakdown

value.However,iftheirradiationlevelislow,thevoltagemustbemaintainedabovethed.c.break-

downvalueforalongerperiodbeforeanelectronappears.Variousmethodshavebeenusedforirradia- tione.g.

radioactivematerial,ultravioletilluminationassuppliedbymercuryarclampandcoronadischarges.

Ithasbeenobservedthatlargevariationcanoccurinthestatisticaltime-lagcharacteristicofa gap

whenilluminatedbyaspecifiedlightsource,unlessthecathodeconditionsarealsopreciselyspecified.

Irradiation byradioactivematerialshastheadvantageinthattheycanformastablesourceof

irradiationandthattheyproduceanamountofionisationinthegapwhichislargelyindependentofthe gap

voltageandofthesurfaceconditionsoftheelectrode.Theradioactivematerialmaybeplaced

insidehighvoltageelectrodeclosebehindthesparkingsurfaceortheradioactivematerialmayform

thesparkingsurface.

Page 13: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 112

Theinfluenceofthelightfromtheimpulsegeneratorsparkgapontheoperationofthesphere

gapshasbeenstudied.Heretheilluminationisintenseandoccursattheexactinstantwhenitisre-

quired,namely,attheinstantofapplicationofthevoltagewavetothespheregap.

Theformativetimelagdependsmainlyuponthemechanismofsparkgrowth.Incaseofsecond-

aryelectronemission,itisthetransittimetakenbythepositiveiontotravelfromanodetocathodethat

decidesthatformativetimelag.Theformativetime-lagdecreaseswiththeappliedovervoltageand

increasewithgaplengthandfieldnon-uniformity.

SpecificationsonSpheresandAssociatedAccessories

Thespheresshouldbesomadethattheirsurfacesaresmoothandtheircurvaturesasuniformaspossible.

Thecurvatureshouldbemeasuredbyaspherometeratvariouspositionsoveranareaenclosedbya

circleofradius0.3Daboutthesparkingpointwhere Disthediameterofthesphereandsparking

pointsonthetwospheresarethosewhichareatminimumdistancesfromeachother.

Forsmallersize,thespheresareplacedinhorizontalconfigurationwhereaslargesizes(diameters),

thespheresaremountedwiththeaxisofthespheregapsverticalandthelowersphereisgrounded.In

eithercase,itisimportantthatthespheresshouldbesoplacedthatthespacebetweenspheresisfree

fromexternalelectricfieldsandfrombodieswhichmayaffectthefieldbetweenthespheres(Figs.6.1 and6.2).

Page 14: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 113

Fig.6.1

Fig.6.2

Page 15: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 114

AccordingtoBSS358:1939,whenonesphereisgrounded,thedistancefromthesparking

pointofthehighvoltagespheretotheequivalentearthplanetowhichtheearthedsphereisconnected

shouldliewithinthelimitsasgiveninTable6.4.

Table6.1

Heightofsparkingpointofhighvoltagesphereabovetheequivalentearthplane.

S=Sparkingpointdistance

SphereDiameter S<0.5D S>0.5D

D Maxm.

Height Min.

Height Maxm.

Height Min.

Height

Upto 25cms.

50cms.

75cms.

100cms.

150cms.

200cms.

7D

6D

6D

5D

4D

4D

10S

8S

8S

7S

6S

6S

7D

6D

6D

5D

4D

4D

5D

4D

4D

5.5D

3D

3D

Inordertoavoidcoronadischarge,theshankssupportingthespheresshouldbefreefromsharp

edgesandcorners.Thedistanceofthesparkingpointfromanyconductingsurfaceexcepttheshanks

shouldbegreaterthan

F25+

VIcms

H 3K

where Vis the peak voltage is kV to be measured. When large spheres are used for the measurement of

lowvoltagesthelimitingdistanceshouldnotbelessthanaspherediameter.

Ithasbeenobservedthatthemetalofwhichthespheresaremadedoesnotaffecttheaccuracyof

measurements MSS 358: 1939 states that the spheres may be made of brass, bronze, steel, copper,

aluminiumorlightalloys.Theonlyrequirementisthatthesurfacesofthesespheresshouldbeclean,

freefromgreasefilms,dustordepositedmoisture.Also,thegapbetweenthespheresshouldbekept

freefromfloatingdustparticles,fibresetc.

Forpowerfrequencytests,aprotectiveresistancewithavalueof1Ω/Vshouldbeconnectedin

betweenthespheresandthetestequipmenttolimitthedischargecurrentandtopreventhighfrequency

oscillations in the circuit which may otherwise result in excessive pitting of the spheres. For higher

frequencies,thevoltagedropwouldincreaseanditisnecessarytohaveasmallervalueoftheresistance.

Forimpulsevoltagetheprotectiveresistorsarenotrequired.Iftheconditionsofthespheresandits

Page 16: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 115

associatedaccessoriesasgivenabovearesatisfied,thesphereswillsparkatapeakvoltagewhichwill

beclosetothenominalvalueshowninTable6.4.Thesecalibrationvaluesrelatetoatemperatureof

20°Candpressureof760mmHg.Fora.c.andimpulsevoltages,thetablesareconsideredtobeaccurate

within±3%forgaplengthsupto0.5D.Thetablesarenotvalidforgaplengthslessthan0.05Dand

impulsevoltageslessthan10kV.Ifthegaplengthisgreaterthan0.5D,theresultsarelessaccurateand

areshowninbrackets.

Page 17: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 116

Table6.2

Spheregapwithonesphereearthed

Peakvalueofdisruptivedischargevoltages(50%forimpulsetests)arevalidfor(i)alternatingvoltages

(ii)d.c.voltageofeitherpolarity(iii)negativelightningandswitchingimpulsevoltages

SphereGap VoltageKVPeak

Spacingmm Spherediaincm.

10

20

30

40

50

75

100

125

150

175

200

250

300

350

400

450

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

14.5

34.7

59.0

85

108

129

167

(195)

(214)

25

86

112

137

195

244

282

(314)

(342)

(366)

(400)

50

138

202

263

320

373

420

460

530

(585)

(630)

(670)

(700)

(730)

75

138

203

265

327

387

443

492

585

665

735

(800)

(850)

(895)

(970)

(1025)

100

138

203

266

330

390

443

510

615

710

800

875

945

1010

(1110)

(1200)

(1260)

(1320)

(1360)

150

138

203

266

330

390

450

510

630

745

850

955

1050

1130

1280

1390

1490

1580

1660

1730

1800

1870

1920

1960

200

203

266

330

390

450

510

630

750

855

975

1080

1180

1340

1480

1600

1720

1840

1940

2020

2100

2180

2250

2320

2370

2410

2460

2490

Page 18: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 117

Duetodustandfibrepresentintheair,themeasurementofd.c.voltagesisgenerallysubjectto

largererrors.Heretheaccuracyiswithin±5%providedthespacingislessthan0.4Dandexcessive

dustisnotpresent.

Theprocedureforhighvoltagemeasurementusingspheregapsdependsuponthetypeofvoltage

tobemeasured.

Table6.3

SphereGapwithonespheregrounded

Peakvaluesofdisruptivedischargevoltages(50%values).

Positivelightningandswitchingimpulsevoltages

PeakVoltagekV

SphereGap Spherediaincms

Spacingmm 14.5 25 50 75 100 150 200 10 34.7 20 59 59 30 85.5 86 40 110 112 50 134 138 138 138 138 138 138

75 (181) 199 203 202 203 203 203

100 (215) 254 263 265 266 266 266

125 (239) 299 323 327 330 330 330

150 (337) 380 387 390 390 390

175 (368) 432 447 450 450 450

200 (395) 480 505 510 510 510

250 (433) 555 605 620 630 630

300 (620) 695 725 745 760

350 (670) 770 815 858 820

400 (715) (835) 900 965 980

450 (745) (890) 980 1060 1090

500 (775) (940) 1040 1150 1190

600 (1020) (1150) (1310) 1380

700 (1070) (1240) (1430) 1550

750 (1090) (1280) (1480) 1620

800 (1310) (1530) 1690

900 (1370) (1630) (1820)

1000 (1410) (1720) 1930

1100 (1790) (2030)

1200 (1860) (2120)

Forthemeasurementofa.c.ord.c.voltage,areducedvoltageisappliedtobeginwithsothatthe

switchingtransientdoesnotflashoverthespheregapandthenthevoltageisincreasedgraduallytillthe

gapbreaksdown.Alternativelythevoltageisappliedacrossarelativelylargegapandthespacingis

Page 19: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 118

Page 20: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 119

Where∆V= per cent reduction in voltage in the breakdown voltage from the value when the

clearancewas14.6D,andmandCarethefactorsdependentontheratioS/D.

Fiegeland Keenhavestudiedtheinfluenceofnearbygroundplaneonimpulsebreakdown

voltageofa50cmdiameterspheregapusing4.5/40microsec.negativepolarityimpulsewave.Fig.6.3

showsthebreakdownvoltageasafunctionofA/D forvariousvaluesofS/D.Thevoltagevalueswere

correctedforrelativeairdensity.

It is observed that the voltage increases with increase in the ratioA/D. The results have been

comparedwiththosegiveninTable6.2andrepresentedinFig.6.3bydashedlines.Theresultsalso

agreewiththerecommendationregardingtheminimumandmaximumvaluesofA/DasgiveninTable 6.4.

InfluenceofHumidity

Kuffelhasstudiedtheeffectofthehumidityonthebreakdownvoltagebyusingspheresof2cmsto

25 cmsdiametersanduniformfieldelectrodes.Theeffectwasfoundtobemaximumintheregion0.4

mmHg.andthereafterthechangewasdecreased.Between4–17mmHg.therelationbetweenbreakdown

voltageandhumiditywaspracticallylinearforspacinglessthanthatwhichgavethemaximumhumidity

effect.Fig.6.4showstheeffectofhumidityonthebreakdownvoltageofa25cmdiameterspherewith

spacingof1cmwhena.c.andd.cvoltagesareapplied.Itcanbeseenthat

(i)Thea.c.breakdownvoltageisslightlylessthand.c.voltage.

(ii)Thebreakdownvoltageincreaseswiththepartialpressureofwatervapour.

Ithasalsobeenobservedthat

(i)Thehumidityeffectincreaseswiththesizeofspheresandislargestforuniformfieldelec- trodes.

(ii)Thevoltagechangeforagivenhumiditychangeincreasewithgaplength.

Page 21: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 120

Theincreaseinbreakdownvoltagewithincreaseinpartialpressureofwatervapourandthis

increaseinvoltagewithincreaseingaplengthisduetotherelativevaluesofionisationandattachment

coefficients in air. The water particles readily attach free electrons, forming negative ions. These ions

thereforeslowdownandareunabletoioniseneutralmoleculesunderfieldconditionsinwhichelectrons will

readilyionise.Ithas beenobservedthatwithinthehumidityrangeof4to17g/m3 (relative

humidityof25to95%for20°Ctemperature)therelativeincreaseofbreakdownvoltageisfoundtobe

between0.2 to 0.35%pergm/m3 forthelargestsphereofdiameter100cmsandgaplengthupto

50cms.

InfluenceofDustParticles

Whenadustparticleisfloatingbetweenthegapthisresultsintoerraticbreakdowninhomogeneousor

slightlyinhomogenouselectrodeconfigurations.Whenthedustparticlecomesincontactwithone electrode

under the application of d.c. voltage, it gets charged to the polarity of the electrode and gets attracted by

the opposite electrode due to the field forces and the breakdown is triggered shortly before arrival. Gaps

subjected to a.c. voltages are also sensitive to dust particles but the probability of erratic

breakdownisless.Underd.c.voltageserraticbreakdownsoccurwithinafewminutesevenforvoltages aslow

Page 22: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 121

as 80% of the nominal breakdown voltages. This is a major problem, with high d.c. voltage

measurementswithspheregaps.

UNIFORMFIELDSPARKGAPS

Brucesuggestedtheuseofuniformfieldsparkgapsforthemeasurementsofa.c.,d.c.andimpulse

voltages.Thesegapsprovideaccuracytowithin0.2%fora.c.voltagemeasurementsanappreciableimproveme

ntascomparedwiththeequivalentspheregaparrangement.Fig.6.5showsahalf-contour

ofoneelectrodehavingplanesparkingsurfaceswithedgesofgraduallyincreasingcurvature.

Fig.6.5Halfcontourofuniformsparkgap

TheportionABisflat,thetotaldiameteroftheflatportionbeinggreaterthanthemaximum

spacingbetweentheelectrodes.TheportionBCconsistsofasinecurvebasedontheaxesOBandOCandgivenby

XY=COsin(BX/BO.π/2).CDisanarcofacirclewithcentreatO.

BruceshowedthatthebreakdownvoltageVofagapoflength Scmsinairat20°Cand760mm

Hg.pressureiswithin0.2percentofthevaluegivenbytheempiricalrelation.

V=26.22S+6.08 S

Thisequation,therefore,replacesTables6.2and6.3whicharenecessaryforspheregaps.This is a great

advantage, that is, if the spacing between the spheres for breakdown is known the breakdown

voltagecanbecalculated.

Theotheradvantagesofuniformfieldsparkgapsare

(i)Noinfluenceofnearbyearthedobjects

(ii)Nopolarityeffect.

However,thedisadvantagesare

(i)Veryaccuratemechanicalfinishoftheelectrodeisrequired.

(ii)Carefulparallelalignmentofthetwoelectrodes.

(iii)Influenceofdustbringsinerraticbreakdownofthegap.Thisismuchmoreseriousinthese gaps

ascomparedwithspheregapsasthehighlystressedelectrodeareasbecomemuch larger.

Therefore,auniformfieldgapisnormallynotusedforvoltagemeasurements.

Page 23: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 122

RODGAPS

Arodgapmaybeusedtomeasurethepeakvalueofpowerfrequencyandimpulsevoltages.Thegap

usuallyconsistsoftwo4.27cmsquarerodelectrodessquareinsectionattheirendandaremountedon

insulatingstandssothatalengthofrodequaltoorgreaterthanonehalfofthegapspacingoverhangs

theinneredgeofthesupport.ThebreakdownvoltagesasfoundinAmericanstandardsfordifferent

gaplengthsat25°C,760mmHg.pressureandwithwatervapourpressureof15.5mmHg.arereproducedhere

Gaplengthin

Cms.

BreakdownVoltageKV

peak

GapLengthincms.

Breakdown

VoltageKVpeak

2

4

6

8

10

15

20

25

30

35

40

50

60

70

26

47

62

72

81

102

124

147

172

198

225

278

332

382

80

90

100

120

140

160

180

200

220

435

488

537

642

744

847

950

1054

1160

The breakdown voltage is a rodgap increasesmoreorlesslinearlywithincreasingrelativeair

densityoverthenormalvariationsinatmosphericpressure.Also,thebreakdownvoltageincreaseswith

increasingrelativehumidity,thestandardhumiditybeingtakenas15.5mmHg.

Because ofthelargevariationinbreakdownvoltageforthesamespacingandtheuncertainties

associatedwiththeinfluenceofhumidity,rodgapsarenolongerusedformeasurementofa.c.or impulse

voltages. However, more recent investigations have shown that these rods can be used for

d.c.measurementprovidedcertainregulationsregardingtheelectrodeconfigurationsareobserved.The

arrangementconsistsoftwohemisphericallycappedrodsofabout20mmdiameterasshowninFig.6.6.

Page 24: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 123

Fig.6.6ElectrodearrangementforarodgaptomeasureHV

The earthedelectrodemustbelongenoughtoinitiatepositivebreakdownstreamersifthehigh

voltagerodisthecathode.Withthisarrangement,thebreakdownvoltagewillalwaysbeinitiatedby

positivestreamersforboththepolaritiesthusgivingaverysmallvariationandbeinghumiditydependent.

Exceptforlowvoltages(lessthan120kV),wheretheaccuracyislow,thebreakdownvoltagecanbe

givenbytheempiricalrelation.

V =δ(A+BS) 4 5.1×10–2(h+8.65)kV

wherehistheabsolutehumidityingm/m3 andvariesbetween4and20gm/m3 intheaboverelation. The

breakdown voltage is linearly related with thegap spacing and theslopeoftherelation

B=5.1kV/cmandisfoundtobeindependentofthepolarityofvoltage.HoweverconstantAispolarity

dependentandhasthevalues

A=20kVforpositivepolarity

=15kVfornegativepolarityofthehighvoltageelectrode.

Theaccuracyoftheaboverelationisbetterthan±20%and,therefore,providesbetteraccuracy

evenascomparedtoaspheregap.

IMPULSEVOLTAGEMEASUREMENTSUSINGVOLTAGEDIVIDERS

Iftheamplitudesoftheimpulsevoltageisnothighandisintherangeofafewkilovolts,itispossible

tomeasure them even when these are of short duration by using CROS. However, if the voltages to be

measured are of high magnitude of the order of magavolts which normally is the case for testing and

researchpurposes,variousproblemsarise.Thevoltagedividersrequiredareofspecialdesignandneed

athoroughunderstandingoftheinteractionpresentinthesevoltagedividingsystems.Fig.6.17shows a

layoutofavoltagetestingcircuitwithinahighvoltagetestingarea.ThevoltagegeneratorGis

connectedtoatestobject—TthroughaleadL.

Page 25: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 124

Fig.6.17Basicvoltagetestingcircuit

Thesethreeelementsformavoltagegeneratingsystem.TheleadLconsistsof aleadwireand

aresistancetodamposcillationortolimitshort-circuitcurrentsifofthetestobjectfails.Themeasuring

systemstartsattheterminalsofthetestobjectandconsistsofaconnectingleadCLtothevoltage dividerD. The

output of the divider is fed to the measuring instrument (CRO etc.)M. The appropriate

groundreturnshouldassurelowvoltagedropsforevenhighlytransientphenomenaandkeeptheground

potentialofzeroasfaraspossible.

Itis to be noted that the test object is a predominantly capacitive element and thus this forms an

oscillatorycircuitwiththeinductanceoftheload.Theseoscillationsarelikelytobeexcitedbyany steep voltage

rise from the generator output, but will only partly be detected by the voltage divider. A

resistorinserieswiththeconnectingleadsdampsouttheseoscillations.Thevoltagedividershould always be

connected outside the generator circuit towards the load circuit (Test object) for accurate

measurement.Incaseitisconnectedwithinthegeneratorcircuit,andthetestobjectdischarges(chopped

wave)thewholegeneratorincludingvoltagedividerwillbedischargedbythisshortcircuitatthetest

objectandthusthevoltagedividerisloadedbythevoltagedropacrosstheleadL.Asaresult,the

voltagemeasurementwillbewrong.

Yetforanotherreason,thevoltagedividershouldbelocatedawayfromthegeneratorcircuit.

Thedividerscannotbeshieldedagainstexternalfields.Allobjectsinthevicinityofthedividerwhich

may acquiretransientpotentialsduringatestwilldisturbthefielddistributionandthusthedivider

performance.Therefore,theconnectingleadCLisanintegralpartofthepotentialdividercircuit.

InordertoavoidelectromagneticinterferencebetweenthemeasuringinstrumentMandCthe

highvoltagetestarea,thelengthofthedelaycableshouldbeadequatelychosen.Veryshortlengthof

thecablecanbeusedonlyifthemeasuringinstrumenthashighlevelofelectromagneticcompatibility (EMC).

For any type of voltage to be measured, the cable should be co-axial type. The outer conductor

providesashieldagainsttheelectrostaticfieldandthuspreventsthepenetrationofthisfieldtothe

innerconductor.Eventhough,thetransientmagneticfieldswillpenetrateintothecable,noappreciable

voltageisinducedduetothesymmetricalarrangement.Ordinarycoaxialcableswithbraidedshields

maywellbeusedford.c.anda.c.voltages.However,forimpulsevoltagemeasurementdoubleshielded

cableswithpredominentlytwoinsulatedbraidedshieldswillbeusedforbetteraccuracy.

Duringdisruptionoftestobject,veryheavytransientcurrentflowandhencethepotentialofthe

groundmayrisetodangerouslyhighvaluesifproperearthingisnotprovided.Forthis,largemetal

sheetsofhighlyconductingmaterialsuchascopperoraluminiumareused.Mostofthemodernhigh

Page 26: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 125

voltagelaboratoriesprovidesuchgroundreturnalongwithaFaradayCageforacompleteshieldingof

thelaboratory.Expandedmetalsheetsgivesimilarperformance.Atleastmetaltapesoflargewidth

shouldbeusedtoreducetheimpedance.

VoltageDivider

Voltagesdividersfora.c.,d.c.orimpulsevoltagesmayconsistofresistorsorcapacitorsoraconvenient

combination of these elements. Inductors are normally not used as voltage dividing elements as pure

inductances of proper magnitudes without stray capacitance cannot be built and also these inductances

wouldotherwiseformoscillatorycircuitwiththeinherentcapacitanceofthetestobjectandthismay

leadtoinaccuracyinmeasurementandhighvoltagesinthemeasuringcircuit.Theheightofavoltage

dividerdependsupontheflashovervoltageandthisfollowsfromtheratedmaximumvoltageapplied.

Now,thepotentialdistributionmaynotbeuniformandhencetheheightalsodependsuponthedesign

ofthehighvoltageelectrode,thetopelectrode.Forvoltagesinthemegavoltrange,theheightofthe

dividerbecomeslarge.Asathumbrulefollowingclearancesbetweentopelectrodeandgroundmaybe

assumed.

4.5to3metres/MVford.c.voltages.

2to4.5m/MVforlightningimpulsevoltages.

Morethan5m/MVrmsfora.c.voltages.

Morethan4m/MVforswitchingimpulsevoltage.

Thepotentialdividerismostsimplyrepresentedbytwo

impedancesZ1

andZ2

connectedinseriesandthesamplevoltage

requiredformeasurementistakenfromacrossZ2,Fig.6.18.

IfthevoltagetobemeasuredisV1andsampledvoltageV

2,

then

V

2=

Z2 V

Z +Z 1

Fig.6.18Basicdiagramofapoten-

tialdividercircuit

1 2

Iftheimpedancesarepureresistances

R2

V2

= R +R

V1

1 2

Page 27: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 126

V

The voltageV2

isnormallyonlyafewhundredvoltsandhencethevalueofZ2

issochosenthat

V2acrossitgivessufficientdeflectiononaCRO.Therefore,mostofthevoltagedropisavailableacrosstheimped

anceZ1

andsincethevoltagetobemeasuredisinmegavoltthelengthofZ1

islarge

whichresultininaccuratemeasurementsbecauseofthestraycapacitancesassociatedwithlonglength

voltagedividers(especiallywithimpulsevoltagemeasurements)unlessspecialprecautionsaretaken.

Onthelowvoltagesideofthepotentialdividerswhereascreenedcableoffinitelengthhastobe

employedforconnectiontotheoscillographothererrorsanddistortionofwaveshapecanalsooccur.

ResistancePotentialDividers

Theresistancepotentialdividersarethefirsttoappearbecauseoftheirsimplicityofconstruction,less

spacerequirements,lessweightandeasyportability.Thesecanbeplacednearthetestobjectwhich

mightnotalwaysbeconfinedtoonelocation.

Thelengthofthedividerdependsupontwoorthreefactors.Themaximumvoltagetobemeasured

isthefirstandifheightisalimitation,thelengthcanbebasedonasurfaceflashovergradientinthe orderof3–

4kV/cmirrespectiveofwhethertheresistanceR1

isofliquidorwirewoundconstruction.

Thelengthalsodependsupontheresistancevaluebutthisisimplicitlyboundupwiththestraycapacitance

oftheresistancecolumn,theproductofthetwo(RC)givingatimeconstantthevalueofwhichmust

notexceedthedurationofthewavefrontitisrequiredtorecord.

Itistobenotedwithcautionthattheresistanceofthepotentialdividershouldbematchedtothe

equivalentresistanceofagivengeneratortoobtainagivenwaveshape.

Fig.6.19(a)showsacommonformofresistancepotentialdividerusedfortestingpurposes

wherethewavefronttimeofthewaveislessthan1microsec.

R1

R3 Z V1

R2 2

R1

Z

R2 R4

R1

R3 Z

R2 R4

(a) (b) (c)

Fig.6.19Variousformsofresistancepotentialdividersrecordingcircuits(a)Matchingatdividerend

(b)MatchingatOscillographend(c)Matchingatbothendsofdelaycable

Page 28: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 127

HereR3,theresistanceatthedividerendofthedelaycableischosensuchthatR

2+R

3=Zwhich

putsanupperlimitonR2

i.e.,R2<Z.Infact,sometimestheconditionformatchingisgivenas

R1R2

Z=R3 + R +R

1 2

But, sinceusuallyR1 >>R

2,theaboverelationreducestoZ =R

3 +R

4.FromFig.6.19(a),the

voltageappearingacrossR2

is

V2

=

Page 29: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 128

Z1 V

Z +R

whereZ1 istheequivalentimpedanceofR

2 inparallelwith(Z +R

3),thesurgeimpedanceofthecable

beingrepresentedbyanimpedanceZtoground.

(Z+R3)R2 (Z+R3)R2

Now Z1 =

R =

+Z+R 2Z

Therefore, V2 =

2 3

(Z+R3)R2 V1

2Z Z +R

1 1

However,thevoltageenteringthedelaycableis

V2 Z (Z+R3)R2 . V1 R2

V3 = Z=

Z+R Z+R 2Z

Z +R =V1 2(Z

+R)

3 3 1 1 1 1

AsthisvoltagewavereachestheCROendofthedelaycable,itsuffersreflectionsasthe impedance

offered by the CRO is infinite and as a result the voltage wave transmitted into the CRO is

doubled.TheCRO,therefore,recordsavoltage

R2

V3′=

Z +R V1

1 1

Thereflectedwave,however,asitreachesthelowvoltagearmofthepotentialdividerdoesnot

sufferanyreflectionasZ =R2+R

3andistotallyabsorbedby(R

2+R

3).

SinceR2issmallerthanZandZ

1 isaparallelcombinationofR

2 and(R

3 +Z),Z

1 isgoingtobe

smallerthanR2andsinceR

1>>R

2,R

1willbemuchgreaterthanZ

1and,thereforetoafirstapproximation

Z1 +R

1 ≈R

4.

R R Therefore, V3′= 2 V1 ≈ 2 V1

asR2 <<R1

R1 R1 +R2

Fig. 6.19(b)and(c)arethevariantsofthepotentialdividercircuitofFig.6.19(a).Thecable

matchingisdonebyapureohmicresistanceR4

=Zattheendofthedelaycableand,therefore,the

voltagereflectioncoefficientiszeroi.e.thevoltageattheendofthecableistransmittedcompletely

intoR4andhenceappearsacrosstheCROplateswithoutbeingreflected.Astheinputimpedanceofthe

delaycableisR4

=Z,thisresistanceisaparalleltoR2

andformsanintegralpartofthedivider’slow

voltagearm.Thevoltageofsuchadivideris,therefore,calculatedasfollows:

Equivalentimpedance

R2Z R1(R2 +Z)+R2Z

=R1+ =

R2 +Z

(R2 +Z)

Therefore,Current I= V1(R2 +Z)

Page 30: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 129

R1(R2 +Z)+R2Z

1

IR2Z

V1(R2 +Z)

R2Z

andvoltage V2 =

R =

+Z R(R

+Z)+RZ R +Z

2 1 2 2

Page 31: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 130

1 2 2

R2Z =

R(R +Z)+RZV1

V2 R2Z

orvoltageratio = V R(R +Z)+RZ

1 1 2 2

DuetothematchingattheCROendofthedelaycable,thevoltagedoesnotsufferanyreflection

atthatendandthevoltagerecordedbytheCROisgivenas

V2 =

R(R

R2ZV1 =

+Z)+RZ (R

R2ZV1 =

+R)Z+RR

R2V1

1 2 2 1 2 12

(R +R)+R1 R2

Normallyforundistortedwaveshapethroughthecable

Z≈R2

1 2 Z

Therefore,

V

2=

2R

R2 V +R

1

1 2

ForagivenappliedvoltageV1thisarrangementwillproduceasmallerdeflectionontheCRO

platesascomparedtotheoneinFig.6.19(a).

ThearrangementofFig.6.19(c)providesformatchingatbothendsofthedelaycableandisto

berecommendedwhereitisfeltnecessarytoreducetotheminimumirregularitiesproducedinthe

delaycablecircuit.SincematchingisprovidedattheCROendofthedelaycable,therefore,thereisno reflection

ofthevoltageatthatendandthevoltagerecordedwillbehalfofthatrecordedinthe

arrangementofFig.6.19(a)viz.

V

2=

2(R R2 V +R)

1

1 2

Itisdesirabletoenclosethelowvoltageresistance(s)ofthepotentialdividersinametalscreening

box.Steelsheetisasuitablematerialforthisboxwhichcouldbeprovidedwithadetachableclose

fittinglidforeasyaccess.IftherearetwolowvoltageresistorsatthedividerpositionasinFig.6.19(a)

and(c),theyshouldbecontainedinthescreeningbox,asclosetogetheraspossible,witharemovable

metallicpartitionbetweenthem.Thepartitionservestwopurposes(i)itactsasanelectrostaticshield

betweenthetworesistors(ii)itfacilitatesthechangingoftheresistors.Thelengthsoftheleadsshould

beshortsothatpracticallynoinductanceiscontributedbytheseleads.Thescreeningboxshouldbe fitted with a

large earthing terminal. Fig. 6.20 shows a sketched cross-section of possible layout for the

Page 32: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 131

lowvoltagearmofvoltagedivider.

Page 33: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 132

CapacitancePotentialDividers

Capacitancepotentialdividersaremorecomplexthantheresistancetype.Formeasurementofimpulse

voltagesnotexceeding1MVcapacitancedividerscanbebothportableandtransportable.Ingeneral,

formeasurementof1MVandover,thecapacitancedividerisalaboratoryfixture.Thecapacitance

dividersareusuallymadeofcapacitorunitsmountedoneabovetheotherandboltedtogether.Itisthis

failurewhichmakesthesmalldividersportable.Ascreeningboxsimilartothatdescribedearliercan

beusedforhousingboththelowvoltagecapacitorunitC2 andthematchingresistorifrequired.

ThelowvoltagecapacitorC2 shouldbenon-inductive.Aformofcapacitorwhichhasgiven

excellentresults is of mica and tin foil plate, construction, each foil having connecting tags coming out

at oppositecorners.Thisensuresthatthecurrentcannotpassfromthehighvoltagecircuittothedelay

cablewithoutactuallygoingthroughthefoilelectrodes.Itisalsoimportantthatthecouplingbetween

thehighandlowvoltagearmsofthedividerbepurelycapacitive.Hence,thelowvoltagearmshould

containonecapacitoronly;twoormorecapacitorsinparallel mustbeavoidedbecauseofappreciable

inductancethatwouldthusbeintroduced.Further, thetappingstothedelaycablemustbetakenoffas

closeaspossibletotheterminalsofC4.Fig.6.21showsvariantsofcapacitancepotentialdividers.

C1

R Z, Cd

C2

C1

R3 Cd

C4

C2

R4

R1

C1 (Z – R2 ) Z

R2

C2

(a) (b) (c)

Page 34: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 133

Fig.6.21Capacitordividers(a)Simplematching(b)Compensatedmatching

(c)Dampedcapacitordividersimplematching

ForvoltagedividersinFig.(b)and(c),thedelaycablecannotbematchedatitsend.Alow

resistorinparalleltoC2

wouldloadthelowvoltagearmofthedividertooheavilyanddecreasethe

outputvoltagewithtime.SinceRandZformapotentialdividerandR=Z,thevoltageinputtothe

cablewillbehalfofthevoltageacrossthecapacitorC4.

Thishalvedvoltagestravelstowardstheopen end of the

cable (CRO end) and gets doubled after reflection. That is, the voltage recorded by the CRO

isequaltothevoltageacrossthecapacitorC4.

Thereflectedwavechargesthecabletoitsfinalvoltage

magnitudeandisabsorbedbyR(i.e.reflectiontakesplaceatRandsinceR=Z,thewaveiscompletely

absorbedascoefficientofvoltagereflectioniszero)asthecapacitorC2

actsasashortcircuitforhigh

frequencywaves.Thetransformationratio,therefore,changesfromthevalue:

C1 +C2

C1

forveryhighfrequenciestothevalue

C1 +C2 +Cd

C1

forlowfrequencies.

However,thecapacitanceofthedelaycableCd isusuallysmallascomparedwithC

4.

Forcapacitivedivideranadditionaldampingresistanceisusuallyconnectedintheleadonthe

highvoltagesideasshowninFig.6.21(c).Theperformanceofthedividercanbeimprovedifdamping

resistorwhichcorrespondstotheaperiodiclimitingcaseisinsertedinserieswiththeindividualelement

ofcapacitordivider.Thiskindofdampedcapacitivedivideractsforhighfrequenciesasaresistive

dividerandforlowfrequenciesasacapacitivedivider.Itcan,therefore,beusedoverawiderangeof

frequenciesi.e.forimpulsevoltagesofverydifferentdurationandalsoforalternatingvoltages.

Fig.6.22 Simplifieddiagramofaresistancepotentialdivider

Page 35: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 134

Fig. 6.22 shows a simplified diagram of a resistance potential divider after taking into

considerationstheleadinconnectionastheinductanceandthestraycapacitanceaslumpedcapacitance. HereL

representstheloopinductanceofthelead-inconnectionforthehighvoltagearm.Thedamping

resistanceRdlimitsthetransientovershootinthecircuitformedbytestobject,L,R

d andC.Itsvaluehas

adecidedeffectontheperformanceofthedivider.Inordertoevaluatethevoltagetransformationofthe

divider,thelowvoltagearmvoltageV2resultingfromasquarewaveimpulseV

1onthehvsidemustbe

investigaged.ThevoltageV2

followscurve2inFig.6.23(a)incaseofaperiodicdampingandcurve2 in

Fig.6.23(b)incaseofsub-criticaldamping.Thetotalareabetweencurves1and2takinginto

considerationthepolarity,isdescribedastheresponsetime.

Withsubcriticaldamping,eventhoughtheresponsetimeissmaller,thedampingshouldnotbe very

small.Thisisbecauseanundesirableresonancemayoccurforacertainfrequencywithinthe

passingfrequencybandofthedivider.Acompromisemustthereforeberealisedbetweentheshortrise

timeandtherapidstabilizationofthemeasuringsystem.AccordingtoIECpublicationNo.60amaximum

overshootof3%isallowedforthefullimpulsewave,5%foranimpulsewavechoppedonthefrontat

timesshorterthan1microsec.Inordertofulfilltheserequirements,theresponsetimeofthedivider

mustnotexceed0.2microsec.forfullimpulsewaves4.2/50or4.2/5orimpulsewaveschoppedonthe

tail.Iftheimpulsewaveischoppedonthefrontattimeshorterthan1microsectheresponsetimemust

benotgreaterthan5%ofthetimetochopping.

Page 36: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 135

KlydonographorSurgeRecorder

Since lightningsurgesareinfrequentandrandominnature,itisnecessarytoinstalalargenumberof

recordingdevicestoobtainareasonableamountofdataregardingthesesurgesproducedontransmission lines

andotherequipments.Somefairlysimpledeviceshavebeendevelopedforthispurpose. Klydonograph is

one such device which makes use of the patterns known as Litchenberg figures which

areproducedonaphotographicfilmbysurfacecoronadischarges.

TheKlydonograph(Fig.6.24)consistsofaroundedelectroderestingupontheemulsionsideof

aphotographicfilmorplatewhichiskeptonthesmoothsurfaceofaninsulatingmaterialplatebacked

byaplateelectrode.Theminimumcriticalvoltagetoproduceafigureisabout2 kV and the maximum

voltagethatcanberecordedisabout20kV,asathighervoltagessparkoversoccurswhichspoilsthe

film.Thedevicecanbeusedwithapotentialdividertomeasurehighervoltagesandwitharesistance

shunttomeasureimpulsecurrent.

Locking ring

Keramot

cap

Plate electrode

Top plate connected to potential divider tapping

Electrodesupport

Removable plug

Adjustable holder

Compression spring

Stainlesssteel hemispherical electrode

Photographic film (emulsion side)

Keramot backing plate

Locking ring

Electrodesupport

Baseplate connected to earth

Positioning device Fig. 6.24 Kiydonograph

Page 37: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 136

There are characteristic differences between the figures for positive and negative voltages.

However,foreitherpolaritytheradiusofthefigure(ifitissymmetrical)orthemaximumdistancefrom

thecentreofthefiguretoitsoutsideedge(ifitisunsymmetrical)isafunctiononlyoftheapplied

voltage.Theoscillatoryvoltagesproducesuperimposedeffectsforeachpartofthewave.Thusitis possibleto

knowwhetherthewaveisunidirectionaloroscillatory.Sincethesizeofthefigurefor

positivepolarityislarger,itispreferabletousepositivepolarityfigures.Thisisparticularlydesirable

incaseofmeasurementofsurgesontransmissionlinesorothersuchequipmentwhichareordinarily

operatingona.c.voltageandthealternatingvoltagegivesablackbandalongthecentreofthefilm

causedbysuperpositionofpositiveandnegativefiguresproducedoneachhalfcycle.Foreachsurge

voltageitispossibletoobtainbothpositiveandnegativepolarityfiguresbyconnectingpairsofelectrodes

inparallel,onepairwithahighvoltagepointandanearthedplateandtheotherpairwithahighvoltage

plateandanearthedpoint.

Klydonographbeingasimpleandinexpensivedevice,alargenumberofelementscanbeused

formeasurement.Ithasbeenusedinthepastquiteextensivelyforprovidingstatisticaldataonmagnitude,

polarityandfrequencyofvoltagesurgesontransmissionlineseventhoughitsaccuracyofmeasurement

isonlyoftheorderof25percent.

Example 1.Determinethebreakdownvoltageforairgapsof2mmand15mmlengthsunderuni-

formfieldandstandardatmosphericconditions.Also,determinethevoltageiftheatmosphericpres-

sureis750mmHgandtemperature35°C.

Solution:Accordingtoempiricalformulawhichholdsgoodatstandardatmosphericconditions

Vb

=26.22S+6.08 S

whereSisthegaplengthincms.

(i)When S=0.2cm

V=26.22×0.2+6.08 0.2 =7.56kV Ans.

(ii)When S=4.5cms

Vb

=26.22×4.5+6.08 4.5 =36.33+7.446=45.776kV Ans.

Theairdensitycorrectionfactor

= 5.92b 273+t

Page 38: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 137

I

=

=5.92×75

=0.9545 Ans. 273+35

Therefore,voltagefor2mmgapwillbe7.216kVandfor15mmgapitwillbe44.78kV.

Example 3.Anelectrostaticvoltmeterhastwoparallelplates.Themovableplateis10cmindiam-

eter.With10kVbetweentheplatesthepullis5×10–3N.Determinethechangeincapacitancefora movementof

1mmofmovableplate.

Solution: 5×10–3=1.

2

1

36π ×10−9×

18 25π×10−4

d2

or d=26.35mm.

Therefore,changeincapacitance

103

×10−9×25

×10

−4F 1 −

1

36 π H26.35

27.35K =0.0959pF Ans.

Example5.Apeakreadingvoltmeterisrequiredtomeasurevoltageupto150kV.Thepeakvoltmeter usesanRCcircuit,amicroammeterandacapacitancepotentialdivider.Thepotentialdividerhasa

ratioof1200:1andthemicrometercanreadupto10µA.DeterminethevalueofRandCifthetime constantofRCcircuitis8secs.

Solution:Thevoltageacrossthelowvoltagearmofthepotentialdivider,

150×1000

1200 =125volts.

Thesamevoltageappearsacrosstheresistance.

Therefore R=V

= I

125

10×10−6

=14.5MΩ

SincethetimeconstantoftheRCcircuitis8sec.

C=-------8

14.5×106

=0.64µF Ans.

1.Whataretherequirementsofaspheregapformeasurementofhighvoltages?Discussthedisadvantages

ofspheregapformeasurements.

2.Explainclearlytheprocedureformeasurementof(i)impulse;(ii)a.c.highvoltagesusingspheregap.

3.Discusstheeffectof(i)nearbyearthedobjects(ii)humidityand(iii)dustparticlesonthemeasurements

Page 39: High Voltage Engineering Voltage Engineering 10EE73 Dept. Of EEE, SJBIT Page 100 UNIT- 6 MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation

High Voltage Engineering 10EE73

Dept. Of EEE, SJBIT Page 138

usingspheregaps.

4.Describetheconstructionofauniformfieldsparkgapanddiscussitsadvantagesanddisadvantagesfor

highvoltagemeasurements.

5. Explainwithneatdiagramhowrodgapscanbeusedformeasurementofhighvoltages. Compareits

performancewithaspheregap.

6.

ExplainwithneatdiagramtheprincipleofoperationofanElectrostaticVoltmeter.Discussitsadvan

tages andlimitationsforhighvoltagemeasurements.

7.

Drawaneatschematicdiagramofageneratingvoltmeterandexplainitsprincipleofoperation.Disc

uss itsapplicationandlimitations.

8. DrawChubb-

FortescueCircuitformeasurementofpeakvalueofa.c.voltagesdiscussitsadvantagesover

othermethods.

9.

Discusstheproblemsassociatedwithpeakvoltmetercircuitsusingpassiveelements.Drawcircuit

devel- opedbyRabusandexplainhowthiscircuitovercomestheseproblems.

10.

Whataretheproblemsassociatedwithmeasurementofveryhighimpulsevoltages?Explainhowth

ese canbetakencareofduringmeasurements.

11.Discuss and compare the performance of (i) resistance (ii) capacitance potential dividers for

measurement ofimpulsevoltages.

12.Discussvariousresistancepotentialdividersandcomparetheirperformanceofmeasurementofimpul

se voltages.

13.Discussvariouscapacitance,potentialdividersandcomparetheirperformanceformeasurementofim

- pulsevoltages.

14.Drawasimplifiedequivalentcircuitofaresistancepotentialdivideranddiscussitsstepresponse.

15. Discussvariousmethodsofmeasuringhighd.c.anda.c.currents.

16. Discussvariousmethodsofmeasuringhighimpulsecurrents.

17.

WhatisRogowskiCoil?Explainwithaneatdiagramitsprincipleofoperationformeasurementofhi