71
History of technology How did we go from 100W to 10,000 W?

History of technology How did we go from 100W to 10,000 W?

  • Upload
    madra

  • View
    19

  • Download
    0

Embed Size (px)

DESCRIPTION

History of technology How did we go from 100W to 10,000 W?. How did energy use change between Medieval times and present day?. ?. 200 W 1500 W 4500 W 10,000 W. From V. Smil. Two radical jumps in energy use over history: - PowerPoint PPT Presentation

Citation preview

Page 1: History of technology How did we go from 100W to 10,000 W?

History of technology

How did we go from 100W to 10,000 W?

Page 2: History of technology How did we go from 100W to 10,000 W?

From V. Smil

200 W 1500 W 4500 W 10,000 W

How did energy use change between Medieval times and present day?

?

Page 3: History of technology How did we go from 100W to 10,000 W?

From V. Smil

200 W 1500 W 4500 W 10,000 W

Two radical jumps in energy use over history: rise in production (19th century) and transportation (20th century)

Page 4: History of technology How did we go from 100W to 10,000 W?

In earliest human history the only “engines” were people

Maize farmer, somewhere in Africa, 2007 Source: CIMMYT

Page 5: History of technology How did we go from 100W to 10,000 W?

In earliest human history the only “engines” were people

Ploughing by hand, Uganda

Page 6: History of technology How did we go from 100W to 10,000 W?

Diderot & d`Alembert eds, Encyclopédie méthodique. Paris 1763-1777 & 1783-87.

In most of the world, people quickly adopted more powerful “bio-engines”

Page 7: History of technology How did we go from 100W to 10,000 W?

W.H. Pyne, Microcosm or a pictoresque delineation of the arts, agriculture and manufactures of Great Britain … London 1806.

In most of the world, people quickly adopted more powerful “bio-engines”: and increased power

Page 8: History of technology How did we go from 100W to 10,000 W?

Horse drawn plough, northern France, likely 1940s. G.W. Hales; Hutton Archives

Horse engine-plough still in use up through the 1940s

Page 9: History of technology How did we go from 100W to 10,000 W?

Wheat harvest, Hebei Province, China, 2007 (source: www.powerhousemuseum.com)

Harvesting by hand is tedious and slow

Page 10: History of technology How did we go from 100W to 10,000 W?

Horse drawn combine, likely 1910s-20s. Source: FSK Agricultural Photographs

“Bio-engines” and some technology make harvesting much more efficient.

27 horsepower! (or perhaps horse-+mule-power)

Page 11: History of technology How did we go from 100W to 10,000 W?

Horse-drawn combine, Almira, WA, 1911. W.C. Alexander. Source: U. Wash. library

“Bio-engines” and some technology make harvesting much more efficient.

~27 horsepower may be practical upper limit

Page 12: History of technology How did we go from 100W to 10,000 W?

Ploughing with camels, Egypt, early 1900s

Both photos from “messybeast.com”, public domain

“Bio-engines” must be suitable for location and task

Ploughing with oxen, Sussex Downs, England, 1902. Oxen are preferred in heavy soil because they have more “pulling power” (what we’d now call “torque”)

Page 13: History of technology How did we go from 100W to 10,000 W?

Rotation: animal powered wheels have a long history

Grindstone, China from the encyclopedia “Tiangong Kaiwu”, by Song Yingxing (1637)

Clay millers, W.H. Pyne, London (1806)

First use: grinding

Page 14: History of technology How did we go from 100W to 10,000 W?

Human powered wheels persisted into the modern era

Japanese water pump, still used in 1950s

Lathe, late 1700s

Rotational motion is a fundamental industrial need …. Grinding is not the only use of rotational motion.

Page 15: History of technology How did we go from 100W to 10,000 W?

Other sources of rotational kinetic energy: wind and water

Vertical-axis Persian windmill, 7th century (634-644 AD) or later

Vertical-axis waterwheel1500s or earlier

Page 16: History of technology How did we go from 100W to 10,000 W?

Very early a switch was made from vertical to horizontal axes

Pitstone windmill, believed to be the oldest in Britain.

Horizontal-axis waterwheel

Page 17: History of technology How did we go from 100W to 10,000 W?

Pluses & minuses for horizontal axes

Industrial windmil cogsPost mill diagram, from The Dutch Windmill, Frederick Stokhuyzen

Page 18: History of technology How did we go from 100W to 10,000 W?

Pluses & minuses for horizontal axes

Plus: * increased efficiency (both wind & water)

Minus: * complicated gearing to alter axes* must rotate windmill to match wind dir.

Industrial windmil cogsPost mill diagram, from The Dutch Windmill, Frederick Stokhuyzen

Page 19: History of technology How did we go from 100W to 10,000 W?

What were the needs for mechanical work by mills?

anything besides grinding grain?

Page 20: History of technology How did we go from 100W to 10,000 W?

Why so many windmills along rivers?

Luyken, 1694Source unknown

Page 21: History of technology How did we go from 100W to 10,000 W?

Pumping can be done with rotational motion alone…

Dutch drainage mill using Archimedes’ screwfrom The Dutch Windmill, Frederick Stokhuyzen

Page 22: History of technology How did we go from 100W to 10,000 W?

Pumping can be done with rotational motion alone…

Chain pumps, including bucket chain pumps (R)From Cancrinus, via Priester, Michael et al.

“Tools for Mining: Techniques and Processes for Small Scale Mining”

Bucket chain pumps are seen as early as 700 BC.

Common in ancient Egypt, Roman empire, China from 1st century AD, Medieval Muslim world, Renaissance Europe.

Page 23: History of technology How did we go from 100W to 10,000 W?

Chain pumps need not involve buckets

Chain pump cutawayFrom Lehman’s

Page 24: History of technology How did we go from 100W to 10,000 W?

…but linear motion allows more efficient pumping

The lift pumpAnimation from Scuola Media di Calizzano

Same technology used today in oil wells

Page 25: History of technology How did we go from 100W to 10,000 W?

Linear motions were needed very early in industrial history

European hammer mill w/ cam coupling, 1556 A.D.

Chinese bellows, 1313 A.D.

Page 26: History of technology How did we go from 100W to 10,000 W?

The cam converts rotational to linear motion

The knife-edge camAnimation from the University of Limerick

The noncircularity of the cam creates a push at only one part of the cycle

Page 27: History of technology How did we go from 100W to 10,000 W?

The cam converts rotational to linear motion

The rocker arm & camshaftAnimation from the University of Limerick

The noncircularity of the cam creates a push at only one part of the cycle

Page 28: History of technology How did we go from 100W to 10,000 W?

Gold refining, France. D. Diderot & J. Le Rond d`Alembert eds, Encyclopédie méthodique. Paris 1763-1777 & 1783-87.

Gears and cams let one wheel drive multiple machines

Page 29: History of technology How did we go from 100W to 10,000 W?

Rotational• Grindstones• Pumps• Winches• Bucket lifts• Spinning wheels• Lathes, borers, drilling machines (first use)

Linear (reciprocating)• Hammer-mills• Beaters• Bellows• Saws• Looms

Linear (non-reciprocating)• Boats

Machines powered by wind & water include:

Page 30: History of technology How did we go from 100W to 10,000 W?

Rotational• Grindstones• Pumps• Winches• Bucket lifts• Spinning wheels• Lathes, borers, drilling machines (first use)

Linear (reciprocating)• Hammer-mills• Beaters• Bellows• Saws• Looms

Linear (non-reciprocating)• Boats

Machines powered by wind & water include:

Page 31: History of technology How did we go from 100W to 10,000 W?

HeatingLarge-scale wood-burning to make heat for industrial use

Georg Acricola “De res metallica”, Book XII (“Manufacturing salt, soda, alum, vitriol, sulphur, bitumen, and glass”), 1556.

Complex chemical transformations driven by heat were common in Medieval Europe.

Page 32: History of technology How did we go from 100W to 10,000 W?

Wood and coal fired technologies include

Fuel burnt for• Heating• Metallurgy• Glass-making• Brewing (drying the malt)• Baking• Brick-making• Salt-making• Tiles and ceramics• Sugar refining

Page 33: History of technology How did we go from 100W to 10,000 W?

Wood and coal fired technologies include

Fuel burnt for• Heating• Metallurgy• Glass-making• Brewing (drying the malt)• Baking• Brick-making• Salt-making• Tiles and ceramics• Sugar refining

Page 34: History of technology How did we go from 100W to 10,000 W?

HeatingLarge-scale wood-burning to make heat for industrial use

Copper foundry, France

D. Diderot & J. Le Rond d`Alembert eds, Encyclopédie méthodique. Paris 1763-1777 & 1783-87.

Foundries are wood-fired in 1700s and getting large enough to significantly affect the local fuel supply.

Page 35: History of technology How did we go from 100W to 10,000 W?

“When the fuel situation became difficult in France in the eighteenth century, it was said that a single forge used as much wood as a town the size of Chalon-sur-Marne. Enraged villagers complained of the forges and foundries which devoured the trees of the forests, not even leaving enough for the bakers’ ovens.”

--- F. Braudel, The Structures of Everyday Life, 1979.

The energy crisis in Europe: lack of wood

1700s

Page 36: History of technology How did we go from 100W to 10,000 W?

“Lack of energy was the major handicap of the ancien régime economies”

--- F. Braudel, The Structures of Everyday Life

By the 18th century Europe’s energy crisis limits growth

Page 37: History of technology How did we go from 100W to 10,000 W?

1. Fuel had become scarce even when only used for heat

Wood was insufficient

2. There were limited ways to make motionNo way to make motion other than through capturing existing motion or through muscle-power

3. There was no good way to transport motionWater and wind weren’t necessarily near demand

The early 18th century European energy crisis

Solution to #1: start burning coal

Page 38: History of technology How did we go from 100W to 10,000 W?

“Aeneas Sylvius (afterwards Pope Pius II), who visited Scotland… in the middle of the fifteenth century, mentions …that he saw the poor people who begged at churches going away quite pleased with stones given them for alms. ‘This kind of stone … is burnt instead of wood, of which the country is destitute.”

“Within a few years after the commencement of the seventeenth century the change from wood fuel to coal, for domestic purposes, was general and complete.”

--- R. Galloway, A History of Coal Mining in Great Britain, 1882.

The energy crisis hit Britain first: lack of wood

1400s

1600

Page 39: History of technology How did we go from 100W to 10,000 W?

“The miners, no less than the smelters, had their difficulties during the seventeenth century, but of a totally different kind; for while the latter were suffering from too little fire, the former were embarrassed by too much water… the exhaustion of he coal supply was considered to be already within sight. In 1610, Sir George Selby informed Parliament that the coal mines at Newcastle would not last for the term of their leases of twenty-one years.”

--- R. Galloway, A History of Coal Mining in Great Britain, 1882.

The 2nd British energy crisis: flooding of the mines

1600s

Page 40: History of technology How did we go from 100W to 10,000 W?

1. Easily-extractable coal was running out.Wood was insufficient, & coal was getting hard to extractSurface “sea coal” deep-shaft mining below the water

table Needed mechanical motion to drive the pumps

But still had limitations # 2 and #32. There were limited ways to make motion

No way to make motion other than through capturing existing motion or through muscle-power

3. There was no good way to transport motionWater and wind weren’t necessarily near demand

The late 18th century European energy crisis

Page 41: History of technology How did we go from 100W to 10,000 W?

The 18th century technological impasse

All technology involved only two energy conversions

• Mechanical motion mechanical motion• Chemical energy heat

There was no way to convert chemical energy to motion other than muscles (human or animal) – no engine other than flesh

Even for heating, the only means out of the energy crisis was coal – but to mine the coal required motion for pumps.

18th century Europeans had complex and sophisticated technology, and an abundance of industrial uses for energy, but not enough supply

Page 42: History of technology How did we go from 100W to 10,000 W?

Newcomen “Atmospheric Engine”, 1712

The revolutionary solution = break the heat work barrier

(Note that “revolution” followed invention by ~100 years – typical for energy technology)

Page 43: History of technology How did we go from 100W to 10,000 W?

What is a “heat engine”?

A device that generates converts thermal energy to mechanical work by exploiting a temperature gradient

• Makes something more ordered: random motions of molecules ordered motion of entire body

• Makes something less ordered: degrades a temperature gradient (transfers heat from hot to cold)

Page 44: History of technology How did we go from 100W to 10,000 W?

The two technological leaps of the Industrial Revolution that bring in the modern energy era

1. “Heat to Work”Chemical energy mechanical work via mechanical deviceUse a temperature gradient to drive motionAllows use of stored energy in fossil fuelsLate 1700’s: commercial adoption of steam engine

2. Efficient transport of energy: electrificationMechanical work electrical energy mech. workAllows central generation of powerLate 1800s: rise of electrical companies

Page 45: History of technology How did we go from 100W to 10,000 W?

Outline of next three lectures

History of early steam engines (today)Fundamental physics of heat engines (Tues Apr. 10th)

understanding heat work

History of Industrial Revolution (Th. Apr. 12th)..with preview of electric generation

Organizing framework for energy conversion technologyThe modern energy system (Th. Apr. 12th or -> future)

And then it’s on to individual energy technologies…but Liz is gone T Apr. 17th and Th. Apr. 19th (electricity generation

Having finished with global energy flows and started history of human use, we’ll now do a tricky transition…

Page 46: History of technology How did we go from 100W to 10,000 W?

Hero of Alexandria, “Treatise on Pneumatics”, 120 BC

“lebes”: demonstration of lifting power of steam “aeliopile”

Physics: long understood that steam exerted forceEvaporating water produces high pressure(Pressure = force x area)

Page 47: History of technology How did we go from 100W to 10,000 W?

Physics: condensing steam can produce suction forceLow pressure in airtight container means air exerts forceSame physics that lets you suck liquid through a straw (or use a suction pump)

Page 48: History of technology How did we go from 100W to 10,000 W?

First conceptual steam engine

Denis Papin, 1690, publishes design

Set architecture of reciprocating engines through modern day – piston moves up and down through cylinder

Papin nearly invented the internal combustion engine in which the piston is pushed up by high pressure in the cylinder (from expanding air after an explosion of gunpowder).

Unfortunately he couldn’t design the valves correctly to vent air after expansion, and gave up. He then designed an engine in which the piston is pulled down instead by low pressure in the cylinder (provided by condensing steam).

This is deeply unfortunate for beginning students.

Papin’s first design, now in Louvre. No patent, no working model.

Page 49: History of technology How did we go from 100W to 10,000 W?

First conceptual steam engine

Denis Papin, 1690, publishes design

Papin neither built his engine nor even patented it. He did not have the mechanical skill to actually build his engine successfully. He needed to machine the cylinder and piston air-tight to maintain a pressure gradient, and couldn’t manage that.

He forms part of continuing trend in the history of energy technology: the person who invents a technology is not the person who makes it practical (and yet a third person is the one who makes money off it).

Also: the French explained without building, the British built without explaining.

Papin’s first design, now in Louvre. No patent, no working model.

Page 50: History of technology How did we go from 100W to 10,000 W?

First commercial use of steam:

“A new Invention for Raiseing of Water and occasioning Motion to all Sorts of Mill Work by the Impellent Force of Fire which will be of great vse and Advantage for Drayning Mines, serveing Towns with Water, and for the Working of all Sorts of Mills where they have not the benefitt of Water nor constant Windes.”

Thomas Savery, patent application filed 1698

(good salesman, but he was wrong – this can only pump water)

Page 51: History of technology How did we go from 100W to 10,000 W?

First commercial use steam

Thomas Savery, 1698

Essentially a steam-driven vacuum pump, good only for pumping liquids.

Max pumping height: ~30 ft. (atmospheric pressure)

Efficiency below 0.1%

Some use in Scottish and English mines, to pump out water. Fuel was essentially free. 2000 times less efficient than people or animals, but they can’t eat coal.

Drawbacks – mines were deeper than max lift, fire in mines leads to explosions

Page 52: History of technology How did we go from 100W to 10,000 W?

Newcomen’s design is state of the art for 60+ years

First true steam engine:

Thomas Newcomen, 1712, blacksmith

Copy of Papin’s engine of design of 1690, with piston falling as steam cooled, drawn down by the low pressure generated

First reciprocating engine: force transmitted by motion of piston

Can pump water to arbitrary height.

Force only on downstroke of piston

Very low efficiency: 0.5%

Intermittent force transmission

Page 53: History of technology How did we go from 100W to 10,000 W?

Newcomen’s design is state of the art for 60+ years

First true steam engine:

Thomas Newcomen, 1712, blacksmith

Copy of Papin’s engine of design of 1690, with piston falling as steam cooled, drawn down by the low pressure generated

First reciprocating engine: force transmitted by motion of piston

Can pump water to arbitrary height.

Force only on downstroke of piston

Very low efficiency: 0.5%

Intermittent force transmission

Page 54: History of technology How did we go from 100W to 10,000 W?

Newcomen’s design is state of the art for 60+ years

First true steam engine:

Thomas Newcomen, 1712, blacksmith

Copy of Papin’s engine of design of 1690, with piston falling as steam cooled, drawn down by the low pressure generated

First reciprocating engine: force transmitted by motion of piston

Can pump water to arbitrary height.

Force only on downstroke of piston

Very low efficiency: 0.5%

Intermittent force transmission

Page 55: History of technology How did we go from 100W to 10,000 W?

First modern steam engine:

James Watt, 1769 (patent), 1774 (prod.)Higher efficiency than Newcomen by introducing separate condenseReduces wasted heat by not requiring heating and cooling entire cylinder

Page 56: History of technology How did we go from 100W to 10,000 W?

First modern steam engine:

James Watt, 1769 (patent), 1774 (prod.)Higher efficiency than Newcomen by introducing separate condenser

Page 57: History of technology How did we go from 100W to 10,000 W?

First modern steam engine:

James Watt, 1769 patent (1774 production model)

Like Newcomen engine only with separate condenser Higher efficiency: 2%

Force only on downstroke of piston

Intermittent force transmission

No rotational motion

Page 58: History of technology How did we go from 100W to 10,000 W?

Improved Watt steam engine:

James Watt, 1783 modelAlbion Mill, London

Separate condenser Higher efficiency: ca. 3%

Force on both up- and downstroke

Continuous force transmission

Rotational motion(sun and planet gearing)

Engine speed regulator

Page 59: History of technology How did we go from 100W to 10,000 W?
Page 60: History of technology How did we go from 100W to 10,000 W?

Improved Watt steam engine:

James Watt, 1783 modelAlbion Mill, London

Separate condenser Higher efficiency: ca. 3%

Force on both up- and downstroke

Continuous force transmission

Rotational motion(sun and planet gearing)

Engine speed regulator – don’t need electronics for controls

sun and planet gearing

Gearing lets the linear-motion engine produce rotation, mimic a water wheel

Page 61: History of technology How did we go from 100W to 10,000 W?

Improved Watt steam engine:

James Watt, 1783 modelAlbion Mill, London

Separate condenser Higher efficiency: ca. 3%

Force on both up- and downstroke

Continuous force transmission

Rotational motion(sun and planet gearing)

Engine speed regulator – don’t need electronics for controls!

engine speed governor

No need for electronics for controls – can use mechanical system

Page 62: History of technology How did we go from 100W to 10,000 W?

Double-action steam engine:

Why use suction to pull the piston down – why not just push it down with another injection of steam?

Piston pushed by steam on both up- and down-stroke.

No more need for a condenser. Steam is simply vented at high temperature

slide valve alternates input & exhaust

Page 63: History of technology How did we go from 100W to 10,000 W?

Double-action steam engine:

slide valve alternates input & exhaust

Page 64: History of technology How did we go from 100W to 10,000 W?

Double-action steam engine

What are benefits?

What are drawbacks?

What would you use one for?

Page 65: History of technology How did we go from 100W to 10,000 W?

Double-action steam engine

What are benefits?

Faster cycle – no need to wait for condensation. Can get more power, higher rate of doing mechanical work.

Also lighter and smaller – no need to carry a condenser around.

What are drawbacks?

Inefficiency – venting hot steam means you are wasting energy.

High water usage – since lose steam, have to keep replacing the water

Page 66: History of technology How did we go from 100W to 10,000 W?

Double-action steam engine:

primary use: transportation

Page 67: History of technology How did we go from 100W to 10,000 W?

Double-action steam engine:

Images top, left: Sandia SoftwareImage bottom: Ivan S. Abrams

water-intensive, fuel-intensive – requires many stops to take on water and fuel.

Page 68: History of technology How did we go from 100W to 10,000 W?

Image: source unknown

History of locomotivesTrevithick’s first “railway engine”, 1804 (no image)Used for hauling coal – replaces horses. Speed: 5 mph

“Puffing Billy”, William Hedley, 1813Coal hauler9” x 36” cylinders

First locomotives arebasically steam enginesfor the pumps nowplaced on wheels

Page 69: History of technology How did we go from 100W to 10,000 W?

History of locomotivesStephenson’s “Rocket”, 1820First passenger locomotive29 mph (unloaded), 14 mph loaded

Image: source unknown

Page 70: History of technology How did we go from 100W to 10,000 W?

History of locomotivesCentral Pacific Railroad locomotive #173, Type 4-4-0, 1864(Common American design, 1850s-1900)

Image: Central Pacific Railroad Photographic History Museum

Page 71: History of technology How did we go from 100W to 10,000 W?

History of locomotivesNorthern Pacific Railway steam locomotive #2681, 1930

Image: Buckbee Mears Company, Photograph Collection ca. 1930, Location no. HE6.1N p11, Negative no. 25337. Source: Minnesota Historical Society