31
Boiler Design of innovative 600 °C- and 700 °C- Power Plants Power Plants – Technology in Dialogue 22th April 2008, Power Plant Technology, Hannover Liisa Mäenpää, Hitachi Power Europe GmbH [email protected]

Hitachi Power Materials

Embed Size (px)

Citation preview

Page 1: Hitachi Power Materials

Boiler Design of innovative600 °C- and 700 °C- Power Plants

Power Plants – Technology in Dialogue

22th April 2008, Power Plant Technology, Hannover

Liisa Mäenpää, Hitachi Power Europe GmbH

[email protected]

Page 2: Hitachi Power Materials

2Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Boiler Design of innovative600 °C- and 700 °C- Power Plants

Introduction

Material selection

600 °C - and 700 °C - Technology

Design Aspects

Conclusion

Z

Page 3: Hitachi Power Materials

3Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

0

200

400

600

800

1000

1200

1400

1600

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Net efficiency [-]

CO

2E

mis

sio

ns

[g/k

Wh

]

lignite(rhenish)

GasSource:

Marheineke T., Krewitt W., Neubarth J., Friedrich R., Voß A.IER-Bd. 74, IER, University of Stuttgart, Germany, 2000

Bituminouscoal

(Average)

Averageworldwide

Average China

Russia 2003

CO2 Emissions of Power Plantswith different Fuels

BAT600/620 °C 700/720 °C

1 RH

CurrentAverageEU15-countries

Page 4: Hitachi Power Materials

4Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

2000 2020 2050

with CCS

with improvedEfficiency Plants

CO

2E

mis

sio

ns

with current Technology Trend

Efficiency is the fast track – CCS achieves near Zero-Emission

Further CO2 Reduction: Carbon Capture

Page 5: Hitachi Power Materials

5Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

0

200

400

600

800

1000

1200

1400

1600

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Net efficiency [-]

CO

2E

mis

sio

ns

[g/k

Wh

]

BAT600/620 °C

CurrentAverageEU15-countries

700/720 °C1 RH

+ 30 %

+ 44 %

Bituminouscoal

(Average)

Source:

Marheineke T., Krewitt W., Neubarth J., Friedrich R., Voß A.IER-Bd. 74, IER, University of Stuttgart, Germany, 2000

CO2 Emissions Increase of Power Plantswith Bituminous coal by applying CCS

Loss of efficiency is derived by Power demand for ASU and compression of CO2 for Oxyfuel

Page 6: Hitachi Power Materials

6Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Boiler Design of innovative600 °C- and 700 °C- Power Plants

Introduction

Material selection

600 °C - and 700 °C - Technology

Design Aspects

Conclusion

Page 7: Hitachi Power Materials

7Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Bruttoleistung der Anlage 500 - 600 MW

Zielwirkungsgrad 45 – 47 %

Dampfzustände

FD Turbineneintritt 285 bar / 600 °C

ZÜ Turbineneintritt 60 bar / 620 °C

Turmkessel „RKW Vorzugsvariante 600 MW“

Plant power output (gross) 500 - 600 MW

Efficiency (target) 45 – 47 % (el, net)

Steam conditions

HP Turbine inlet 285 bar / 600 °C

IP Turbine inlet 60 bar / 620 °C

Tower type boiler „Preferred Boiler Design 600 MW“

600 °C - Technology: NRW Power Plant Study

Walsum K. 10

1 x 790 MWel / 1 x 2143 t/h

HP : 603 ºC / 290 bar a

RH : 621 ºC / 75 bar a

Time of commissioning : 2009

PS Moorburg A/B

2 x 820 MWel / 2 x 2088 t/h

HP: 600 ºC / 276 bar a

RH: 610 ºC / 51 bar a

Time of commissioning: 2011/2012

PS Datteln

1100 MWel / 2939 t/h

HP: 600 ºC / 285 bar

RH : 620 ºC / 58 bar

Time of commissioning : 2011

Page 8: Hitachi Power Materials

8Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

600 °C - Technology: PS Datteln (1100 MW)

1100 MWel / 2939 t/h

Benson® steam generator

Bituminous coal

Design parameters:

HP: 600 ºC / 285 bar

RH: 620 ºC / 58 bar

Time of commissioning: 2011

Efficiency: > 45.5 % (el, net)

+ 80.0 m

+ 115.5 m+ 121.5 m

+ 0.0 m

16946

Page 9: Hitachi Power Materials

9Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Existing PPExisting PP= 43 %

262 bar / 545 °C / 562 °C

X20CrMoV121

X20CrMoV121

13CrMo44

TodayToday = 45 – 47 %

285 bar / 600 °C / 620 °C

Austenitic

materialsP92

7CrMoVTiB 10 10

600 °C - Technology: Boiler materials

Page 10: Hitachi Power Materials

10Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Three different versions for boiler design:

365 bar / 705 °C / 720 °C, single reheat

260 bar / 705 °C / 720 °C, single reheat

365 bar / 702 °C / 720 °C / 720 °C,

double reheat

Power Plant Study NRWPP700500 MWel

700 °C - Technology:Power Plant Study NRWPP700

Preferred boiler design:

365 bar / 705 °C / 720 °Csingle reheat

Base for current design offirst 700 °C – boiler.

Source: NRW Power Plant 700°C (NRWPP700)

Efficiency (target) 50 % (el, net)

Page 11: Hitachi Power Materials

11Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

HP-Part:Life steam pressure 365 barLife steam temperature 705 °C

RH-Part:Inlet pressure 74 barOutlet temperature 720 °C

Bituminous coalBenson® steam generator

First 700 °C - Power Plantscheduled for: 2014 (E.ON)

700 °C - Technology:steam generator for 500 MWel

Page 12: Hitachi Power Materials

12Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

20142014 = 50 %

365 bar / 705 °C / 720 °C

Ni-base-

materials

Ni-base-

materials

Martensiticmaterials,

Ni-base-materials

700 °C - Technology:Boiler materials

Austenitic

materialsP92

7CrMoVTiB 10 10

TodayToday = 45 – 47 %

285 bar / 600 °C / 620 °C

Existing PPExisting PP= 43 %

262 bar / 545 °C / 562 °C

X20CrMoV121

X20CrMoV121

13CrMo44

Page 13: Hitachi Power Materials

13Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Boiler Design of innovative600 °C- and 700 °C- Power Plants

Z

Introduction

Material selection

600 °C - and 700 °C - Technology

Design Aspects

Conclusion

Page 14: Hitachi Power Materials

14Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Component design in the creep regimeTools / Methods

Current-StateDesign based on formula whichare being defined by empirical

knowledge

p2

dps

zul

ierf

Perspectives

For components operating in the creep regime the inelastic Finite Element Analyseshave to be applied. Appropriate inelastic constitutive equations are necessary.

New methods for the design of high temperature components: European PressureEquipment Directive (PED) allows the use of Design by Analysis (DBA)-Methods.

Required research projects concerning inelastic constitutive equations have started.

Demand for 700 °C - Technologycannot be satisfied using the

existing design methods.

Page 15: Hitachi Power Materials

15Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

HPE – FEM Calculation of thick walledcomponents

Wall thickness:Calculation acc. EN 12952-3: s=100 mm

FEM: s= 77 mm

localcreepmax. 3,9 % at200.000 h

Membrane-creep0,6 %200.000 h

s = 77 mm

Example HP-Outlet header

Page 16: Hitachi Power Materials

16Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Life time expectancy of superheater tubes

Reduction of life time ofsuperheater tubes by:- creep- fire side corrosion- steam side oxidation

Calculation program to estimate the life time of superheater tubes

considering all three influencing factors.

Each of the three mechanismsaffects the others.

Isolated consideration is notpossible.

Page 17: Hitachi Power Materials

17Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Examples – Different materials

TP347H FG Super304H notshot peened

0

10

20

30

40

50

60

70

80

90

100

0 200000 400000 600000 800000 1000000

time [h]

exp

en

ded

life

tim

e[%

]

TP347H FG Super304H notshot peened

Page 18: Hitachi Power Materials

18Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Examples – Different materials

TP347H FG Super304H notshot peened

0

10

20

30

40

50

60

70

80

90

100

0 200000 400000 600000 800000 1000000

time [h]

exp

en

ded

life

tim

e[%

]

TP347H FG Super304H notshot peened

HR3C

Super304Hshot peened

Page 19: Hitachi Power Materials

19Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Examples – Variations for design of superheatertubes

0

10

20

30

40

50

60

70

80

90

100

0 200000 400000 600000 800000 1000000

time [h]

exp

en

ded

life

tim

e[%

]

Manufacturingtolerances

Designparameters

Steamtemperatureimbalances

Flue gastemperatureimbalances

Page 20: Hitachi Power Materials

20Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Boiler Design of innovative600 °C- and 700 °C- Power Plants

Introduction

Material selection

600 °C - and 700 °C - Technology

Design Aspects

Conclusion

Z

Page 21: Hitachi Power Materials

21Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Material selection – superheater and reheater tubes

0

50

100

150

200

250

300

460 480 500 520 540 560 580 600

105 h creep strength (mean values) in MPa

temperature °C

13CrMo4-5

16Mo3

ferriticmaterials

640 660 680 700 720 740620

Alloy 617modified

Sanicro 25expected

Exist

ing

Power

Plant

s

DMV 310N

Super 304H

HR3C

austeniticmaterials

7CrMoVTiB10-10

Page 22: Hitachi Power Materials

22Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

0

50

100

150

200

250

300

460 480 500 520 540 560 580 600

105 h creep strength (mean values) in MPa

temperature °C

13CrMo4-5

7CrMoVTiB10-10

16Mo3

ferriticmaterials

640 660 680 700 720 740620

DMV 310N

Super 304H

HR3C

austeniticmaterials

Alloy 617modified

Sanicro 25expected

Material selection – superheater and reheater tubes

600

°C–

Power

Plant

s

Page 23: Hitachi Power Materials

23Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

0

50

100

150

200

250

300

460 480 500 520 540 560 580 600

105 h creep strength (mean values) in MPa

temperature °C

13CrMo4-5

7CrMoVTiB10-10

16Mo3

ferriticmaterials

640 660 680 700 720 740620

DMV 310N

Super 304H

HR3C

austeniticmaterials

Alloy 617modified

Sanicro 25expected

Material selection – superheater and reheater tubes

700

°C–

Power

Plant

s

Page 24: Hitachi Power Materials

24Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Material selection – fire side corrosion

Corrosion rate of austenitic materials with 18 % chromium

Source: Cutler, A.J.B., Flatley, T and Hay, K.A.: Fire-side corrosion in power-station boilers. Combustion (Dez.1980) S. 17-25

flue gas temperature

1400 °C

1200 °C

1000 °C

800 °C

600 °C – Technology

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

580 590 600 610 620 630 640 650 660

material temperature [°C]

co

rro

sio

nra

te[m

m/1

0.0

00

h]

Page 25: Hitachi Power Materials

25Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Material selection – fire side corrosion

Corrosion rate of austenitic materials with 18 % chromium

Source: Cutler, A.J.B., Flatley, T and Hay, K.A.: Fire-side corrosion in power-station boilers. Combustion (Dez.1980) S. 17-25

700 °C – Technology

580 590 600 610 620 630 640 650 660

material temperature [°C]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8co

rro

sio

nra

te[m

m/1

0.0

00

h]

flue gas temperature

1400 °C

1200 °C

1000 °C

800 °C

Page 26: Hitachi Power Materials

26Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Materials for 600°C - PowerPlant:

13CrMo4-5 (T1)

10CrMo9-10 (T11)

7CrMoVTiB10-10 (T24)

Material selection - membrane walls

Possible additionalmaterials for 700°C - PowerPlant:

VM12-SHC

X10CrWMoVNb9-2 (T92)

Alloy 617 (modified)

Ferritic

Martensitic

Nickel basealloy

Page 27: Hitachi Power Materials

27Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Material selection – superheater and reheater

Materials for 600°C - PowerPlant:

Ferritic materials like

7CrMoVTiB10-10 (T24)

X20CrMoV12-1, VM12-SHC

TP 347H FG SP

Super 304 H SP

HR3C

Possible additionalmaterials for 700°C -Power Plant:

Sanicro 25

HR6W

Alloy 617 (modified)

Alloy 740, Alloy 263

Austenitic

Martensitic

Nickel basealloys

Austenitic

Page 28: Hitachi Power Materials

28Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Material selection - headers and pipes

Materials for 600°C - PowerPlant:

X20CrMoV12-1

X10CrMoVNb9-1 (P91)

X11CrMoWVNb9-1-1 (E911)

X10CrWMoVNb9-2 (P92)

Possible additionalmaterials for 700°C -Power Plant:Alloy 617 (modified)

Alloy 263

HR6W

Martensitic

Nickel basealloys

Austenitic

Page 29: Hitachi Power Materials

29Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Boiler Design of innovative600 °C- and 700 °C- Power Plants

Introduction

Material selection

600 °C - and 700 °C - Technology

Design Aspects

Conclusion

Page 30: Hitachi Power Materials

30Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008

Conclusion

600 °C - boiler 700 °C - boiler

Biggest innovation of 700 °C -boiler lies in the materials !

New materials with higherstrength and corrosion/oxidation resistance needed.

Highest grade for materialsare the nickel base alloys.

Common for both boilers:

FEM-Calculations for thick walled components

Calculation program for life time expectancy of superheater tubes

Page 31: Hitachi Power Materials

31Liisa Mäenpää / HPE Power Plants – Technology in Dialogue, Hannover, 22th April 2008