69
Histology and Embryology 1 www.dentalelle.com

Histology and Embryology

  • Upload
    daktari

  • View
    84

  • Download
    1

Embed Size (px)

DESCRIPTION

Histology and Embryology. General Histology. Cells Smallest structures, varies in size, shape and surface. Cells posses properties that permit: Excitability – nerve cells conduct an impulse Synthesis – aiding in the bodies function, such as glands - PowerPoint PPT Presentation

Citation preview

Page 1: Histology and Embryology

1

Histology and Embryology

www.dentalelle.com

Page 2: Histology and Embryology

2

General Histology

Cells Smallest structures, varies in size, shape and surface. Cells posses properties that permit:

Excitability – nerve cells conduct an impulse Synthesis – aiding in the bodies function, such as glands Membrane transport – nutrients are transported Reproduction – union of sperm and ovum can lead to the

formation of an offspring

Page 3: Histology and Embryology

3

Cell Junctions

Desmosomes – cell-to-cell attachments; between ameloblasts and cells of stratified squamous epithelium that lines the oral cavity.

Tight junctions – cells attach to each other by fusion of their cell membranes; adjacent odontoblasts form tight junctions that prevent substances in the pulp from passing into the dentin.

Gap junctions – channel that runs between cells for communication of cell electrical impulses and passage for molecules; present amount some odontoblasts, allowing to coordinate their activity.

Hemidesmosome – attachment of a cell to a noncellular surface; basal layer cells of stratified squamous epithelium attach to the basement membrane by hemidesmosomes; present in epithelial attachment of the tooth

Page 4: Histology and Embryology

4

The Cell

Page 5: Histology and Embryology

5

The Cell

Cells are surrounded by a cell membrane that separates them from the outside environment. 1. cytoplasm 2. organelles 3. inclusions 4. nucleus

Specialization A) differentiation – cells that recognize one another will group

together B) organization of chemicals – chemicals appear earlier in the

embryo. Endocrine substances are produced by one type of cell and can affect other types of cells

C) Cells tissues organs organ systems

Page 6: Histology and Embryology

6

Cell Membrane

Cell membrane A) Called a plasma membrane or plasmalemma;

selectively permeable because it controls passage of materials in and out of the cell. Uses active transport, passive transport, or facilitated diffusion.

Lipids and proteins are the major components (3:2 ratio of proteins)

Structure is trilaminar, with bipolar membrane and a central core of lipids between two layers of protein

Diffusion of small lipid-insoluble substances

Page 7: Histology and Embryology

7

Page 8: Histology and Embryology

8

Fluid Mosaic Model

Shown on the previous slideTrilaminar structure composted of two facing

layers of lipid molecules, into which larger globular proteins are inserted. Lipid bilayers consist mainly of phospholipid molecules;

hydrophilic ends face the outer and inner surfaces of the cell; the hydrophobic ends attract and face each other.

Globular proteins are integral proteins and peripheral proteins. Integral extend through the full width of the cell membrane and protrude and may have carbohydrate units attached to them. Peripheral are linked or attached to the cell membrane surface.

Page 9: Histology and Embryology

9

Cytoplasm

Translucent, aqueous, homogeneous gel enclosed in the cell by the cell membrane.

The cytoplasm has three major elements; the cytosol, organelles and inclusions.

All metabolic activities of the cell occur in the cytoplasm which include: Assimilation (digestion) Synthesis of substances such as proteins, proteoglycans, and

glycoproteins A transport medium in which all nutrients and metabolites are

carried from one organelle to another Presence of enzymes and electrolytes where specific metabolic

reactions take place (glycolysis)

Page 10: Histology and Embryology

10

Nucleus

In cell biology, the nucleus is a membrane-enclosed organelle found in eukaryotic cells. It contains most of the cell's genetic material, organized as multiple long linear DNA molecules in complex with a large variety of proteins, such as histones, to form chromosomes.

The genes within these chromosomes are the cell's nuclear genome. The function of the nucleus is to maintain the integrity of these genes and to control the activities of the cell by regulating gene expression — the nucleus is, therefore, the control center of the cell. The main structures making up the nucleus are the nuclear membrane, a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm, and the nucleoskeleton (which includes nuclear lamina), a mesh work within the nucleus that adds mechanical support, much like the cytoskeleton, which supports the cell as a whole.

Page 11: Histology and Embryology

11

Nucleus

Nuclear pores are required that regulate Nuclear transport of molecules across the envelope. The pores cross both nuclear membranes, providing a channel through which larger molecules must be actively transported by carrier proteins while allowing free movement of small molecules and ions. The interior of the nucleus does not contain any membrane-bound sub compartments.

The best-known of these is the nucleolus, which is mainly involved in the assembly of ribosomes. After being produced in the nucleolus, ribosomes are exported to the cytoplasm where they translate mRNA.

Page 12: Histology and Embryology

12

Synthesis Activities

Three types of RNA are necessary for protein synthesis: Messenger RNA (mRNA) – copies of short segments of

deoxyribonucleic acid (DNA) Contains all genetic information of proteins Must pass through the ribosomes attached to the

endoplasmic reticulum As it passes through the ribosomes, transfer RNA (tRNA)

adds the exact amino acid to the newly forming proteins Protein synthesis can also occur on polyribosomes

floating freely in the cytoplasm; proteins synthesized on the ribosomes attached to the ER are transported out of the cell

Page 13: Histology and Embryology

13

Page 14: Histology and Embryology

14

Inclusions

Inclusions are nonliving metabolic by-products found in the cytoplasm.

May appear as lipid droplets, carbohydrate accumulations, or engulfed foreign substances

Page 15: Histology and Embryology

15

Lysosomes

Intracellular digestion is carried out by organelles called lysosomes. There are several contexts in which cells need to carry out digestion. Include the recycling of cellular organelles and the breakdown of

viruses and other cellular invaders. Single-celled organisms use lysosomes to digest their food as they have no process for extracellular digestion. The pH within a lysosome is very acidic and the enzymes within work most effectively in this environment.

The components of a lysosome have evolved specific conformations that make them resistant to break down by the enzymes within the lysosome.

During phagocytosis, lysosomes fuse with engulfed substances to form a secondary vesicle; the vesicle may then remain in the cell as a residual body or discharged outside the cell

Page 16: Histology and Embryology

16

Golgi Complex

The Golgi apparatus receives protein and/or lipid-filled vesicles that bud from the ER. The Golgi apparatus contains enzymes that modify proteins and lipids. For example, it can add a chain of sugars to proteins and lipids, thereby making them glycoproteins and glycolipids, which are molecules found in the plasma membrane.

The vesicles that leave the Golgi apparatus move to other parts of the cell. Some vesicles proceed to the plasma membrane where they discharge their contents. Because this is secretion, note that the Golgi apparatus is involved in processing, packaging, and secretion. Other vesicles that leave the Golgi apparatus are lysosomes.

The Golgi complex is the storage site for newly synthesized proteins and of course packaging and transporting many cell products. Also produces large carbohydrate molecules and lysosomes.

Page 17: Histology and Embryology

17

Mitochondria

Although the size and shape of mitochondria (sing., mitochondrion) can vary, all are bounded by a double membrane. The inner membrane is folded to form little shelves called cristae, which project into the matrix, an inner space filled with a gel-like fluid.

Mitochondria are the site of ATP (adenosine triphosphate) production involving complex metabolic pathways. As you know, ATP molecules are the common carrier of energy in cells. A shorthand way to indicate the chemical transformation that involves mitochondria.

Page 18: Histology and Embryology

18

Mitochondria Continued

Mitochondria are often called the powerhouse of the cell: Just as a powerhouse burns fuel to produce electricity, the mitochondria convert the chemical energy of carbohydrate molecules into the chemical energy of ATP molecules.

In the process, mitochondria use up oxygen and give off carbon dioxide and water. The oxygen you breathe in enters cells and then mitochondria; the carbon dioxide you breathe out is released by mitochondria. Because oxygen is used up and carbon dioxide is released, we say that mitochondria carry on cellular respiration.

Page 19: Histology and Embryology

19

Endoplasmic Reticulum

The endoplasmic reticulum (ER), a complicated system of membranous channels and flattened vesicles, is physically continuous with the outer membrane of the nuclear envelope. Rough ER is studded with ribosomes on the side of the membrane that faces the cytoplasm. Here proteins are synthesized and enter the ER interior where processing and modification begin. Some of these proteins are incorporated into membrane, and some are for export. Smooth ER, which is continuous with rough ER, does not have attached ribosomes.

Smooth ER synthesizes the phospholipids that occur in membranes and has various other functions, depending on the particular cell. In the testes, it produces testosterone, and in the liver it helps detoxify drugs. Regardless of any specialized function, ER also forms vesicles in which large molecules are transported to other parts of the cell. Often these vesicles are on their way to the plasma membrane or the Golgi apparatus.

Page 20: Histology and Embryology

20

Filaments and Tubules

Associated with contractility in cells – thread-like structures about 7-10nm thick

Microfilaments act as a support system for the cell cytoskeleton

Bundles of microfilaments form tonofibrils and become part of the attachment apparatus between cells (desmosomes)

Page 21: Histology and Embryology

21

Microtubules

Delicate tubes, 20-27 nm wide, found in cells that are undergoing mitosis and alterations in cell shape

They have an internal support function, especially in long cellular processes such as neurites or odontoblastic processes

They have the capacity to direct intracellular transport through the cytoplasm

Page 22: Histology and Embryology

22

Centrioles

Cylindrical structures composed of microtubule like components

Centrioles function in cell replication and the formation of cellular extensions

Page 23: Histology and Embryology

23

Internal Environment and Homeostasis

Extracellular fluid Circulates outside and between cells

Intracellular fluid Fluid located inside the cells of the body

Homeostasis The delicate balance maintained between the two

fluid compositions

Page 24: Histology and Embryology

24

Transport through the Cell Membrane

Diffusion - is the random movement of simple atoms or molecules from area of higher concentration to an area of lower concentration until they are equally distributed. To illustrate diffusion, imagine putting a tablet of dye into water . The water eventually takes on the color of the dye as the dye molecules diffuse.

The chemical and physical properties of the plasma membrane allow only a few types of molecules to enter and exit a cell by simple diffusion. Lipid-soluble molecules such as alcohols can diffuse through the membrane because lipids are the membrane’s main structural components. Gases can also diffuse through the lipid bilayer; this is the mechanism by which oxygen enters cells and carbon dioxide exits cells. For example, consider the movement of oxygen from the lungs to the bloodstream.

Page 25: Histology and Embryology

25

Transport Continued

When you inhale, oxygen fills the tiny air sacs, or alveoli, within your lungs. Neighboring lung capillaries contain red blood cells with a very low oxygen concentration. Oxygen diffuses from the area of highest concentration to the area of lowest concentration: first through alveolar cells, then lung capillary cells, and finally into the red blood cells.

When atoms or molecules diffuse from areas of higher to lower concentration across plasma membranes, no cellular energy is involved. Instead, kinetic or thermal energy of matter is the energy source for diffusion.

Page 26: Histology and Embryology

26

Osmosis

Osmosis is the diffusion of water across a plasma membrane. Osmosis occurs whenever an unequal concentration of water exists on either side of a selectively permeable membrane. (Recall that a selectively permeable membrane allows water to pass freely, but not most dissolved substances.) In a solution, water is more concentrated when it contains fewer dissolved substances, or solutes, (and thus is closest to pure water).

Water is less concentrated as solute concentration increases. Osmotic pressure is the force exerted on a selectively permeable membrane because water has moved from the area of higher water concentration to the area of lower water

concentration(higher concentration of solute).

Page 27: Histology and Embryology

27

Osmosis Continued

Tonicity is the degree to which a solution’s concentration of solute-versus-water causes water to move into or out of cells. Normally, body fluids are isotonic to cells that is, there is an equal concentration of solutes (dissolved substances) and solvent (water) on both sides of the plasma membrane, and cells maintain their usual size and shape.

Medically administered intravenous solutions usually have this tonicity. Body fluids which are not isotonic to body cells are the result of dehydration or water intoxication. Solutions (solute plus solvent) that cause cells to swell or even to burst due to an intake of water are said to be hypotonic solutions. If red blood cells are placed in a hypotonic solution, which has a higher concentration of water (lower concentration of solute) than do the cells, water enters the cells and they swell.

Page 28: Histology and Embryology

28

Continued

The term lysis refers to disrupted cells: hemolysis, then, is disrupted red blood cells. Solutions that cause cells to shrink or to shrivel due to a loss of water are said to be hypertonic solutions.

If red blood cells are placed in a hypertonic solution, which has a lower concentration of water (higher concentration of solute) than do the cells, water leaves the cells and they shrink.

Page 29: Histology and Embryology

29

Page 30: Histology and Embryology

30

Active Transport

Process used by the cell when large quantities of a substance are needed inside the cell and only a small amount of the substance is present in the extracellular fluid.

Pumps the substance against its concentration gradient.ATPSodium pump; important for the transmission of nerve

impulsesAlmost all monosaccharides are actively transported into

the body. Phagocytosis – movement of a solid particle into the cell Pinocytosis – movement of fluid into a cell, the cell invaginates

around fluid

Page 31: Histology and Embryology

31

Page 32: Histology and Embryology

32

The Cell Cycle

Page 33: Histology and Embryology

33

Page 34: Histology and Embryology

34

Cell Replication - Mitosis

Interphase:

During interphase, the cell carries on its regular activities, and it also gets ready to divide if it is going to complete the cell cycle. For these cells, interphase has three stages, called G1 phase, S phase, and G2 phase.

G1 Phase - it is best to think of G as standing for “growth.” Protein synthesis is very much a part of these growth phases. During G1, a cell doubles its organelles (such as mitochondria and ribosomes) and accumulates materials that will be used for DNA synthesis.

Page 35: Histology and Embryology

35

Continued

S Phase Following G1, the cell enters the S (for “synthesis”) phase. During the S phase, DNA replication occurs. At the beginning of the S phase, each chromosome is composed of one DNA double helix, which is equal to a chromatid. At the end of this phase, each chromosome has two identical DNA double helix molecules, and therefore is composed of two sister chromatids. Another way of expressing these events is to say that DNA replication has resulted in duplicated chromosomes.

G2 Phase During this phase, the cell synthesizes proteins that will assist cell division, such as the protein found in microtubules. The role of microtubules in cell division is described later in this section.

Page 36: Histology and Embryology

36

Prophase

Several events occur during prophase that visibly indicate the cell is about to divide. The two pairs of centrioles outside the nucleus begin moving away from each other toward opposite ends of the nucleus. Spindle fibers appear between the separating centriole pairs, the nuclear envelope begins to fragment, and the nucleolus begins to disappear.

The chromosomes are now fully visible. Spindle fibers attach to the centromeres as the chromosomes continue to shorten and thicken. During prophase, chromosomes are randomly placed in the nucleus.

Page 37: Histology and Embryology

37

Prophase Continued

At the end of prophase, a cell has a fully formed spindle. A spindle has poles, asters, and fibers. The asters are arrays of short microtubules that radiate from the poles and the fibers are bundles of microtubules that stretch between the poles. (A spindle resembles a lopsided bicycle wheel; the asters are the “spokes.”) Centrioles are located in centrosomes, at opposite poles of the cell. Centrosomes are believed to organize the spindle.

Page 38: Histology and Embryology

38

Metaphase

During metaphase, the nuclear envelope is fragmented, and the spindle occupies the region formerly occupied by the nucleus.

The paired chromosomes are now at the equator (center) of the spindle. Metaphase is characterized by a fully formed spindle, and the chromosomes, each with two sister chromatids, are aligned at the equator

Page 39: Histology and Embryology

39

Anaphase

At the start of anaphase, the sister chromatids separate. Once separated, the chromatids are called chromosomes.

Separation of the sister chromatids ensures that each cell receives a copy of each type of chromosome and thereby has a full complement of genes.

During anaphase, the daughter chromosomes move to the poles of the spindle. Anaphase is characterized by the movement of chromosomes toward each pole and thus, to opposite sides of the cell.

Page 40: Histology and Embryology

40

Telophase

A nuclear membrane forms around each set of chromosomes

Centrioles replicate in each cell

Page 41: Histology and Embryology

41

Dental Tissues

Organelles play an important role in providing energy (mitochondria) which helps in calcifying dental tissues

Cell organelles help maintain tissues after the initial formation by the cell; fibroblasts contain increased numbers of cell organelles; these additional organelles aid fibroblasts in their synthesizing and secretory functions

Page 42: Histology and Embryology

42

Basic Tissues

Individual cells multiply and differentiate to perform specialized functions; groups of cells with similar characteristics and functions come together and form tissues.

Tissue components Cells Intercellular substance – product of living cells,

passageway Tissue Fluid – blood plasma that transports

Page 43: Histology and Embryology

43

Tissues in the Human Body

1. epithelial tissues (covering/lining); 2. connective tissues (support); 3. muscle tissues (movement); 4. nervous tissues (control).

Page 44: Histology and Embryology

44

Epithelial Tissue

Many epithelial tissues are classified according to their shape and the number of layers they possess:

Some terms used to describe epithelia include:a. simple = single layer of cells; b. stratified = many layers of cells; c. squamous = flattened cells;d. cuboidal = square-shaped cells;e. columnar = elongated cells (i.e. taller

than wide);

Page 45: Histology and Embryology

45

Types of Simple Epithelium

Simple squamous epithelium: a single layer of flattened cells; generally allows for easy passage (diffusion) of

substances; Locations:

1. lining air sacs of lungs, 2. lining capillaries, 3. lining body cavities,4. covering ventral organs;

Page 46: Histology and Embryology

46

Simple Cuboidal Epithelium

Simple cuboidal epithelium:• a single layer of square-shaped cells with large centrally

located nuclei;• Functions:

1. secretion 2. absorption;

Locations:1. lining kidney tubules, 2. lining ducts of glands, 3. covering surface of ovary;

Page 47: Histology and Embryology

47

Simple Columnar Epithelium

A single layer of elongated cells with basally located nuclei (near basement membrane);

1. protection, 2. absorption,3. secretion;

1. lining small intestine, 2. lining uterus;

Free Surface Modifications: 1. microvilli (increase surface area)2. goblet cells (secrete protective mucus);

Page 48: Histology and Embryology

48

Pseudostratified Columnar Epithelium

Pseudostratified columnar epithelium:  a single layer of elongated cells with scattered nuclei (i.e. look stratified but are not); all cells touch the basement membrane

Functions:1. secretion,2. protection;

Locations: 1. lining trachea, 2. lining fallopian tube;

Free surface modifications:1. cilia (trap debris and aid in passage of mucus up and out of

airway);2. goblet cells (produce mucus which coats cilia and helps trap

debris).

Page 49: Histology and Embryology

49

Stratified Epithelium

Stratified squamous epithelium: many layers of flattened cells;

Function = protection;Locations:

Non-keratinized: 1. lining mouth, 2. lining throat,

Keratinized – epidermis of the skin

Page 50: Histology and Embryology

50

Stratified Cuboidal Epithelium

Stratified Cuboidal epithelium: 2-3 layers of cuboidal cells.

Locations1. mammary glands2. sweat glands3. salivary glands4. pancreas

Page 51: Histology and Embryology

51

Stratified Columnar Epithelium

Stratified columnar epithelium: 2-3 layers of elongated cells

Locations1. vas deferens2. part of male urethra

Transitional epithelium: many layers of cells that change shape in response to tension; Function = distensibility (i.e. stretches easily to allow urine to fill

bladder); Location = lining urinary bladder and ureters.

Page 52: Histology and Embryology

52

Glandular Epithelium

 Glandular Epitheliuma. usually simple cuboidal columnar ET;b. Function = secretion;c. two major types:

Exocrine glands secrete products into a duct, which opens onto:

an external surface (i.e sweat gland) or an internal space/lumen (i.e. gastric gland);

Page 53: Histology and Embryology

53

Glandular Epithelium Continues

Endocrine glands secrete hormones into the blood.  d. Exocrine glands structure varies tremendously

Single cells (unicellular) – goblet cellsMany cells (multicellular)

Simple – unbranched Compound – branched Tubular – tube-like Alveolar – sac-like

e. Exocrine glandular secretions are classified according to whether they consist of cellular products or portions of glandular cells:

Page 54: Histology and Embryology

54

Continued

Three types of secretions. Merocrine: secrete fluid through cell

membranes into a duct with no loss of glandular cells. Example = salivary glands.

Apocrine: lose small portion of cells with secretion. Example = mammary glands;

Holocrine: release entire cells into secretion. Example = sebaceous glands in skin (oil).

Page 55: Histology and Embryology

55

Connective Tissue

Ground Substance:a. amorphous material that fills the

space between cells and fibers;b. Functions as a molecular "sieve"

through which nutrients and gases can diffuse between cells and blood capillaries.

Page 56: Histology and Embryology

56

Major Cell Types

Major Cell Types:1. fixed cell in each CT type: maintains

constant numbersa. fibroblasts in CT properb. osteocyte in bone, c. chondrocyte in cartilage.d. blast cells = undifferentiated cells

that secrete matrix; fibroblast in CT proper, chondroblast in cartilage; osteoblast in bone;

Page 57: Histology and Embryology

57

Wandering Cells

wandering cells; are not always there a. migrating white blood cells that

respond to tissue damage (i.e. inflammation) ; 2 types: mast cells: Secrete heparin to prevent excessive

blood clotting Secrete histamine to promote inflammation

macrophages or phagocytes: See Fig 5.14, page 142.

Eat foreign material

Page 58: Histology and Embryology

58

Connective Tissues

Connective Tissue Fibers = 3 types:  1. Collagen fibers are composed of the

protein collagen.a. provide high tensile strength to matrix; b. stain pink.

2. Elastic fibers are composed of the protein elastin.

a. provide rubbery resiliency to matrix; b. stain purple;c. found in skin, lungs, and blood vessels.

Page 59: Histology and Embryology

59

Continued

3. Reticular fibers are fine collagenous fibers.

a. form delicate networks; b. found in basement membranes;c. stain purple.

Page 60: Histology and Embryology

60

Categories of Connective Tissues

Embryonic CT = mesenchyme: from mesoderm  a. Location = embryo;b. Function = gives rise to all other types of

CT;

2. Connective Tissue Proper – All CT with a semi-fluid ground substance a. Loose Areolar CT:

• gel-like matrix with fibroblasts, macrophages, mast cells and collagen and elastic fibers;

• Location = beneath epithelium, covering ventral organs;• Functions = diffusion of nutrients and gases; wraps & cushions

organs.

Page 61: Histology and Embryology

61

Continued

Connective Tissue Properb. Adipose Tissue: closely packed

adipocytes (fat-cells) with nuclei pushed to one side within matrix (resemble signet rings);Location = under skin (as subcutaneous

layer), around kidneys and eyeballs, breasts;

Functions = energy store, insulation, protection;

Page 62: Histology and Embryology

62

Continued

Reticular CT: network of reticular fibers within loose ground substance and

reticulocytes. Location = basement membranes and lymphatic organs (i.e. lymph nodes, thymus, spleen); Function = support;

Dense Regular CT (White Fibrous CT): primarily collagen fibers (pink) with few fibroblasts (you can only see nuclei!);

Location = tendons, ligaments; Functions = attachment, tensile strength; Poor blood supply = slow to no healing;

Dense Irregular CT: primarily collagen fibers randomly arranged; Location = dermis of skin, heart valves; Function = provides tensile strength;

 Elastic CT: primarily elastin fibers (purple); Location = lung tissue, wall of aorta; Function = durability with stretch;

Page 63: Histology and Embryology

63

Special Connective Tissue

Hyaline cartilage: amorphous (chondroitin and glucosamine) matrix that surrounds cells = chondrocytes (within lacunae); Locations = embryonic skeleton, costal cartilages, cartilage of the nose, trachea, and larynx; Function = support; Avascular = no healing.

Elastic cartilage: same as above plus elastic fibers (purple); Locations = external ear, epiglottis; Functions = maintenance of shape plus flexibility;

Fibrocartilage: less firm than above; Locations = intervertebral discs, pubic symphysis; Functions = tensile strength plus shock absorber;

Page 64: Histology and Embryology

64

Continued

Bone: hard, calcified matrix ([Ca3(PO4)2.(OH)2] =

rigidity), with collagen fibers (tensile strength) and cells = osteocytes (within lacunae); Location = bones of the skeleton; Functions = protection, support, movement, calcium store and hematopoiesis; Highly vascular = fast healing;

Blood: red cells (erythrocytes), white cells (leukocytes), and platelets (thrombocytes) in a fluid matrix called plasma; Location = within heart and blood vessels; Function = transport of gases, nutrients, wastes.

Page 65: Histology and Embryology

65

Types of Muscle Tissue

1. Skeletal Muscle Tissue a. Structure: long thin cells (fibers) with many nuclei;

alternating areas of light & dark (striations); Location: attached to bones; Function: move bones of skeleton; Control: voluntary = conscious.

2. Cardiac Muscle Tissue a. Structure: network of cells with one centrally located

nucleus; intercalated discs (where 2 cells meet); striations; Location: heart; Function: to pump blood from heart -----> lungs; to pump blood from heart -----> body; Control: involuntary = unconscious.

Page 66: Histology and Embryology

66

Continued

3. Smooth Muscle Tissue a. Structure: spindle-shaped cells with one

centrally located nucleus; no striations; Location: walls of hollow visceral organs; walls of blood vessels; attached to hair follicles in the dermis Function: movement of food through digestive tract; vasoconstriction; Control: involuntary = unconscious.

Page 67: Histology and Embryology

67

Nerve Tissue

1. Primary cells = neurons which respond to changes in their surroundings (stimuli);

2. neurons are surrounded by neuroglia (supporting cells);

 B. Locations: Brain, Spinal Cord, NervesC. Function: Coordination or integration of

body parts (i.e. to transmit signals from body parts to brain and from brain back to body parts); No reproduction of neurons, only neuroglia can divide.

Page 68: Histology and Embryology

68

Epithelial Membranes

DEFINITION: An epithelial membrane is a continuous multicellular sheet composed of at least two primary types of tissue: an epithelium bound to a discrete underlying CT tissue.

B. Three Common Types:1. Cutaneous Membrane:a. skin; consists of keratinized stratified squamous ET firmly

attached to a thick layer of dense irregular CT.

2. Mucous Membranes (mucosae): a. line body cavities that open to the outside; b. include lining of digestive, respiratory and urinary tract; c. are "wet" or moist membranes (through secretions of mucus); d. consist of a layer of epithelium (varies depending upon location)

firmly attached to a layer of loose areolar CT.

Page 69: Histology and Embryology

69

Three Common Types

Serous Membranes (serosae): a. are found in closed ventral body cavities;b. consist of two layers with a potential space (cavity)

between them: visceral membrane surrounds an organ; parietal membrane lines a body cavity;

c. secrete a thin watery fluid called serous fluid into the cavity between the membranes; function = lubrication;

d. each membrane consists of a thin layer of simple squamous ET resting on a thin layer of areolar (loose) CT;

e. are named for the organs that occupy each cavity: pleural = lungs; pericardial = heart; peritoneal = abdominal organs.