49
Highlights of Highlights of NuFact02 NuFact02 Bruno Autin, CERN Bruno Autin, CERN

Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling beams Conclusions

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Highlights of NuFact02Highlights of NuFact02Bruno Autin, CERNBruno Autin, CERN

Page 2: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

OutlineOutline

• Introduction

• Particle production

• Transverse and longitudinal collection

• Cooling

• beams

• Conclusions

Page 3: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions
Page 4: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

• Four working groups:(1)

Machine - B.Autin (CERN), R.Fernow (BNL), S.Machida (KEK)

(2) Neutrino oscillations - D.Harris (FNAL), S.King (Soton), O.Yasuda (TMU)

(3) Non-oscillation - A.Kataev (Moscow), S.Kumano neutrino physics (SAGA), K.McFarland (Rochester)

(4) Non-neutrino science - K.Jungmann (KVI), J-M.Poutissou (TRIUMF), K.Yoshimura (KEK)

• 49 Plenary talks, 106 parallel talks

• ~85 hours of talks!

Page 5: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Banquet in Flight Gallery, Science Museum with

• Lord Sainsbury – Minister of Science

• Sir Richard Sykes – Rector of IC

• Prof Ian Halliday – CEO PPARC

Page 6: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

General TrendsGeneral Trends

• Cost reduction

• Reliability

• Robustness

• Upgradability

Page 7: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Proton DriversProton Drivers

•2.2 to 50 GeV

• Some multiple purpose: PP + other areas

• Superbeams, -beams, F

• 1-4 MW

• a few ns bunch length

Page 8: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

SPLSPL

SPL

Wyss

Page 9: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

30 GeV synchrotron30 GeV synchrotron

Page 10: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

CostsCostsPDAC RCS

MCHF MCHFSPL 350 Linac 110

Accumulator 63 Booster RCS 88Compressor 50 Driver 233TOTAL 463 TOTAL 431

Schönauer

SPL: driver for a conventional superbeam to Frejusdriver for -beamsR&D already started with CEA

RCS: replacement for PS

Page 11: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

JHF AcceleratorsJHF Accelerators

Mori

Page 12: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Others…..

Rees

Machine Power Proton/Pulse Repetition Rate Protons/SSC year Current AGS 0.17 MW 6 1013 0.625 Hz 3.75 1020

AGS Proton Driver 1 MW 1 1014 2.5 Hz 2.5 1021

Japan Hadron Facility 0.77 MW 3.3 1014 0.29 Hz 9.6 1020

Super AGS Prot Driver 4 MW 2 1014 5.0 Hz 1.0 1022

• ISIS upgrade:

New ring, R=78m; ISIS R=26m

3 GeV at 50Hz – 1MW neutron spallation source

8 GeV at 50/3 Hz – 1MW R&D for a Neutrino Factory

Same RF, modified magnet P/S for 8 GeV

Possibility of developing to 4MW

Page 13: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Particle ProductionParticle Production

The Hadron Production Experiment

2-15 GeV, East Hall, CERN

Ellis

Page 14: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Main Injector Particle Production Experiment

5-120 GeV, FNAL, 2002-2004

Raja

Page 15: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Proposed rotating tantalum target ring

TargetryTargetry

Flying

• Liquid mercury jet

• Rotating solid target

Stationary

• Graphite

• Invar or super-invar

• Tantalum beads

Densham

Sievers

Page 16: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Liquid Hg Tests at BNLLiquid Hg Tests at BNL

• Proton power 16kW in 100ns

• Spot size 3.2 x 1.6 mm

• Hg jet - 1cm diameter; 3m/s

Kirk

0.0ms 0.5ms 1.2ms 1.4ms 2.0ms 3.0ms

Dispersal velocity ~10m/s, delay ~40s

Page 17: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Liquid Hg TestsLiquid Hg TestsTests with a 20T magnet at Grenoble.

B = 0T

1cm

Mercury jet (v=15 m/s)

B = 18T

Fabich/Lettry

Jet deflection Reduction in velocity

Page 18: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Pion Capture: SolenoidsPion Capture: Solenoids

Kirk

20T 1.25T

Page 19: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Pion Capture: HornPion Capture: Horn

Gilardoni

Inner conductor

Under mechanical and thermal tests

Page 20: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Phase RotationPhase RotationStudy 2

Many ideas:

• Induction linac

• Drift and bunching

• Phase rotation in an FFAG

• Bunch to bucket at 88MHz

• Magnetic compression in AG chicane

• Weak focussing FFAG chicane

Neuffer

Sato

Hanke

Pasternak

Rees/Harold

Page 21: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Phase RotationPhase Rotation

Neuffer

Page 22: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Neuffer

beam Drift Buncher

Rotator

Cooler

Overview of transport

Drift (80m) Buncher (60m) 380230 MHz, V 6.5 (z/L)

MV/m E Rotator(30m) 230220 MHz, V = 10

MV/m Cooler (100m) ~220 MHz

Page 23: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Longitudinal MotionLongitudinal Motion

Drift Bunch

E rotate Cool

Page 24: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Cost SavingsCost Savings

High Frequency -E Rotation replaces Study 2: Decay length (20m, 5M$) Induction Linacs + minicool (350m, 320M$) Buncher (50m, 70M$)

Replaces with: Drift (100m) Buncher (60m) Rf Rotator (10m)

Rf cost =30M$; magnet cost =40M$ Conv. Fac. 10M$ Misc. 10M$ ……

Back of the envelope:

400M$ 100M$

Page 25: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Muon Front End ChicaneMuon Front End Chicane Muon Front Ends Decay Region .2 GeV

44 MHz Rotation .2 GeV

44 MHz Cooling .2 GeV

44 MHz Accel’n .28 GeV

88 MHz Cooling & Acceleration .4 GeV 286.0 m

Decay Region .19 GeV

88 MHz Rotation .19 GeV

88 Mhz Acceleration .4 GeV 132.7 m

Decay Region .19 GeV

Reverse Rotation .19 GeV

88 MHz Acceleration .4 GeV 128.0 m

Pion-muon decay channel

88 MHz muon linac

Rees/Harold

Page 26: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Chicane magnetChicane magnet

Page 27: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

CoolingCooling

MuCool• 800 MHz cavities + solenoid: MV/m + dark current

• Pill box cavities

• 200 MHz cavities (LBNL; CERN and Cornell)

• LH2 absorbers

• Test area under construction at Fermilab (Lab G)

Page 28: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Pill box cavityPill box cavityD. LiD. Li

Development of 805 MHz Pillbox cavity High shunt impedance and high acceleration gradient at order of

30 MV/m Z0 = 38 M/m Allow for testing of Be windows with different thickness, coatings

and as well as other windows Study RF cavity operation issues under the influence of strong

magnetic fields in solenoid and gradient modes

The cavity: design and status The 805 MHz pillbox cavity design should allow for testing of

different windows demountable windows to cover the beam irises (five Be windows, four Cu windows: two of them with Ti coatings on one side)

Page 29: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Pill box cavityPill box cavityThe cavity was fabricated at University of Mississippi, brazed at Alpha Braze Comp.

Page 30: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Preliminary cavity design with water cooling channels and tuningmechanism. The cavity design accommodates either Be windows or a grid design.

201 MHz cavity201 MHz cavity

Page 31: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

AG coolingAG coolingC. Johnstone, H. SchonauerC. Johnstone, H. Schonauer

Muons (180MeV/c to 245MeV/c) Magnetic Quadrupoles (k=2.88) Liquid H Absorber: -dE/dx = -12MeV/35cm Cavities: Energy gain +12MeV/Cell to compensate the

loss in the absorber

K. Makino Emittance Exchange Workshop at LBNL, October 3-19, 2001

4m Cell

Page 32: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Full simulationFull simulation

K. Makino Emittance Exchange Workshop at LBNL, October 3-19, 2001

Page 33: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Ring CoolersRing Coolers• Main change: Rings!

Balbekov

Motivation: shorterlongitudinal

cooling

Page 34: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Cline/Garren

AG Ring RFOFO

Palmer

Page 35: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

RF windows

Heat in absorber

Injection kicker

Palmer

Merit = 6 x trans.

Page 36: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions
Page 37: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

MICEMICE

• Collaboration of 40 institutes from Europe, Japan, US

• LOI recently reviewed by international panel at RAL

• Enthusiastically supported MICE

• Asked for a proposal by end 2002

• Construction: 2002-2004

• First beam: 2004/5

Edgecock

Page 38: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

RecirculatingLinearAcc.RecirculatingLinearAcc.

• Other possibilities……Bogacz

Page 39: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

FFAGFFAG

krB ~

• Expected to be cost effective

• p150-450 MeV/c

• L = 4.5 eV.s

• T = 3 cm

• 0.3 /p

Johnstone/Machida/Mori/Neuffer

Page 40: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

VRCSVRCS• Fastest existing RCS: ISIS at 50Hz 20 ms

• Proposal: accelerate in 58s 4.3 kHz

• Do it 15 times a second• For 2 20 GeV , 20 180 GeV, 180 1600 GeV:

• Ring – 350m circumference

• RF – 200 MHz, 15 MV/m, possibly s/c

• Magnets – 100 laminations of thick grain oriented Si steel

• Eddy current losses: 45MW 24kW

• Skin depth: 94 microns

•Power supplies: 115 kV x 81 kA

•Copper heating: 600 + 800W

Summers

Page 41: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

-Beams-Beams

ISOL Target and ECR

Linac Cyclotron Storage Ring

PS SPS Decay ring/Buncher

SPLLindroos/Wenander/Zucchelli

Page 42: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

ebar source

6He

T½=0.81 s

Elab = 580 MeV

E/nucleon = 130 GeV

5 x 1013/s

e source

18Ne

T½=1.67 s

Elab = 930 MeV

E/nucleon = 130 GeV

1012/s

Page 43: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

• Single flavour

• Known intensity & energy spectrum

• Focussed

• Low energy

• Space charge problems

• Complementary to superbeams: CP and T violations

•Analyzed for CERN accelerators only

• R&D for ion sources

• Space charge problems

• Hadronic pollution

Page 44: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Huber

90% CL

JHF-HK = 4MW, 1000kT; 6 years , 2 years

NuFact-II = 5.3 x1020 useful /yr, 50kT; 4 years

Page 45: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Zucchelli

SB+BB = 400kT; Nufact = 2x40kT

(M. Mezzetto, NNN02)

Page 46: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

Comments……Comments……• Neutrino Factory is still the best

• We must continue with the R&D!

• Resources are scarce:Cannot do everything Must build complementary programmebased on physics

• Degeneracy: Better SB + large (water) detector thantwo NF detectors – SN, proton decay, etc

• Weighing difference proposals will be painful

• Delicate balance:keep growingprevent fragmentation

Harris/Mezzetto

Mezzetto

Harris

Page 47: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

ConclusionsConclusions• NuFact’02: very enjoyable and well organised

• Nice location (despite the weather)

• Good attendance

• Lots of new ideas

• NF is still the ultimate LBL neutrino oscillation facility

• Very important R&D continues

• Need a complementary oscillation programme

• NuFact’03……..

Page 48: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

ConclusionsConclusions

Page 49: Highlights of NuFact02 Bruno Autin, CERN. Outline Introduction Particle production Transverse and longitudinal collection Cooling  beams Conclusions

NuFact 03

5th International Workshop on Neutrino

Factories & Superbeams

Columbia University New York

5 – 11 June 2003