51
MIZSEY PÉTER MUNKÁIRA TÖRTÉNT HIVATKOZÁSOK LISTÁJA NHIVATKOZÁSOK NÉLKÜL) Mate Gabor and Peter Mizsey: A Methodology To Determine Controllability Indices in the Frequency Domain, Ind. Eng. Chem. Res., 47 (14), 4807–4816, 2008 (IF=1.75) 1. Martinez-Cisneros J, Hernandez-Sanchez AA, Segovia- Hernandez JG, et al., Dynamic Behavior Of Alternate Schemes To Petlyuk Column (Dividing Wall Column) For Separation Of Ternary Mixtures Author(s): Source: Revista Mexicana De Ingenieria Quimica Volume: 8 Issue: 1 Pages: 135-144 Published: APR 2009 http://www.hirado.hu/Hirek/2009/01/12/14/Mizsey_Peter_.aspx 1. Palugyai István, Környezetszámtan, Népszabadság, 2009. január 15. H. Kencse, P. Mizsey, Comprehensive process investigation methodology for energy-integrated distillation, in: Proceedings of 17th European Symposium on Computer Aided Process Engineering (ESCAPE), vol. 24, Elsevier, 2006, p. 883. 1. Salvador Hernández, Rodrigo Sandoval-Vergara, Fabricio Omar Barroso-Muñoz, Rodolfo Murrieta-Dueñas, Héctor Hernández-Escoto, Juan Gabriel Segovia-Hernández, Vicente Rico-Ramirez, Reactive dividing wall distillation columns: Simulation and implementation in a pilot plant, Chemical Engineering and Processing: Process Intensification, In Press, Corrected Proof, Available online 8 April 2008, 1

HIVATKOZÁSOK MIZSEY PÉTER MUNKÁIRA - …kkft.bme.hu/sites/default/files/vm.csop/Munkatarsak/... · Web viewMizsey Péter munkáira történt hivatkozások listája (Önhivatkozások

Embed Size (px)

Citation preview

MIZSEY PÉTER MUNKÁIRA TÖRTÉNT HIVATKOZÁSOK LISTÁJA(ÖNHIVATKOZÁSOK NÉLKÜL)

Mate Gabor and Peter Mizsey: A Methodology To Determine Controllability Indices in the Frequency Domain, Ind. Eng. Chem. Res., 47 (14), 4807–4816, 2008 (IF=1.75)

1. Martinez-Cisneros J, Hernandez-Sanchez AA, Segovia-Hernandez JG, et al., Dynamic Behavior Of Alternate Schemes To Petlyuk Column (Dividing Wall Column) For Separation Of Ternary Mixtures Author(s): Source: Revista Mexicana De Ingenieria Quimica Volume: 8 Issue: 1 Pages: 135-144 Published: APR 2009

http://www.hirado.hu/Hirek/2009/01/12/14/Mizsey_Peter_.aspx

1. Palugyai István, Környezetszámtan, Népszabadság, 2009. január 15.

H. Kencse, P. Mizsey, Comprehensive process investigation methodology for energy-integrated distillation, in: Proceedings of 17th European Symposium on Computer Aided Process Engineering (ESCAPE), vol. 24, Elsevier, 2006, p. 883.

1. Salvador Hernández, Rodrigo Sandoval-Vergara, Fabricio Omar Barroso-Muñoz, Rodolfo Murrieta-Dueñas, Héctor Hernández-Escoto, Juan Gabriel Segovia-Hernández, Vicente Rico-Ramirez, Reactive dividing wall distillation columns: Simulation and implementation in a pilot plant, Chemical Engineering and Processing: Process Intensification, In Press, Corrected Proof, Available online 8 April 2008,

Katalin Koczka, Peter Mizsey and Zsolt Fonyo: Rigorous modelling and optimization of hybrid separation processes based on pervaporation, Central European Journal of Chemistry, Vol. 5 (4) 2007 pp.1124-1147, (IF=0.75)

1. Separation technologies for the recovery and dehydration of alcohols from fermentation broths Author(s): Vane LM Source: BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR   Volume: 2   Issue: 6 Pages: 553-588 Published: NOV-DEC 2008

Koczka, K., J. Manczinger, P. Mizsey, Z. Fonyo, Novel hybrid separation processes based on pervaporation for the regeneration of tetrahydrofuran, Chemical Enginering and Processing 46, 239-245 (2007)

1

1. Peter D. Chapman, Teresa Oliveira, Andrew G. Livingston, K. Lia, Membranes for the dehydration of solvents by pervaporation Journal of Membrane Science 318 (2008) 5–37

2. Hybrid composite membranes of sodium alginate for pervaporation dehydration of 1,4-dioxane and tetrahydrofuran Author(s): Patil MB, Veerapur RS, Bhat SD, et al. Source: DESALINATION AND WATER TREATMENT-SCIENCE AND ENGINEERING   Volume: 3   Issue: 1-3   Pages: 11-20   Published: MAR 2009

3. Pervaporation study for the dehydration of tetrahydrofuran-water mixtures by polymeric and ceramic membranes, Author(s): McGinness CA, Slater CS, Savelski MJ, Source: JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING   Volume: 43   Issue: 14   Pages: 1673-1684   Published: 2008

4. Title: Chitosan membrane in separation applications Author(s): Xu D, Hein S, Wang K, Source: MATERIALS SCIENCE AND TECHNOLOGY   Volume: 24   Issue: 9   Pages: 1076-1087 Published: SEP 2008

5. Processes intensification: Reactive and membrane supported rectification, Author(s): Gorak A, Hoffmann A, Kreis P, Source: CHEMIE INGENIEUR TECHNIK   Volume: 79   Issue: 10 Pages: 1581-1600   Published: OCT 2007

Molnarne, M., P. Mizsey and V. Schröder, Estimation of flammability of gas mixtures containing inert gases, Journal of Hazardous Materials, 121(1-3), pp. 45-49 (2005)

1. SafetyLit Injury Prevention Literature Update ISSN 1556-8849, http://www.safetylit.org/week/2005/050718.pdf

2. http://www.ilo.org/dyn/cisdoc/cisdoc_bull.bulletin?p_vol=200503EE501-750

Szanyi, A., P. Mizsey, Z. Fonyo, Optimisation of non-ideal separation structures based on extractive heterogeneous-azeotropic distillation, Ind. Eng. Chem., 43, pp. 8269-8274 (2004)

1. Zhigang Lei, Biaohua Chen and Zhongwei Ding,Azeotropic distillation , doi:10.1016/B978-044451648-0/50003-3

2. Muñoz, R., J.B. Montón, M.C. Burguet and J. de la Torre, Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization, Separation and Purification Technology, In Press, (2006)

3. Xu SL, Wand HY, Separation of tert-butyl alcohol-water mixtures by a heterogeneous azeotropic batch distillation process, Chemical Engineering & Technology 29 (1): 113-118 Jan 2006

4. Li JW, Lei ZG, Ding ZW, et al., Azeotropic distillation: A review of mathematical models, Separation and Purification Reviews 34 (1): 87-129 JAN-JUN 2005

Meszaros, A., A. Andrasik, P. Mizsey, Z. Fonyo and V. Illeova, Computer control of pH and DO in a laboratory fermenter using a neural network, Biopr. & Biosyst. Engng, 26(5), pp. 331-340 (2004)

2

1. Wu W, Chang HY, Nonlinear PI controllers for continuous bioreactors using population balance models, Bioprocess and Biosystems Engineering 28 (1): 63-70 NOV 2005

MOL díj (2004)

1. http://www.gondola.hu/cikk.php?szal=38916&part=2 2. http://www.matud.iif.hu/04dec/13.html

Agnes Szanyi, Peter Mizsey, and Zsolt Fonyo, Novel Hybrid Separation Processes Based on Extractive Distillation For Solvent Recovery, Chem. Eng. Proc. 43 (2004) 327-338.

1. Li JW, Lei ZG, Ding ZW, et al., Azeotropic distillation: A review of mathematical models, Separation And Purification Reviews 34 (1): 87-129 Jan-Jun 2005

2. Referred publicatione, http://www.min-eng.com/hydrometallurgy/refs/2004.html3. V. M. Beckley, C. A. Parodi y E. A. Campanella, Comparison of Ethanol

Dehydration Sequences by Extractive Distillation with Benzene, Información Tecnológica-Vol. 16 N°5-2005, págs.: 35-42

Emtir, M., P. Mizsey, E. Rev and Z. Fonyo economic optimization and control of energy-integrated distillation schemes, Chemical and Biochemical Engineering Quarterly, 17(1), pp. 45-56 (2003) www.pbf.hr/cabeq/Cabeq%202003-01_5.pdf

1. Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Dynamic analysis of thermally coupled distillation sequences with undirectional flows for the separation of ternary mixtures, Korean Journal of Chemical Engineering 23 (5): 689-698 SEP 2006

2. Engelien HK, Skogestad S, Multi-effect distillation applied to an industrial case study, Chemical Engineering and Processing 44 (8): 819-826 Aug 2005

3. Cardenas JC, Hernandez S, Gudino-Mares LR, et al., Analysis of control properties of thermally coupled distillation sequences for four-component mixtures, Industrial & Engineering Chemistry Research 44 (2): 391-399 Jan 19 2005

4. Hernandez-Gaona CG, Hernandez S, Comparison of energy consumptions and total annual costs between heat integrated and thermally linked distillation sequences, Chemical And Biochemical Engineering Quarterly 18 (2): 137-143 Jun 2004

5. Engelien HK, Skogestad S, Selecting appropriate control variables for a heat-integrated distillation system with prefractionator, Computers & Chemical Engineering 28 (5): 683-691 May 15 2004

6. Z. Kravanja, Editorial, Modelling, simulation, optimisation in process design and synthesis, Chemical and Biochemical Engineering Quarterly 17(1), pp 1-3 (2003)

7. H. K: Engelien, Process Integration applied to the design and operation of distillation columns, Dr.ing.-thesis, 2004:24, NTNU

3

Peter Mizsey and Esmond Newson, Study and comparison of different vehicle power trains, Journal of Power Sources, 102, pp. 205-209 (2001) IF 1.532 (2001)

1. Anders Folkesson, Christian Andersson, Per Alvfors, Mats Alakula, Lars Overgaard, Real life testing of a Hybrid PEM Fuel Cell Bus, Journal of Power Sources 118 (2003) 349–357

2. S. Um, H.-M. Jung, S.-D. Yim, W.-Y. Lee and C.-S. Kima, Computational study on the micro-channel fuel processors, doi:10.1016/S0167-2991(06)81679-4 

3. Stefan Rabe, Frederic Vogel, A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalyst, Applied Catalysis, Article in press, 2008.

4. Lee Chapman Transport and climate change: a review, Journal of Transport Geography, Volume 15, Issue 5, September 2007, Pages 354-367,

5. Jonas Hellgren, Life cycle cost analysis of a car, a city bus and an intercity bus powertrain for year 2005 and 2020, Energy Policy 35 (2007) 39–49

6. Electronic Supplementary Information Materials and Methods Preparation of supported gold catalysts. The Royal Society of Chemistry, http://www.rsc.org/suppdata/CC/b5/b505295p/b505295p.pdf

7. Harris, G., Pathways For Natural Gas Into Advanced Vehicles, http://www.iangv.org/dmdocuments/Pathways_NGV_2002.pdf

8. Il trasporto stradale e la qualità dell’ambiente, http://tecnologie_energetiche.die.unipd.it/tesi/indici/Pietra_Intro&biblio.pdf

9. M. Bosco, F. Hajbolouri, T.-B. Truong, E. De Boni, F. Vogel, G.G. Scherer, Link-up of a bench-scale “shift-less” gasoline fuel processor to a polymer electrolyte fuel cell, Journal of Power Sources 159 (2006) 1034–1041

10. Bosco M, Vogel F, Optically accessible channel reactor for the kinetic investigation of hydrocarbon reforming reactions, Catalysis Today 116 (3): 348-353 Aug 15 2006

11. Costantino U, Marmottini F, Sisani M, et al., Cu-Zn-Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol, Solid State Ionics 176 (39-40): 2917-2922 SP. ISS. SI Dec 2005

12. Pro, B. H., R. Hammerschlag, P. Mazza, Energy and land use impacts of sustainable transportation scenarios, Journal of Cleaner Production, 13 (2005) 1309-1319

13. Karlström, M., Environmental assessment of polymer electrolyte membrane fuel cell systems, Consequence of an evolutionary perspective on technology development, PhD, Chalmers University of technology, Göteborg (2004)

14. Michele Aresta, Carbon Dioxide Recovery and Utilization, ISBN 1402014090, Springer (2003)

15. Anders Folkesson, Christian Andersson, Per Alvforsa, Mats Alakulab, Lars Overgaard, Real life testing of a Hybrid PEM Fuel Cell Bus, Journal of Power Sources 118 (2003) 349–357

16. Kato Y, Ando K, Yoshizawa Y, Study on a regenerative fuel reformer for a zero-emission vehicle system, Journal of Chemical Engineering of Japan 36 (7): 860-866 Jul 2003

4

17. Folkesson A, Andersson C, Alvfors P, et al., Real life testing of a hybrid PEM fuel cell bus, Journal of Power Sources 118 (1-2): 349-357 May 25 2003

18. Frank Kreithe, Legislative and Technical Perspectives for Advanced Ground Transportatio in Tranportation Quart.,vol.56,No1,Winter 2002.

19. http://serials.cib.unibo.it/cgi-ser/start/it/spogli/ds-s.tcl? soggetti=INFRASTRUCTURE

E. Rév, M. Emtir, Z. Szitkai, P. Mizsey and Z. Fonyó, Energy savings of integrated and coupled distillation systems, Comp. Chem. Eng., 25, 1-22 (2001). IF 0.428 (2001)

1. Roberto Gutiérrez-Guerra, Juan Gabriel Segovia-Hernández, Salvador Hernández, Reducing energy consumption and CO2 emissions in extractive distillation, chemical engineering research and design Vol.87 ( 2009) 145–152

2. Victoria E. Tamayo-Galván, Juan Gabriel Segovia-Hernández, Salvador Hernández, Julián Cabrera-Ruiz, J. Rafael Alcántara-Ávila, Controllability analysis of alternate schemes to complex column arrangements with thermal coupling for the separation of ternary mixtures Computers & Chemical Engineering, In Press, Corrected Proof, Available online 3 May 2008,

3. R. Premkumar, G.P. Rangaiah, Retrofitting conventional column systems to dividing-Wall Columns, IChemE, 2008, article in press

4. Roberto Gutiérrez-Guerra, Juan Gabriel Segovia-Hernández, Salvador Hernández, Reducing energy consumption and CO2 emissions in extractive distillation, IChemE, 2008, article in press

5. I. Heckl, Z. Kovács, F. Friedler, L.T. Fan, J. Liu Algorithmic synthesis of an optimal separation network comprising separators of different classes, Chemical Engineering and Processing, Volume 46, Issue 7, July 2007, Pages 656-665,

6. San-JangWanga, David S.H.Wong, Controllability and energy efficiency of a high-purity divided wall column, Chemical Engineering Science 62 (2007) 1010 – 1025

7. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1000&context=chemengthermalmech

8. Segovia-Hernandez JG, Ledezma-Martinez M, Carrera-Rodriguez M, et al., Controllability analysis of thermally coupled distillation systems: Five-component mixtures, Industrial & Engineering Chemistry Research 46 (1): 211-219 Jan 3 2007

9. Michele Mascia, Francesca Ferrara, Annalisa Vacca, Giuseppe Tola, Massimiliano Errico, Design of heat integrated distillation systems for a light ends separation plant, Applied Thermal Engineering 27 (2007) 1205–1211

10. Rong BG, Turunen I, A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements, Chemical Engineering Research & Design 84 (A12): 1095-1116 Dec 2006

11. Caballero JA, Grossmann IE, Structural considerations and modeling in the synthesis of heat-integrated-thermally coupled distillation sequences, Industrial & Engineering Chemistry Research 45 (25): 8454-8474 Dec 6 2006

12. José A. Caballero; Ignacio E. Grossmann, Structural considerations and modeling in the synthesis of heat integrated distillation sequences, http://egon.cheme.cmu.edu/Papers/CaballeroStructuralHeat.pdf

5

13. Segovia-Hernandez JG, Hernandez S, Dynamic behavior of thermally coupled distillation configurations for the separation of multicomponent mixtures, Chemical And Biochemical Engineering Quarterly 20 (2): 125-133 JUN 2006

14. Calzon-McConville CJ, Rosales-Zamora MB, Segovia-Hernandez JG, et al., Design and optimization of thermally coupled distillation schemes for the separation of multicomponent mixtures, Industrial & Engineering Chemistry Research 45 (2): 724-732 Jan 18 2006

15. Engelien HK, Skogestad S, Minimum energy diagrams for multieffect distillation arrangements, AICHE Journal 51 (6): 1714-1725 Jun 2005

16. Shih-Wen Lina, Cheng-Ching Yub, Design andcontrol for recycle plants with heat-integratedseparators Chemical Engineering Science 59 (2004) 53 – 70

17. Demirel Y, Thermodynamic analysis of separation systems, Separation Science and Technology 39 (16): 3897-3942 2004

18. Y. Demirel, Thermodynamic Analysis Of Separation Systems, Chemical and Biomolecular Engineering Research and Publications Papers in Thermal Mechanics University of Nebraska – Lincoln, 2004

19. Bruggemann S, Marquardt W, Rapid screening of design alternatives for nonideal multiproduct distillation processes, Computers & Chemical Engineering 29 (1): 165-179 Dec 15 2004

20. Hernandez-Gaona CG, Hernandez S, Comparison of energy consumptions and total annual costs between heat integrated and thermally linked distillation sequences, Chemical and Biochemical Engineering Quarterly 18 (2): 137-143 Jun 2004

21. Lin SW, Yu CC, Design and control for recycle plants with heat-integrated separators, Chemical Engineering Science 59 (1): 53-70 Jan 2004

22. Michele Mascia, Ottimizzazione Di Impianti E Processi Integrati, Università Degli Studi Di Cagliari, Corso Di Dottorato Di Ricerca In Ingegneria Industriale, PhD Thesis (2003-204) http://www.diee.unica.it/dott_ing_ind/materiale/tesi/Mascia.pdf

23. Wang YM, Yao PJ, Simulation and optimization for thermally coupled distillation using artificial neural network and genetic algorithm, Chinese Journal of Chemical Engineering 11 (3): 307-311 Jun 2003

24. Rong BG, Kraslawski A, Turunen I, Synthesis of functionally distinct thermally coupled configurations for quaternary distillations, Industrial & Engineering Chemistry Research 42 (6): 1204-1214 MAR 19 2003

25. Pedersen, E.: Synthesis of Distillation based Separation Schemes, PhD thesis, TU Denmark, Kobenhaven, 2003

26. H. K: Engelien, Process Integration applied to the design and operation of distillation columns, Dr.ing.-thesis, 2004:24, NTNU www.nt.ntnu.no/users/skoge/publications/ 2003/engelien_escape13/engelien_ESCAPE_june2003_poster.ppt

27. Engelien, H.K., S. Skogestad, Selecting Appropriate Control Variables for a Heat Integrated Distillation System with Prefactionator, Computer_Aided Chemical Engineering, 11, (ed.: Kraslawsky, A.), Elsevier, 2003

28. E.Bek-Pedersen, CAPEC Department of Chem. Engng, TU Denmark, Ph.D. Thesis, October 2002.

29. H. K: Engelien, Process Integration applied to the design and operation of distillation columns, Dr.ing.-thesis, 2004:24, NTNU

6

30. I. J. Halvorsen, Minimum energy requirements in complex distillation arrangements, Dr.ing-thesis, 2001:43, NTNU, http://www.chemeng.ntnu.no/thesis/download/2001/halvorsen/Halvorsen,%20Minimum%20energy%20requirements%20in%20complex%20distillation%20arrangements.pdf

31. E. F. Johansen, Energy savings and economical comparison of energy integrated and thermally coupled distillation systems, Diploma Work, Norwegian Institute of Technology (2000).

32. Jedlovszky P., Design of Pure Technologies, Review of papers to ESCAPE-9 & PRES'99 (1999)

Peter Mizsey, Esmond Newson, Than-Binh Truong and Peter Hottinger, The kinetics of methanol decomposition: a part of autothermal partial oxidation to produce hydrogen for fuel cells, Applied Catalysis A-General. 213, 233-237 (2001) IF 2.258 (2001)

1. Stefan Rabe, Frederic Vogel, A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalyst, Applied Catalysis, Article in press, 2008.

2. Chi-Hua Fu, Jeffrey C.S. Wu, Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor, International Journal of Hydrogen Energy, Volume 32, Issue 18, December 2007, Pages 4830-4839,

3. Maria Turco, Giovanni Bagnasco, Claudia Cammarano, Pasquale Senese, Umberto Costantino, Michele Sisan, Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix, Applied Catalysis B: Environmental, Volume 77, Issues 1-2, 30 November 2007, Pages 46-57, i

4. Andrew T. Stamps, Edward P. Gatzke, Dynamic modeling of a methanol reformer—PEMFC stack system for analysis and design, Journal of Power Sources 161 (2006) 356–370

5. Hyun-Ku Rhee, New Developments And Applications in Chemical Reaction Engineering, ISBN 0444517332, Elsevier (2006)

6. Kamarudin, S.K., W.R.W. Dauda, A. Md. Somb, M.S. Takriff a, A.W. Mohammada, Synthesis and optimization of a PEM fuel cell system via reactor-separation network (RSN), Journal of Power Sources, Article in press (2006)

7. Patel S, Pant KK, Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol, Journal Of Porous Materials 13 (3-4): 373-378 Oct 2006

8. Bosco, M., F. Hajbolouri, T.-B. Truong, E. De Boni, F. Vogel, G.G. Scherer, Link-up of a bench-scale “shift-less” gasoline fuel processor to a polymer electrolyte fuel cell, Journal of Power Sources, Article in Press (2006).

9. Choi, Y., H. G. Stenger, Kinetics, simulation and optimization for methanol steam reformer for fuel cell applications, J. of Power Sources, 142 (2005) 81-91

10. R. U. Perez, Tesis Doctoral, Granada (2005), http://hera.ugr.es/tesisugr/15422896.pdf

11. http://www.che.sc.edu/centers/RCS/hyman_f2003.htm 12. http://aiche.confex.com/aiche/2005/preliminaryprogram/abstract_32311.htm

7

13. http://aiche.confex.com/aiche/2005/techprogram/P32311.HTM 14. Costantino, U., F. Marmottini, M. Sisani, T. Montanari, G. Ramis, G. Busca, M.

Turco and G. Bagnasco, Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol, Solid State Ionics, Volume 176, Issues 39-40, December 2005, Pages 2917-2922

15. Kim GY, Mayor JR, Ni J, Parametric study of microreactor design for water gas shift reactor using an integrated reaction and heat exchange model, Chemical Engineering Journal 110 (1-3): 1-10 Jun 1 2005

16. Choi YT, Stenger HG, Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications, Journal Of Power Sources 142 (1-2): 81-91 Mar 24 2005

17. Kamarudin, S.K., W.R.W. Daud, A.Md. Som, M.S. Takriff, A.W. Mohammad and Y.K. Loke Design of a fuel processor unit for PEM fuel cell via shortcut design method, Chemical Engineering Journal, Volume 104, Issues 1-3, 15 November 2004, Pages 7-17

18. Van herle J, Schuler A, Dammann L, et al., Fuels for fuel cells: Requirements and fuel processing, Chimia 58 (12): 887-895 2004

19. Kamarudin, S. K., W.R.W. Daud, A.Md. Som, A.W. Mohammad, S. Takriff, M.S. Masdar, The conceptual design of a PEMFC system via simulation, Chemical Engineering Journal 103 (2004) 99–113

20. M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis and G. Busca, Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor, Journal of Catalysis 228 (1): 43-55 Nov 15 2004

21. J.Christopher Brown, Erdogan Gulari Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts, Catalysis Communications 5 (2004) 431–436

22. Joseph F. Kanney, Cass T. Miller, C.T. Kelley, Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems, Advances in Water Resources 26 (2003) 247–261

23. Xinrong R. Zhang, Pengfei Shi, Jianxi Zhao, Mengyue Zhao b, Chuntao Liu Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts, Fuel Processing Technology 83 (2003) 183– 192

24. Joseph F. Kanney, Cass T. Miller, D. AndrewBarry, Comparison of fully coupled approaches for approximating nonlinear transport and reaction problems, Advances in Water Resources 26 (2003) 353–372

25. http://fenske.che.psu.edu/Faculty/Fichthorn/che497C/597C_present/Jones.pdf 26. Spivey, J. J., Catalysis, ISBN 0854042245, Royal Society of Chemistry

(2002)27. Johan Agrell, Henrik Birgersson, Magali Boutonnet Steam reforming of

methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation, Journal of Power Sources 106 (2002) 249–257

28. Ya-Huei Chin, Robert Dagle, Jianli Hu, Alice C. Dohnalkova, Yong Wang, Steam reforming of methanol over highly active Pd/ZnO catalyst Catalysis Today 77 (2002) 79–88

8

29. R. M. Navarro, M. A. Peña, and J. L. G. Fierro, Production of Hydrogen by Partial Oxidation of Methanol over a Cu/ZnO/Al2O3 Catalyst: Influence of the Initial State of the Catalyst on the Start-Up Behaviour of the Reformer, Journal of Catalysis 212, 112–118 (2002)

Newson, E., P. Mizsey, T. Truong, P. Hottinger, The autothermal partial oxidation kinetics of methanol to produce hydrogen, Oral lecture on the 12th International congress on catalysis, Granada, Spain (2000).

1. J. Agrell, H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R. M. Navarro and J. L. G. Fierro, Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3  Journal of Catalysis, Volume 219, Issue 2, 25 October 2003, Pages 389-403

2. Johan Agrell a,, Magali Boutonnet a, José L.G. Fierro, Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic activity and reaction pathways, Applied Catalysis A: General 253 (2003) 213–223

Newson, E., P. Mizsey, T. Truong, P. Hottinger, The autothermal partial oxidation kinetics of methanol to produce hydrogen, Studies in Surface and Catalysis 130, pp. 695-700, Elsevier Science (2000).

1. Kim, G., J., R. Mayor, J. Ni, Parametric study of microreactor design for water gas shift reactor using an integrated reaction and heat exchange model, Chemical Engineering Journal, 110 (2005) 1-10

2. Yang, J. Shao, S. Lin, and C. Wang, A Numerical Simulation for Heat and Mass Transfer in a Micro-Channel Fuel Cell Reformer R. National Sun Yat-Sen University, Kaohsiung, Taiwan (roc) AIAA-2005-5652 3rd International Energy Conversion Engineering Conference, San Francisco, California, Aug. 15-18, 2005

3. Hydrogen from biomass, http://www.osti.gov/bridge/servlets/purl/792221-p8YtTN/native/792221.PDF

4. R. U. Perez, Tesis Doctoral, Granada (2005), http://hera.ugr.es/tesisugr/15422896.pdf

5. Christopher Brown, Erdogan Gulari, Hydrogen production from methanol decompositions over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts, Catalysis Communications, 5 (2004) 431-436

6. Kamarudin, S. K., W.R.W. Daud, A. Md. Som, M.S. Takriff, A. W. Mohamad, Y.K. Loke, Design fo a fuel processor unit for PEM fuel cell via shortcut design method, Chem. Engng Journal, 104 (2004) 7-17

7. Kamarudin, S. K., W.R.W. Daud, A. Md. Som, A. W. Mohamad, M.S. Takriff, M.S. Masdar, The conceptual design of a PEMFC system via simulation, Chem. Engng Journal 103 (2004) 99-113

8. http://www.cdrs.re.kr/down/workshop2/18.pdf9. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=etd-0708103-

154730

9

10. Catalizzatori nanostrutturati per lo sviluppo di un processo sostenibile di produzione di idrogeno di piccola-media scala, http://www.ricercaitaliana.it/prin/dettaglio_prin-2005034444.htm

11. Turco, M., G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, Production of hydrogen from oxidative steam reforming of methanol, I. Preparationn and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor, Journal of Catalysis, 228 (2004) 43-55

12. Xinrong R. Zhang, Pengfei Shi, Jianxi Zhao, Mengyue Zhao, Chuntao Liu, Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts, Fuel Processing Technology 83 (2003) 183– 192

13. Pierre Reuse, PhD-2820, EPFL (2003), http://biblion.epfl.ch/EPFL/theses/2003/2830/EPFL_TH2830.pdf

14. Catalytic Production of Hydrogen from Steam Reforming of Methanol on CeO2 Promoted Gu/Al2O3 Catalysts, http://scholar.ilib.cn/A-wlhxxb200301020.html

15. Harold, M. O., B. Nair, G. Kolios, Hydrogen generation in a Pd membrane fuel processor: assessment of methanol-based reaction systems, Chem. Engng Sci. 58 (2003) 2551-2571

16. http://aiche.confex.com/aiche/2005/techprogram/P32311.HTM17. http://cat.inist.fr/?aModele=afficheN&cpsidt=105481818. http://engine.cqvip.com/content/tq/91046x/2004/045/006/gc34_tq4_9827490.pdf19. http://www.wanfangdata.com.cn/qikan/periodical.Articles/jsjyyyhx/

jsjy2003/0305/030525.htm20. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/getfile?URN=etd-0708103-

154730&filename=etd-0708103-154730.pdf21. Bard Lindstrom, Lars J. Pettersson, Development of a methanol fuelled reformer

for fuel cell applications, Journal of Power Sources 118 (2003) 71–7822. J. Agrell, H. Birgersson M. Boutonnet I. Melián-Cabrera, R.M. Navarro and

J.L.G. Fierro, Production of hydrogen from methanol over Cu/ZnO catalysts promoted, by ZrO2 and Al2O3, Journal of Catalysis 219 (2003) 389–403

23. Y. Ferro and A. Allouche V. Kempter, Electron solvation by highly polar molecules: Density functional theory study of atomic sodium interaction with water, ammonia, and methanol, The Journal of Chemical Physics -- May 8, 2004 -- Volume 120, Issue 18, pp. 8683-8691

24. J.J. (North Carolina State University, Raleigh, USA) Spivey, Catalysis Vol 16, Royal Society of Chemistry (2002)

25. Chih-Chiang Chuang, Design and Control of the Methanol Fuel Processor, PhD Thesis, http://etds.lib.ntu.edu.tw/etdservice/view_metadata?etdun=U0001-2807200515415700&query_field1=keyword&&query_word1=mode&

26. Bård Lindström, Lars J. Pettersson, P. Govind Menon, Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on -alumina for methanol reforming for fuel cell vehicles, Applied Catalysis A: General 234 (2002) 111–125

27. Jian-Ping Shen, Chunshan Song, Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells, Catalysis Today 77 (2002) 89–98

10

28. S. Velu a, K. Suzuki a,, M.P. Kapoor b, F. Ohashi a, T. Osaki Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts, Applied Catalysis A: General 213 (2001) 47–63

Schildhauer, T., E. Newson, P. Mizsey, A. Wokaun, Verbesserung des Wärmeübergangs in katalytischen Festbettreaktoren mittels strukturierter Packungen, Chemie Ingenieur Technik, 72 (9), 992 (2000).

1. P. Wasserscheid, Andreas Jess, M. Eichmann, Zweiphasige Dimerisierung von Propen in ionischen Flüssigkeiten, Chemie Ingenieur Technik, Volume 72, Issue 9 , Pages 991 – 992

2. Khamadieva, R., U. Böhm, Mass transfer to the wall of a packed and unpacked bubble column operating with Newtonian and non-Newtonian liquids, Chemical Engineering Journal 116 (2006) 105–113

Personal comments about methanol partial oxidation (1999)

1. Wimmer J., http://members.lycos.fr/wimmerjean/References.htm

Emtir M., E. Rev, P. Mizsey and Z. Fonyo, Comparison of integrated and coupled distillation schemes using different utility prices, Comp. Chem Engng, 23, S 799-S802 (1999)

1. Roberto Gutiérrez-Guerra, Juan Gabriel Segovia-Hernández, Salvador Hernández, Reducing energy consumption and CO2 emissions in extractive distillation, chemical engineering research and design Vol.87 ( 2009) 145–152

2. Heckl I., Szétválasztó hálózatok szintézise, PhD értekezés, Veszprém (2007)3. I. Heckl, Z. Kovacs, F. Friedler, L.T. Fan, J. Liuc, Algorithmic synthesis of an

optimal separation network comprising separators of different classes, Chemical Engineering and Processing 46 (2007) 656–665

4. H. K: Engelien, Process Integration applied to the design and operation of distillation columns, Dr.ing.-thesis, 2004:24, NTNU

5. E. F. Johansen, Energy savings and economical comparison of energy integrated and thermally coupled distillation systems, Diploma Work, Norwegian Institute of Technology (2000).

Mizsey, P., A. Cuellar, E. Newson, P. Hottinger, T. B. Truong and F. von Roth, Fixed bed reactor modelling and experimental data for catalytic dehydrogenation in seasonal energy storage applications, Comp. Chem Engng, 23, S 371 (1999).

1. Molnár E., Esztrele M. Nemestóthy S., Bélafiné Bakó K., Galakturonsav kinyerése elektrodialízissel agráripari hulladékokból, Műszaki Kémiai Napok, ISBN978-963-9696-15-0, pp. 186-189, (2007)

2. Schildhauer, T., Untersuchungen zur Verbesserung des Wärmeübergangs in katalytischen Festbettreaktoren für Energiespeicheranwendungen, PhD Thesis 14301, ETHZ, 2001

11

3. Joseph F. Kanney, Cass T. Miller, C.T. Kelley, Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems Advances in Water Resources 26(2003) 247–261

4. Joseph F. Kanney, Cass T. Miller, D. AndrewBarry, Comparison of fully coupled approaches for approximating nonlinear transport and reaction problems, Advances in Water Resources 26 (2003) 353–372

Mizsey, P., N. Hau, N. Benko, I. Kalmar, Z. Fonyo, Process control for energy integrated distillation schemes, Comp. Chem. Engng, 22, pp. S427-434 (1998).

1. Zhu Y, Liu XG, Chu J, Dynamics and control designs for internal thermally coupled distillation columns with different purities, Part 1: Open loop dynamic behaviors, Progress in Natural Science 16 (4): 346-351 APR 2006

2. Halvorsen IJ, Skogestad S, Shortcut analysis of optimal operation of petlyuk distillation, Industrial & Engineering Chemistry Research 43 (14): 3994-3999 Jul 7 2004

3. Pintaric ZN, Kravanja Z A strategy for MINLP synthesis of flexible and operable processes, Computers & Chemical Engineering 28 (6-7): 1105-1119 Jun 15 2004

4. H. K: Engelien, Process Integration applied to the design and operation of distillation columns, Dr.ing.-thesis, 2004:24, NTNU

5. Zorka Novak Pintari¡c, Zdravko Kravanja, A strategy for MINLP synthesis of flexible and operable processes, Computers and Chemical Engineering 28 (2004) 1105–1119

6. Young Han Kim, Rigorous design of extended fully thermally coupled distillation columns, Chemical Engineering Journal 89 (2002) 89–99

7. Emtir, M., E. Rev, Z. Fonyo, Rigorous simulation of energy integrated and thermally coupled distillation schemes for ternary mixtures, Applied Thermal Engineering, 21 (2001) 1299-1317

8. Kim YH, Structural design and operation of a fully thermally coupled distillation column, Chemical Engineering Journal, 85 (2-3): 289-301 Jan 28, 2002

9. Kim YH, Rigorous design of extended fully thermally coupled distillation columns, Chemical Engineering Journal, 89 (1-3): 89-99 Oct 28 2002

10. I. J. Halvorsen, Minimum energy requirements in complex distillation arrangements, Dr.ing-thesis, 2001:43, NTNU

11. R. Agrawal, Multieffect distillation for thermally coupled configurations, AIChE Journal, 46(11), 2211-2224 (2000).

12. Halvorsen, I. J., S. Skogestad, use of short-cut methods to analyse optimal operation of Petlyuk distillation column, PRES'99, p.311-316 (1999).

13. E. F. Johansen, Energy savings and economical comparison of energy integrated and thermally coupled distillation systems, Diploma Work, Norwegian Institute of Technology (2000).

14. Bildea, C. S. and A.C. Dimian, Interaction between design and control of heat integrated distillation system with prefractionator, Chem. Eng. Res. Des., 77, Part A, 597-608 October (1999)

15. Martyn S. Ray, Equilibrium-Staged Separations: A Bibliography Update (1998), Separation Science and Technology, 34(16), 3305-3321 (1999)

12

16. http://cat.inist.fr/?aModele=afficheN&cpsidt=2256359 17. http://www.ingentaconnect.com/content/els/00981354/1998/00000022/90000001/

art0008418. Database prosessregulering, http://www.kkt.chembio.ntnu.no/%7Eskoge/reg.bib

(1998).

Mizsey, P., E. Rev and Z. Fonyo, Systematic separation system synthesis of a highly nonideal quaternary mixture, AIChE Spring National Mtg., Paper 19f, Chicago, (1997).

1. A. Raab, Separation of highly nonideal mixture for solvent recovery, Diplom Work, Graz University of Technology, 2001.

2. http://www.diplomica.com/db/diplomarbeiten6309.html

Annakou, O. and P. Mizsey, Rigorous comparative study of energy integrated distillation schemes, Ind. & Eng. Chem., 35, pp. 1877-1885 (1996). IF 1.181 (1996)

1. S. Um, H.-M. Jung, S.-D. Yim, W.-Y. Lee and C.-S. Kim, Thermally Coupled Distillation, Computer Aided Chemical Engineering, Volume 27, 2009, Pages 59-64

2. Roberto Gutiérrez-Guerra, Juan Gabriel Segovia-Hernández, Salvador Hernández, Reducing energy consumption and CO2 emissions in extractive distillation, chemical engineering research and design Vol.87 ( 2009) 145–152

3. I. Malinen and J. Tanskanen, A Rigorous Minimum Energy Calculation Method For A Fully Thermally Coupled Distillation System, IChemE, Vol 85 (A4) 502–509

4. Design and control of transesterification reactive distillation with thermal coupling , Computers & Chemical Engineering, In Press, Corrected Proof, Available online 22 April 2008, San-Jang Wang, David S.H. Wong, Shuh-Woei Yu

5. San-Jang Wang, Chi-Ju Lee, Shi-Shang Jang, Shyan-Shu Shieh, Plant-wide design and control of acetic acid dehydration system via heterogeneous azeotropic distillation and divided wall distillation, Journal of Process Control, Volume 18, Issue 1, January 2008, Pages 45-60,

6. Eduardo Díez, Paul Langston, Gabriel Ovejero, M. Dolores Romero, Economic feasibility of heat pumps in distillation to reduce energy use, Applied thermal engineering, Article in press, 2008

7. Roberto Gutiérrez-Guerra, Juan Gabriel Segovia-Hernández, Salvador Hernández, Reducing energy consumption and CO2 emissions in extractive distillation, IChemE, 2008, article in press

8. San-JangWanga, David S.H.Wong, Controllability and energy efficiency of a high-purity divided wall column, Chemical Engineering Science 62 (2007) 1010 – 1025

9. Juan Gabriel Segovia-Hernandez, Esteban Abelardo Hernandez-Vargas, Jorge Alberto Marquez-Munoz, Control properties of thermally coupled distillation sequences for different operating conditions, Computers and Chemical Engineering 31 (2007) 867–874

10. Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Dynamic analysis of thermally coupled distillation sequences with undirectional flows for the separation

13

of ternary mixtures, Korean Journal of Chemical Engineering 23 (5): 689-698 Sep 2006

11. Schultz et al., Innovative flowshemes using dividing wall columns, 16th European Symposium on Computer Aided Process Engineering, edited by Wolfgang Marquardt, Constantinos Pantelides, p. 695, ISBN 0444522573, Elsevier (2006)

12. Ignacio E. Grossmann1, Pío A. Aguirre and Mariana Barttfeld, Optimal Synthesis of Complex Distillation Columns Using Rigorous Models, , http://egon.cheme.cmu.edu/Papers/GrossmannAguirreBart.pdf

13. Segovia-Hernandez JG, Hernandez S, Jimenez A, A short note about energy-efficiency performance of thermally coupled distillation sequences, Canadian Journal of Chemical Engineering 84 (1): 139-144 Feb 2006

14. Barttfeld, M., I. E. Grossmann, P. A. Aguirre, A decomposition method for synthesizing complex column configuration using tray-by-tray GDP models, Computers and Chem. Engn, 29 (2005) 2165-2188

15. Grossmann, I. E., P. A. Aguirre, M. Barttfeld, Optimal synthesis of complex distillation columns using rigorous models, Computers and Chem. Engn, 29 (2005) 1203-1215

16. Segovia-Hernandez JG, Hernandez-Vargas EA, Marquez-Munoz JA, et al., Control properties and thermodynamic analysis of two alternatives to thermally coupled distillation systems with side columns, Chemical and Biochemical Engineering Quarterly 19 (4): 325-332 Dec 2005

17. Hernandez-Gaona CG, Cardenas JC, Segovia-Hernandez JG, et al., Second law analysis of conventional and nonconventional distillation sequences, Chemical and Biochemical Engineering Quarterly 19 (3): 235-241 Sep 2005

18. Proios P, Pistikopoulos EN, Generalized modular framework for the representation and synthesis of complex distillation column sequences, Industrial & Engineering Chemistry Research 44 (13): 4656-4675 Jun 22 2005

19. Grossmann IE, Aguirre PA, Barttfeld M, Optimal synthesis of complex distillation columns using rigorous models, Computers & Chemical Engineering 29 (6): 1203-1215 May 15 2005

20. Cardenas JC, Hernandez S, Gudino-Mares LR, et al., Analysis of control properties of thermally coupled distillation sequences for four-component mixtures, Industrial & Engineering Chemistry Research 44 (2): 391-399 Jan 19 2005

21. Mariana Barttfeld Pio A. Aguirre a, Ignacio E. Grossmann A decomposition method for synthesizing complex column configurations using tray-by-tray GDP models Computers and Chemical Engineering 28 (2004) 2165–2188

22. H. K: Engelien, Process Integration applied to the design and operation of distillation columns, Dr.ing.-thesis, 2004:24, NTNU

23. Hernandez-Gaona CG, Hernandez S, Comparison of energy consumptions and total annual costs between heat integrated and thermally linked distillation sequences, Chemical and Biochemical Engineering Quarterly 18 (2): 137-143 Jun 2004

24. Flores OA, Cardenas JC, Hernandez S, et al., Thermodynamic analysis of thermally coupled distillation sequences, Industrial & Engineering Chemistry Research 42 (23): 5940-5945 Nov 12 2003 Approximate Design of Fully Thermally Coupled Distillation Columns Korean journal of chemical engineering(2002),

14

http://ksci.kisti.re.kr/stat/pst_4050.jsp?sArtSeq=E1KIBM-2002-v19n3-383&sIssSeq=E1KIBM-2002-v19n3

25. Halvorsen IJ, Skogestad S, Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements, Industrial & Engineering Chemistry Research 42 (3): 605-615 Feb 5 2003

26. Kim YH, Structural design and operation of a fully thermally coupled distillation column, Chemical Engineering Journal 85 (2-3): 289-301 Jan 28 2002

27. Young Han Kim, Rigorous design of extended fully thermally coupled distillation columns, Chemical Engineering Journal 89 (2002) 89–99

28. M. Serra , M. Perrier, A. Espuna, L. Puigjaner, Analysis of different control possibilities for the divided wall column: feedback diagonal and dynamic matrix control, Computers and Chemical Engineering 25 (2001) 859–866

29. Samanta, A., Modelling and optimisation for synthesis of heat integrated distillation sequences in the contrast of the overall processes, PhD work, UMIST, Manchester (2001).

30. http://www.hszk.bme.hu/~sc207/Cikkek/Beszamolo.doc31. Kim YH, Rigorous design of fully thermally coupled distillation column, Journal Of

Chemical Engineering of Japan 34 (2): 236-243 Feb 200132. I. J. Halvorsen, Minimum energy requirements in complex distillation arrangements,

Dr.ing-thesis, 2001:43, NTNU33. Rakesh Agrawal, Multieffect distillation for thermally coupled configurations, Air

Products and Chemicals, Inc., Allentown, PA 18195, http://www3.interscience.wiley.com/cgi-bin/abstract/108066736/ABSTRACT?CRETRY=1&SRETRY=0

34. Emtir, M., E. Rev, Z. Fonyo, Rigorous simulation of energy integrated thermally coupled distillation schemes for ternary mixtures, Applied Thermal Engineering, 212 (2001), 1299-1317.

35. Jimenez, A., S. Hernandez, F. A. Montoy, M. Zavala-Garcia, Analysis of Control Properties of Conventional and Nonconventional Disitllation Processes, Ind. Eng. Chem. Res., 40, pp. 3757-3761 (2001).

36. Halvorsen, I., Minimum energy requirements in complex distillation arrangements, PhD Thesis, Norvegian Univ. oöf Science and Techn (2001)

37. Ben-Guang-Rong, Steger, Thermodynamically Efficient Distillation Schemes for Multicomponent Separations, Report to Prof, Kraslawsky, Lappenrantee (2000)

38. Yeomans H, Grossmann IE, Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models, Ind Eng Chem Res 39 (11): 4326-4335 Nov (2000).

39. R. Agrawal, Multieffect distillation for thermally coupled configurations, AIChE Journal, 46(11), 2211-2224 (2000).

40. Maria Serra, Antonio Espuna, Luis Puigjaner, Control and optimization of the divided wall column, Chemical Engineering and Processing 38 (1999) 549-562

41. Hernandez S., A. Jimenez, Controllability analysis of thermally coupled distillation systems, Ind. Eng. Chem. Res., 38, pp. 3957-3963 (1999).

42. Adrian Bejan, Eden Mamut, Thermodynamic Optimization of Complex Energy Systems, ISBN 0792357256, Springer (1999)

15

43. Dunnebier G., Pantelides C.C., Optimal design of thermally coupled distillation columns, Ind. Eng. Chem. Res., 38(1), 162-176 (1999).

44. E. F. Johansen, Energy savings and economical comparison of energy integrated and thermally coupled distillation systems, Diploma Work, Norwegian Institute of Technology (2000).

45. Hernandez S., Jimenez A., Design of energy efficient Petlyuk systems, Comp. Chem. Engng, 23(8), 1005-1010 (1999).

46. Database prosessregulering, http://www.kkt.chembio.ntnu.no/%7Eskoge/reg.bib (1998).

47. Sauar, E., Energy efficient process design by equipartition of forces, PhD work, Norwegian University of Science and Technology (1998).

48. Bakosova M., Ondrovicova M.: Control system design for a pilot distillation column (in Slovak), AT&PJjournal, No.4, 1997.

49. Puigjaner, L., Full Informatiu Dept. d'Enginyeria Química, 4, 1996.50. http://www.osti.gov/energycitations/searchresults.jsp?Author=Mizsey,%20P .51. http://www.cheric.org/research/tech/periodicals/view.php?

seq=541229&jourid=6&mode=ref52. http://www.freepatentsonline.com/6173584.html 53. http://www.freepatentsonline.com/6803483.html 54. http://www.iq.itc.mx/rmiq/2006_p_s121.pdf 55. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?

article=1000&context=chemengthermalmech

Mizsey, P. and I. Kalmar, Effects of recycle on control of chemical processes, Comp. Chem Engng, 20, pp. S883-S888 (1996).

1. Michael Baldea, Prodromos Daoutidis, Control of integrated process networks—A multi-time scale perspective, Computers and Chemical Engineering 31 (2007) 426–444

2. http://citeseer.ist.psu.edu/40487.html 3. Baldea, M., P. Daoutidis, A. Araujo, S. Skogestad, Integrated process networks,

AICHE-Meeting, 2006, http://www.nt.ntnu.no/users/skoge/publications/2006/baldea_aiche06/AICHE06-F.ppt

4. Kendell R. Jillson, B. Erik Ydstie, Process networks with decentralized inventory and flow control, Journal of Process Control 17 (2007) 399–413

5. Thidarat Tosukhowong, Dynamic Real-Time Optimization and Control of an Integrated Plant, Georgia Institute of Technology, December 2006, http://etd.gatech.edu/theses/available/etd-08242006-111945/unrestricted/tosukhowong_thidarat_200612_phd.pdf

6. Rovaglio M, Manca D, Cortese F, A reliable control for the ammonia loop facing limit-cycle and snowball effects, AICHE Journal 50 (6): 1229-1241 Jun 2004

7. Aditya Kumara, Prodromos Daoutidis, Nonlinear dynamics and control of process systems with recycle, Journal of Process Control 12 (2002) 475–484

8. http://citeseer.nj.nec.com/context/328570/0 9. Larsson, T., S. Skogestad, Plantwide control – A review and a design procedure,

(2002) http://www.nt.ntnu.no/~skoge/tmp/plantwide_review3/

16

10. Rovaglio M., Manca D., Cortese F., Mussone P., Multistability and robust control of the ammonia synthesis loop, ESCAPE-11, pp. 723-730, Elsevier (2001).

11. Larsson T, Skogestad S, Plantwide control - A review and a new design procedure, Modeling Identification and Control 21 (4): 209-240 OCT 2000.

12. Larson, T., Studies on plant-wide control, PhD Thesis, Norvegian Univ. oöf Science and Techn (2000)

13. Larsson T. and Skogestad, S. (1998): "A review of Plantwide Control", Internal report EU CAPENET project (TWG5).

14. Skogestad, S., Larson T., A review of plantwide control, Norvegian Univ. of Technology (1998)

15. Dynamics of Recycle Systems, Lehigh University, Literature Review, http://www.lehigh.edu/~fdr2/literature.html

16. Database prosessregulering, http://www.kkt.chembio.ntnu.no/%7Eskoge/reg.bib (1998).

17. Meszaros A., Bakosova M., Dvoran J., Some topical questions of biochemical process control (in Slovak), AT&P Journal, No.4, 1997.

18. Meszaros I., Danko J., Meszaros A., Control system design for a laboratory storage tanks-in-series model (in Slovak), AT&PJjournal, No.4, 1997.

19. Bakosova M., Ondrovicova M.: Control system design for a pilot distillation column (in Slovak), AT&PJjournal, No.4, 1997.

20. Meszaros I, Meszaros A. and Kozka S., Control of tubular chemical reactor as a distributed parameter system (in Slovak)24. conf. of the Slovak Soc. of Chem. Engineers, Casta (Slovakia), 1997

21. Meszaros I., Azevedo S. and Meszaros A., Model reference adaptive control of fed-batch biochemical process. Int. Conf. PC'97, Tatr. Matliare (Slovakia) 1997,

Annakou, O., A. Meszaros, Zs. Fonyo and P. Mizsey, Operability investigation of energy integrated distillation schemes, Hungarian Journal of Industrial Chemistry, 24, pp. 155-160 (1996).

1. Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Dynamic analysis of thermally coupled distillation sequences with undirectional flows for the separation of ternary mixtures, Korean Journal of Chemical Engineering 23 (5): 689-698 SEP 2006

2. Serra M., Perrier M., Espuna A. et al., Analysis of different control possibilities for the divided wall column feedback diagonal and dynamic matrix control, Comput Chem Engng 25( 4/6) 859-866, May (2001)

3. Dunnebier G., Pantelides C.C., Optimal design of thermally coupled distillation columns, Ind. Eng. Chem. Res., 38(1), 162-176 (1999).

4. Serra, M., A. Espuna, L. Puigjaner, Control and optimisation of divided wall column, Chem. Eng. Proc., 18 (4-6), pp549-562 (1999).

5. Hernandez S., Jimenez A., Controllability analysis of thermally coupled distillation systems, Ind. Eng. Chem Res., 38, pp. 3957-3963 (1999).

Annakou, O. and P. Mizsey, Rigorous investigation of heat pump assisted distillation, Heat Recovery Systems & CHP, 15(3), pp. 241-247 (1995).

17

1. Yasuki Kansha, Naoki Tsuru, Chihiro Fushimia, Kaoru Shimogawarac, Atsushi Tsutsumia, An innovative modularity of heat circulation for fractional distillation, Chemical EngineeringScience, Article in press, 2009

2. Segovia-Hernandez JG, Hernandez S, Femat R, et al., Control of thermally coupled distillation arrangements with dynamic estimation of load disturbances, Industrial & Engineering Chemistry Research 46 (2): 546-558 Jan 17 2007

3. Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Dynamic analysis of thermally coupled distillation sequences with undirectional flows for the separation of ternary mixtures, Korean Journal of Chemical Engineering 23 (5): 689-698 Sep 2006

4. Demirel Y, Thermodynamic analysis of separation systems, Separation Science and Technology 39 (16): 3897-3942 2004

5. Y. Demirel, Thermodynamic Analysis Of Separation Systems, Chemical and Biomolecular Engineering Research and Publications Papers in Thermal Mechanics University of Nebraska – Lincoln, 2004

6. http://www.cheric.org/research/tech/periodicals/view.php?seq=77589&jourid=89&mode=ref

7. http://etd.adm.unipi.it/theses/available/etd-06302005-145049/unrestricted/Tesidefinitiva.pdf, PhD Thesis

8. Fonyó Zsolt – Szépvölgyi János – Harangozó Gábor, A megelőző környezetvédelmi szemlélet térnyerése a hazai vegyiparban, 15. szám, (2004) http://korny10.bke.hu/kti/15_szam.pdf

9. Oliveira SBM, Parise JAR, Marques RP, Modelling of an ethanol-water distillation column assisted by an external heat pump, International Journal of Energy Research 26 (12): 1055-1072 Oct 10 2002

Mizsey, P. and Zs. Fonyo, Waste reduction strategies in the chemical industry, Cleaner Technologies and Cleaner Products for Sustainable Development, NATO ASI Series, Partnership Sub-Series 2. Environment, Vol. 2, pp. 141-152, ed. by H. M. Freeman et al, Springer Verlag (1995).

1. Chia-Chin Wu, Ni-Bin Chang, Production, Manufacturing and Logistics Corporate optimal production planning with varying environmental costs: A grey compromise programming approach, European Journal of Operational Research 155 (2004) 68–95

2. http://www.wrc.org.za/publications/watersa/2004/Apr-04/1693.pdf 3. Paula A Blomquist and Nicola J Brown, A review of the pre-assessment and

assessment techniques used in waste minimisation audits, School of Chemical and Physical Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa, http://www.wrc.org.za/archives/watersa%20archive/2004/Apr-04/1.pdf

Mizsey P., Waste reduction in the chemical industry - a two level problem, Journal of Hazardous Materials, 37 pp. 1-13 (1994).

18

1. Ndeke Musee, Leon Lorenzen, Chris Aldrich, Cellar waste minimization in the wine industry: a systems approach, Journal of Cleaner Production 15 (2007) 417-431

2. Fonyó Zsolt – Szépvölgyi János – Harangozó Gábor, A megelőző környezetvédelmi szemlélet térnyerése a hazai vegyiparban, 15. szám, (2004) http://korny10.bke.hu/kti/15_szam.pdf

3. Laurent Cavin, A systematic approach for multi-objective process design in multi-purpose batch plants, EPFL PhD 14898 (2003), http://e-collection.ethbib.ethz.ch/ecol-pool/diss/fulltext/eth14898.pdf

4. http://www.rsc.org/denial/denialloginfrm.cfm 5. A. Bartzokas, M. Yarime, Technology trends in pollution-intensive industries: a

review of sectoral trends, The United nations University, INTECH, 19976. http://www.intech.unu.edu/publications/discussion-papers/9706.pdf7. Cavin L, Dimmer P, Fischer U, Hungerbuhler K, A model for waste treatment

selection and costing under uncertainty, Industrial & Engineering Chemistry Research, 40 (10): 2252-2259 May 16 2001

8. Vaklieva-Bancheva N., B. Ivanov, Waste minimisation through optimal plant retrofit, Computers chem. Engng, 23, S75-78 (1999).

9. Canoruiz J.A., McRae GJ, Environmentally conscious chemical process design, Annual Review of Energy and Environment, 23, 499 (1998)

10. Vaklieva-Bancheva N, Ivanov B, Massev T, Waste water reduction from the culture medium preparation step of an antibiotic production, Hungarian Journal of Industrial Chemistry 26 (1): 55-62 1998

11. Bartzokas A., M. Yarime, Technology trends in pollution intensive industries, UN University, 1997, http://www.intech.unu.edu/publications/discussion-papers/9706.pdf

12. N. Kruseman, From end-of-pipe technology to clean technology, http://www.merit.unu.edu/publications/phd/MYarime.pdf

13. Dantus, M. M. and K. A. High, Economic evaluation for the retrofit of chemical processes through waste minimisation and process integration, Ind. Engng Chem. Res., 35, pp. 4566-4578 (1996).

14. Omar Annakou, Rigorous comparative study of energy integrated distillation schemes, Dissertation for the degree of Candidate of Chemical Sciences, The Hungarian Academy of Sciences, 1996.

15. Watts R.J., M.E. Nubbe, T.F. Hess, Hazardous wastes, assessment, management, minimization and review, Water Env. Research, 67, 553-559 (1995).

16. Nelson L. Nemerow, Waste minimisation through industrial complexes, Wiley-IEEE ISBN 0471121649 (1995)

17. Hitchmann M.L., R. A. Spackman, N. C. Ross, C. Agra, Disposal methods for chlorinated aromatic waste, Chem. Soc. Rev., 24(6), 423 (1995).

Fonyo Z. and P. Mizsey, Economic applications of heat pumps in integrated distillation systems, Heat Recovery Systems & CHP, 14(3) pp. 249-263 (1994).

1. Kaeser M, Pritchard CL, The impact of heat transfer on Murphree tray efficiency, Energy 31 (15): 3108-3116 Sp. Iss. SI DEC 2006

19

2. Bjorn IN, Gren U, Soemardj AP, Intermediate heat exchange for fixed separation requirements - Applications to a binary sieve tray distillation column for energy savings, Chemical Engineering Research & Design 84 (A6): 453-464 Jun 2006

3. Midilli A, Ayhan T, Natural vacuum distillation technique - Part II: Experimental investigation, International Journal Of Energy Research 28 (5): 373-389 Apr 2004

4. Holiastos, K., V. Manousiouthakis, Minimum hot-cold and electric utility cost for a finite-capacity reservoir system, Comput. Chem. Engng, 23(9), pp. 1263-1276 (1999).

5. Holiastos, K., V. Manousiouthakis, Minimum hot-cold and electric utility cost for a finite-capacity reservoir system, Paper 198b, AICHE Mtg., Los Angeles (1997).

6. Verfahrenstechnische Berechnungsmethoden, Thermisches Trennen, Ausrüstung und ihre Berechnung, Herausgeber: S. Weiss, Deutscher Verlag für Grundstoffindustrie Stuttgart (1996).

Mizsey P. and Z. Fonyo, Distillation control for packed and trayed columns, Hungarian Journal of Industrial Chemistry, 22, pp. 139-145 (1994).

1. Sloley A.W., Avoid problems during distillation column startups, Chem. Eng. Prog., 92, 30 (1996)

2. Omar Annakou, Rigorous comparative study of energy integrated distillation schemes, Dissertation for the degree of Candidate of Chemical Sciences, The Hungarian Academy of Sciences, 1996.

Rev E., P. Mizsey and Z. Fonyo, Framework for designing feasible schemes of multicomponent azeotropic distillation, Computers chem. Engng, 18, Suppl., pp. S43-S47 (1994).

1. Li JW, Lei ZG, Ding ZW, et al., Azeotropic distillation: A review of mathematical models, Separation and Purification RevieWS 34 (1): 87-129 JAN-JUN 2005

2. A. Raab, Separation of highly nonideal mixture for solvent recovery, Diplom Work, Graz University of Technology, 2001.

3. Widagdo S, W. D. Seider, Azeotropic distillation & review, AIChE J., 42, 96-130 (1996).

Mizsey P., A környezetvédelem időszerű kérdései, Magyar Kémikusok Lapja, 48 (10-11) 411-420 (1993).

1. Fábry Gergely: Környezetbarát műszaki fejlesztés és a fenntartható fejlődés, Diplomamunka, BME (2004)

Mészáros, A., J. Mikles, P. Dostál and P. Mizsey, Control of nonlinear chemical processes using linear model based algorithms, Hungarian Journal of Industrial Chemistry, 21. pp. 81-86 (1993).

20

1. Bakošová M., Zemanovicová A., Karšaiová M.: High-purity Control of Distillation Columns. In: Proceedings of the 39th International Petroleum Conference. Bratislava, Sept. 20. - 23. 1999. SK. Slovnaft, Inc., Bratislava. Vol. 2, p. H7.-1 - H7.-8 (1999).

2. Bakošová M., Karšaiová M., Ondrovicová M., Matko J.: Adaptive l-tracking of a distillation column. In: Proceedings of the 12th Conference Process Control '99. Tatranske Matliare, May 31. - June 3. 1999. SK. STU, Bratislava. Vol. 1, p. 276-279 (1999), ISBN 80-227-1228-0.

Rev E., P. Mizsey, and Z. Fonyo, Framework for designing feasible schemes in quaternary azeotropic distillation, Hungarian Journal of Industrial Chemistry, 20, pp. 285-291 (1992).

1. Widagdo S, W. D. Seider, Azeotropic distillation & review, AIChE J., 42, 96-130 (1996).

Fonyo Z. and P. Mizsey, Consideration of operability during process design, AIChE Spring National Meeting, New Orleans (1992).

1. Database prosessregulering, http://www.kkt.chembio.ntnu.no/%7Eskoge/reg.bib (1998).

Mizsey P. and E. Rev, Use of flowsheet simulator in heat exchanger network design. Hungarian Journal of Industrial Chemistry 20 pp. 91-97 (1992).

1. Database prosessregulering, http://www.kkt.chembio.ntnu.no/%7Eskoge/reg.bib (1998).

2. Uday V. Shenoy, Heat Exchanger Network Synthesis, Gulf Publishing Company, Book Division, Houston, Texas, 1995.

3. Jezowski J, heat-exchanger network grassroot and retrofit design - the review of the state-of-the-art .2. Heat-exchanger network synthesis by mathematical-methods and approaches for retrofit design, Hungarian Journal of Industrial Chemistry 22 (4): 295-308 1994

4. Jezowski, J., Heat exchanger network grassroot and retrofit design, The review of the state-of-the art, Part II, Hungarian Journal of Industrial Chemistry, 23, pp. 295-308 (1994).

Hajdú H. and P. Mizsey, Principles of Chemical Process Control, Chapter 5 in Studies in Computer-Aided Modelling, Design and Operation, Elsevier, Akadémiai Kiadó, 1992.

1. Hangos K. és Varga E., Könyvismertetés, Magyar Kémiai Folyóirat, 98 (12), 504 (1992).

2. Hippe, Z. S., Polish J. Chem, 67, 769 (1993).3. Futterer, E., Buchbeschreibung, Chem.-Ing.-Techn., 66, Nr 4 (1994)4. Paterson, W. E., Book review, Transactions (1995).

21

Mizsey P. and Z. Fonyo, Energy integrated distillation system design enhanced by heat pumping, Distillation and Absorption 1992, IChemE, pp. B69-B76 (1992).

1. Omar Annakou, Rigorous comparative study of energy integrated distillation schemes, Dissertation for the degree of Candidate of Chemical Sciences, The Hungarian Academy of Sciences, 1996.

Mizsey P. and Z. Fonyo, Assessing plant operability during process design. Computer-Oriented Process Engineering, Elsevier, pp. 411-416 (1991).

1. Groenendjik, A. J., A. C. Dimian, P. Iedema, Systems approach for evaluating dynamics and plantwide control, AIChE Journal, 46(1) pp. 133-145 (2000).

2. Dimian, A.C., System approach in design and operation of complex plants, 86e, AIChE Spring Mtg. New Orleans (1996).

3. Dimian, A.C., A. J. Groenendjik and P. Iedema, Systems analysis in handling impurities in complex plants, 20, Comp. Chem. Engng S805-S810 (1996).

4. Omar Annakou, Rigorous comparative study of energy integrated distillation schemes, Dissertation for the degree of Candidate of Chemical Sciences, The Hungarian Academy of Sciences, 1996.

5. W.Lenz, H.Schuler: Chem. -Ing. -Tech. 64, (7) 662 (1992).6. F. Gross, Die Untersuchung der Regelbarkeit im Prozessdesign, Chem.-Ing.-Tech. 64

Nr.8, S. 738-739 (1992)7. Gross, F., Energy efficient design and operation of Complex Distillation Processes,

Ph. D. Thesis, ETH-Zürich (1995).8. Morari M., Effect of design on the controllability of chemical plants, Plenary

Address, IFAC Workshop on Interaction Between Process Design and Process Control, London, UK, September 6-8 (1992).

9. Fonyo Z. und F. Gross, Die Untersuchung der Regelbarkeit im Prozessdesign, Chem.-Ing.-Tech. 64 Nr.8, S. 738-739 (1992)

P. Mizsey, A global approach to the synthesis of entire chemical processes, Ph. D. Thesis No. 9563, ETH-Zürich (1991).

1. Heckl I., Szétválasztó hálózatok szintézise, PhD értekezés, Veszprém (2007)2. Szanyi, A., Separation of highly non-ideal quaternary mixtures with EHAD, PhD

work, BUTE (2005)3. Meszaros A, P. Dostal, and W. Bales, Krasni Prumysl, Technology Today 2, p. 25

(1993).4. Gross, F., Energy efficient design and operation of Complex Distillation Processes,

Ph. D. Thesis, ETH-Zürich (1995).5. Omar Annakou, Rigorous comparative study of energy integrated distillation schemes,

Dissertation for the degree of Candidate of Chemical Sciences, The Hungarian Academy of Sciences, 1996.

22

Fonyo Z., E. Rev and P. Mizsey, Heat exchanger network synthesis at unequal heat transfer conditions, PSE '91, Montebello, Quebec, Canada, Volume I, pp. I.7.1.-I.7.15 (1991).

1. Uday V. Shenoy, Heat Exchanger Network Synthesis, Gulf Publishing Company, Book Division, Houston, Texas, 1995.

Mizsey, P. and Rev, E., The use of flowsheet simulators in heat exchanger network synthesis, Hungarian Journal of Industrial Chemistry, 19, pp. 293-299 (1991).

1. Uday V. Shenoy, Heat Exchanger Network Synthesis, Gulf Publishing Company, Book Division, Houston, Texas, 1995.

Mizsey P. and Z. Fonyo, Design of integrated total flowsheets: a combined approach, Computer Applications in Chemical Engineering, pp. 87-92, Elsevier, Amsterdam (1990).

1. Timo Kivisaari, PhD Stockholm, (2001), http://www.diva-portal.org/diva/getDocument?urn_nbn_se_kth_diva-3226-2__fulltext.pdf

2. Jürgen Köhler, Struktursynthese und minimaler Energiebedarf nichtidealer Rektifikationen, Ph. D. Dissertation, München (1991).

3. C.Pritchard: Proc. 3nd Int. Workshop on Heat Pumps, Graz, Sept. 1990, p449

Mizsey P. and Z. Fonyo, Toward a more realistic process synthesis - the combined approach, Comp. chem.. Engng 14(11) pp. 1213-1236 (1990).

1. Heckl I., Szétválasztó hálózatok szintézise, PhD értekezés, Veszprém (2007)2. Segovia-Hernandez JG, Hernandez S, Femat R, et al., Control of thermally coupled

distillation arrangements with dynamic estimation of load disturbances, Industrial & Engineering Chemistry Research 46 (2): 546-558 Jan 17 2007

3. David W. Pennington1 & Po Lock Yue, A Screening-Level Prototype for the Synthesis or Analysis of Separation Systems to support Identification of Inherently Cleaner Chemical Processes, http://www.geocities.com/dwpennington/A-19.html

4. Segovia-Hernandez JG, Hernandez-Vargas EA, Marquez-Munoz JA, et al., Control properties and thermodynamic analysis of two alternatives to thermally coupled distillation systems with side columns, Chemical and Biochemical Engineering Quarterly 19 (4): 325-332 Dec 2005

5. Jhuma Sadhukhan, Nan Zhang, X.X. Zhu, Analytical optimisation of industrial systems and applications to refineries, petrochemicals, Chemical Engineering Science 59 (2004) 4169 – 4192

6. Xiaoning Li, Andrzej Kraslawski Conceptual process synthesis: past and current trends, Chemical Engineering and Processing 43 (2004) 589–600

7. Henrik Dalsgård, Simplification of process integration in medium-size industry, PhD, Department of Mechanical Engineering, Energy Engineering, Technical University of Denmark (2002)

23

8. Manninen, J., X.X. Zhu, Level-by-level flowsheet synthesis methodology for thermal system design, AIChE J., 47(1), pp. 142-159 (2001).

9. http://www.geocities.com/dwpennington/A-18.htm 10. http://www.geocities.com/dwpennington/A-19.htm11. http://www.fquim.unam.mx/html/cursos/din_pro/biblio.html12. Sobocan, G., P. Glavic, A simple synthesis method for studying thermally integrated

distillation sequences, The Canadian Journal of Chemical Engineering, 78, pp. 908-916 (2000).

13. Dinamica de Process de Separacion, http://www.fquim.unam.mx/html/ cursos/din_pro/biblio.html

14. Sobocan G, Glavic P, A simple synthesis method for studying thermally integrated distillation sequences, Can J Chem Eng 78 (5): 908-916 Oct (2000).

15. Adrian Bejan, Eden Mamut, Thermodynamic Optimization of Complex Energy Systems, Springer (1999)

16. Pressly T.G., Ng-K.M., Process Boundary Approach to separation synthesis, AIChE J., 45(9) 1939-1952 (1999).

17. E. F. Johansen, Energy savings and economical comparison of energy integrated and thermally coupled distillation systems, Diploma Work, Norwegian Institute of Technology (2000).

18. Fraga E.S., The generation and use of partial solutions in process synthesis, Chem. Eng. Res., 76(A1) 45-54 (1998).

19. Database prosessregulering, http://www.kkt.chembio.ntnu.no/%7Eskoge/reg.bib (1998).

20. Ruiz C. A., C. Jaksland and R. Gani, Energy efficiency in high purity cyclohexane distillation, Trans. IChemE, 76, pp. 368-375, Part A, March (1998).

21. Keil FJ, Optimisation of process engineering processes, Chem. Ing Techn., 68(6), 639-650 (1996).

22. Omar Annakou, Rigorous comparative study of energy integrated distillation schemes, Dissertation for the degree of Candidate of Chemical Sciences, The Hungarian Academy of Sciences, 1996.

23. Walsh, S., J. Perkins, Operability and control in process synthesis and design, Advances in Chem. Engng, Ed. Anderson, Vol. 23, 301 (1996)

24. Homsak M., P. Glavic, Chem Eng. Res, 35, 1877 (1996).25. Jaksland, C.: Separation Process Design based on Thermodynamic Insights, PhD

thesis, TU Denmark, Lyngby, 199626. Jaksland C., R. Gani, K.M. Lien, Separation process design and synthesis based on

thermodynamic insights, Chem. Eng. Sci., 50, 511-530 (1995).27. Kovac A. P. Glavic, Retrofit of complex and energy intensive processes 1., Comp.

Chem. Engng, 19, 1255-1270 (1995),28. Uday V. Shenoy, Heat Exchanger Network Synthesis, Gulf Publishing Company,

Book Division, Houston, Texas, 1995.29. Homsak M., P. Glavic, Appropriate placement of energors against local pinch

temperatures, Chem Eng Res, 73, 871-879 (1995).30. Smith, R. and M. Omidkah Nasrin, Trade-offs and interaction in reaction and

separation systems, Part I: Reaction with no selectivity losses, Trans IChemE, Vol 71, Part A, September 1993, p467-473.

24

31. Walsh: Integrated Design of Chemical Waste Water Treatment Systems, Ph.D.Thesis, Imperial College, London, 1993, May.

32. R.Smith, M.O.Nasrin: Reaction and separation systems 1, Trans. IChemE, 71, Part A, Sept.474-478, (1993);

33. Homsak M. and P. Glavic, Appropriate placement of energors against local pinch temperatures, Paper submitted to AIChE J. (1993).

34. Stay at the Forefront of Research with Pergamon's, Chemical Engineering Programme, A selection of papers, Vol 17, Pergamon Press (1993).

35. Papafotiou K, Assimacopoulos D, Marinoskouris D, Synthesis of a reverse-osmosis desalination plant - an object-oriented approach, Chemical Engineering Research & Design 70 (3): 304-312 May 1992

36. Gundersen T., Achievements and future challenges in industrial design applications of process systems engineering, PSE'91, Montebello, Quebec, Canada (1991).

37. T.Omtveit, Z.Valaskova, P.E.Wahl and K.M.Lien: "Decomcosed Algorithmic Synthesis of Reactor-Separator-Recycle Systems", Comp. Chem. Engng., 18(11/12) p.1115-1124 (1994).

38. Meszaros A., Control strategy for industrial bioprocesses, Technology Today, Prague, to be appeared (1992).

39. Dostar V., A. Meszaros, and P. Prokop, Continuous time control of two input-single output linear systems, Electrotechnical Journal 4, pp 37-48 (1992).

40. Omtveit T., Z. Valaskova, P. E. Wahl and K. M. Lien, Decomposed algorithmic synthesis of reactor-separator-recycle system, Comp. Chem. Engng, 17, S95, (1993).

41. Homsak M. and P. Glavic, Thermodynamic analysis of inappropriately placed energetic units, Computer-Oriented Process Engineering, Elsevier, Amsterdam p.363,(1991).

42. P.E.Wahl: "Synthesis of Heat Integrated Distillation Sequences", Ph.D. Thesis, University of Trondheim, Norway, 1991

43. Kovac, A and P. Glavic, Retrofit of complex and energy intensive processes, Computers and Chemical Engng, 19, 1255 (1993).

44. R.R. Rodrigues, Application a la Distillation Diabatique et aux Ponmpes a Absorption, PhD Thesis, INPL, Nancy (1993).

Fonyo Z. and P. Mizsey, A global approach to the synthesis and preliminary design of integrated total flowsheets. AIChE Annual Meeting, paper 26g, Chicago November 1990.

1. J. Sadhukhan, R. Smith, Synthesis of industrial systems based on value analysis, Computers and Chemical Engineering 31 (2007) 535–551

2. Grossmann IE , Caballero JA, Yeomans H, Mathematical Programming Approaches to the Synthesis of Chemical Process Systems, http://www.cheric.org/research/tech/periodicals/vol_view.php?seq=9024&start=0&number=1&jourid=6&vol=16&num=4&totalcount=20

3. Grossmann, Ignacio E., Pío A. Aguirre and Mariana Barttfeld, Optimal synthesis of complex distillation columns using rigorous models, Computers & Chemical Engineering, Volume 29, Issue 6, 15 May 2005, Pages 1203-1215

4. http://egon.cheme.cmu.edu/Group/Papers/PI99.pdf

25

5. http://enq.ufsc.br/eventos/enpromer99/pdf/LAAR1_CP01.pdf , Grossman, I. J., Caballero, Yeomans, Advances in Mathematical programming, Latin American Applied Research, 30, 273 (2000)

6. Ignacio E. Grossmann, Jose Antonio Caballero and Hector Yeomans, Advances in mathematical programming for the synthesis of process systems, http://egon.cheme.cmu.edu/Papers/GrossmannCaballeroYeoAdv.pdf

7. Grossmann, I., J. A. Caballero and H. Thomas, Advances in mathematical programming for automated design, integration and operation of chemical processes, Process Integration Proceeding, pp. 37-66, Copenhagen (1999).

8. Daichendt M.M., I.E. Grossman, Interpretation of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets, Comp Chem Engng, 22, 147-175, (1997).

9. Grossmann I. E, M. M. Daichendt., New trends in optimization-based approaches to process synthesis, Comp. Chem Engng, 20, 665-683 (1996).

10. Grossmann I. E., Mixed-integer optimization techniques for algorithmic process synthesis, Advances in Chem. Engng, Ed. Anderson, Vol. 23, 171 (1996).

11. Daichendt, M. M. and I. E. Grossmann: Preliminary screening procedure for the MINLP synthesis of Process systems, Comput. Chem. Engng, 18(8), 663-677 (1994).

12. Grossmann, I. E. and M. M. Daichendt: New trends in optimization-based approaches to process synthesys, PSE'94, Plenary lecture, May 30-June 3, Kyongju, Korea, 1994.

Mizsey P., Z. Fonyo, and L. Zhang, Energy integrated separation design enhanced by heat pumping: the retrofitting case, Proc. of the 3rd International Workshop on Research Activities on Advanced Heat Pumps, pp. 409-416, Graz, Austria (1990).

1. C.Pritchard: Lecture on CHISA-93, Praha, Sept. 1993.2. Omar Annakou, Rigorous comparative study of energy integrated distillation

schemes, Dissertation for the degree of Candidate of Chemical Sciences, The Hungarian Academy of Sciences, 1996.

Mizsey P. and Z. Fonyo, A predictor based bounding strategy for synthesizing energy integrated total flowsheet, Comput. chem. Engng 14(11) pp. 1303-1310 (1990).

1. Heckl I., Szétválasztó hálózatok szintézise, PhD értekezés, Veszprém (2007)2. Caballero JA, Grossmann IE, Structural considerations and modeling in the synthesis

of heat-integrated-thermally coupled distillation sequences, Industrial & Engineering Chemistry Research 45 (25): 8454-8474 Dec 6 2006

3. José A. Caballero; Ignacio E. Grossmann, Structural considerations and modeling in the synthesis of heat integrated distillation sequences, http://egon.cheme.cmu.edu/Papers/CaballeroStructuralHeat.pdf

4. Kovac A. P. Glavic, Retrofit of complex and energy intensive processes 1., Comp. Chem. Engng, 19, 1255-1270 (1995).

5. Omtveit T, Wah P. E., Lien K. M., Decomposed Algorithmic Synthesis Of Reactor Separation Recycle Systems, Comp. and Chem. Engng 18, 1115-1124 (1994)

6. Omtveit T., Z. Valaskov, P. E., Wahl, K. M. Lien, Decomposed algorithms synthesis of reactor-separator recycle system, Comp. Chem. Engng, 17, S95-S100 (1993).

26

7. Walsh: Integrated Design of Chemical Waste Water Treatment Systems, Ph.D.Thesis, Imperial College, London, 1993, May.

8. P.E.Wahl: "Synthesis of Heat Integrated Distillation Sequences", Ph.D. Thesis, University of Trondheim, Norway, 1991.

9. M.Homsak, P.Glavic: "Thermodynamic Analysis of Inappropiately Placed Enegetic Units", Computer Oriented Process Enginnering, Elsevier, Amsterdam, 1991, p363;

Mizsey P. and Z. Fonyo, A predictor based bounding strategy for synthesizing energy integrated total flowsheet, Preprints of the European Symposium on Computer Applications in the Chemical Industry p.261, Erlangen (1989).

1. Database prosessregulering, http://www.kkt.chembio.ntnu.no/%7Eskoge/reg.bib (1998).

2. Kovac, A and P. Glavic, Retrofit of complex and energy intensive processes, Computers and Chemical Engng, 19, 1255 (1993).

3. Hartmann, K.Kaplick: "Analysis and Synthesis of Chemical Process Systems", Elsevier, Amsterdam, 1990, p230

4. I.Britt et al: "A Computer-Aided Process Synthesis and Analysis Environment", in 3rd FOCAPD Proceedings, Elsevier, Amsterdam, 1990, p281

5. Britt, H. I., J. S. Wareck and J. A. Smith, A computer-aided process synthesis and analysis environment, FOCAPD-III pp. 281-307, Snowmass (1989).

Fonyo Z. and P. Mizsey, A new bounding strategy for synthesizing flowsheets with energy integration, AIChE Annual Mtg, Washington D. C. (1988).

1. Gundersen T. Retrofit process design, Research and applications of systematic methods, FOCAPD-III pp. 213-240, Snowmass (1989).

2. H.Schnitzer: Proc. 2nd Int. Workshop on Heat Pumps, Graz, Sept. 1988, p5293. S.Pierucci: Proc. 2nd Int. Workshop on Heat Pumps, Graz, Sept. 1988, p553

Fonyo Z. and P. Mizsey, The interaction between separation system synthesis and total flowsheet synthesis, CHEMDATA'88, Gothenburg, Sweden, pp. 519-524 (1988).

1. Hartmann, K. Kaplick: "Analysis and Synthesis of Chemical Process Systems", Elsevier, Amsterdam, 1990, p230

Mizsey P., H. Hajdú, and P. Földes, How construction affects column control, Hydrocarbon Processing, February pp. 53-56 (1987).

1. http://www.osti.gov/energycitations/searchresults.jsp?Author=Mizsey,%20P.2. http://www.nt.ntnu.no/users/skoge/publications/1992/revdist2/revdist2.pdf3. Database prosessregulering, http://www.kkt.chembio.ntnu.no/%7Eskoge/reg.bib

(1998).4. Skogestad, S., Dynamics and control of distillation columns, Model Ident and Control,

18(3), 177-217 (1997).5. Sawinsky J., Deák A., Magy Kem. Foly., 99, 131 (1993).

27

6. Skogestad, S., Dynamics and control of distillation columns - A critical survey, Proceedings of DYCOP'92, pp. 1-25 (1992).

7. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6669546 8. http://dialnet.unirioja.es/servlet/articulo?codigo=2216543&orden=101981&info=link

Bekassy-Molnar E., P. Mizsey, and P. Földes, Optimum parameters of plate absorbers I and II., Hung. Journal of Ind. Chem., 8, pp. 281-288, 8, pp 289-298 (1980).

1. Husni Mustafa Odeh, Szitatanyér és Nutter szelepes tányérok hidrodinamikája, Mûszaki doktori értekezés, Budapesti Mûszaki Egyetem (1988).

2. Antal József, Gyûrûszelepes tányérszerkezetek intenzifikálása, Mûszaki doktori értekezés, Budapesti Mûszaki Egyetem (1989).

3. Busa Csilla, Új típusú szerkezetek alkalmazása biológiai rendszer levegõztetésére, Mûszaki doktori értekezés, Budapesti Mûszaki Egyetem (1993).

4. Erki Zsuzsa, Korda Béla, Abszorbció hatásosságának vizsgalata újtípusú tányérszerkezeteken, Magyar Kémikusok Lapja (1992).

Földes P., H. Hajdu, and P. Mizsey, New interaction effects in distillation column dynamics, Int Symp. on Distill, 3rd, London, Publ. by Inst of Chem Eng, Rugby, Warwickshire, Endland, 2, 6/67- 2, 6/87 (1979).

1. Skogestad, S., Dynamics and control of distillation columns - A critical survey, Proceedings of DYCOP'92, pp. 1-25 (1992).

2. Sawinsky J. és Deák A., Recirkulációs modell frekvenciafüggvénye végtelen hosszú készüléknek megfelelő mérési feltétel esetén, Magyar Kémiai Folyóirat, 99(3), pp. 131-133 (1993).

3. Niesenfeld A. E. and R. C. Seemann, Distillation Columns, Instrument Society of America, Monograph 2, U.S.A. (1981).

NÉHÁNY, A MUNKA FOLYTATÁSÁRA UTALÓ, EGYÉB HIVATKOZÁS

Agnes Szanyi, Peter Mizsey, and Zsolt Fonyo, Novel Hybrid Separation Processes Based on Extractive Distillation For Solvent Recovery, Chem. Eng. Proc. 43 (2004) 327-338.

1. Berbekár Éva, Szakdolgozat (2008)2. Tóth András, Szakdolgozat (2008)3. Barta Kinga, Szakdolgozat (2008)4. Kucsera, Gy, Négykomponensű nem-ideális elegy elválasztása, Diplomamunka, BME

(2002)5. Balázs Péter: Nem-ideális elegy elválasztása extraktív

heteroazeotrop desztillációval, 2003

28

6. Horváth Marcell: Recirkulációt tartalmazó vegyipari rendszereke szabályozhatóságának vizsgálata, Diplomamunka, BME (2004)

Mizsey, P., A. Szanyi, J. Manczinger, Z. Fonyo, Novel hybrid processes for solvent recovery, 4-9, VDI Distillation & absorption 2002, Germany (2002)

1 Berbekár Éva, Szakdolgozat (2008)2 Tóth András, Szakdolgozat (2008)3 Barta Kinga, Szakdolgozat (2008)4 Kucsera, Gy, Négykomponensű nem-ideális elegy elválasztása, Diplomamunka, BME

(2002)5 Balázs Péter: Nem-ideális elegy elválasztása extraktív

heteroazeotrop desztillációval, 2003

Mizsey, P., A. Szanyi, A. Raab, J. Manczinger, Z. Fonyo, Intensification of a solvent recovery network through the use of a hybrid equipment, Computer Aided Chemical Engineering, 10, ELSEVIER, pp. 121-126, The Hague, The Netherlands (2002).

1. Kucsera, Gy, Négykomponensű nem-ideális elegy elválasztása, Diplomamunka, BME (2002)

2. Balázs Péter: Nem-ideális elegy elválasztása extraktív heteroazeotrop desztillációval, 2003

Newson, E., P. Mizsey, T. Truong, P. Hottinger, The autothermal partial oxidation kinetics of methanol to produce hydrogen, Oral lecture accepted to 12th

International congress on catalysis, Granada, Spain (2000).

1. Geissler, K., T. Schildhauer, Patentanmeldung für Plattenreaktor, PSI (2000).2. Schildhauer, T., Modellierung von Plattenreaktor für POX Anwendungen, PhD

Quartalsbericht (1999-2000).3. Geissler, K., Plattenreaktor Untersuchungen für Methanol POX Anwendungen, PhD

Quartalsbericht (1999-2000).

Newson, E., P. Mizsey, T. Truong, P. Hottinger, The kinetics of methanol decomposition and partial oxidation to produce hydrogen for fuel cells, Poster lecture accepted to 4th European Congress on Catalysis, Rimini, Italy, Sept. 5-10. (1999).

1. Taal, M., Catalyst characterisation and development for partial oxidation of methanol, Industrial Training Report, PSI (1999)

Mizsey, P. and E. Newson, Simulated and Experimental Data of MCH Dehydrogenation System with Membranes in Pilot plant size, PSI Report TM-51-98-09 (1998).

1. Schildhauer, T., Dehydrierung von Methylcyclohexan, PhD Quartalsbericht (1998).

29

2. Hottinger, P., T. B. Truong, F. von Roth, E. Newson, Betrieb der Zwei-Reaktor-Versuchsanlage (3kWth) für Dehydrierung mit Membran; MTH-Schlussbericht, PSI Report TM-51-98-08 (1998).

Mizsey P., Fonyó Zs., L. Puigjaner, A. Espuna, Szakaszos folyamatok tervezésének és ütemezésének alapjai I., Magyar Kémikusok Lapja, 54 (3), 117 (1999).

Mizsey P., Fonyó Zs., L. Puigjaner, A. Espuna, Szakaszos folyamatok tervezésének és ütemezésének alapjai II., Magyar Kémikusok Lapja, 54 (4), 161 (1999).

1.) Megyesi Gábor, Szakaszos folyamatok ütemezése fuzzy algoritmussal, Diplomamunka, BME, Budapest (2001).

Mizsey, P., N. Hau, N. Benko, I. Kalmar, Z. Fonyo, Process control for energy integrated distillation schemes, Comp. Chem. Engng, 22, pp. S427-434 (1998).

1. Gábor, M., Termikusan csatolt desztilláló rendszerek összetett vizsgálata, Diplomamunka, BME (2006)

Annakou, O., A. Meszaros, Zs. Fonyo and P. Mizsey, Operability investigation of energy integrated distillation schemes, Hungarian Journal of Industrial Chemistry, 24, pp. 155-160 (1996).

1. N. T. Hau, Energiaintegrált desztilláló rendszerek dinamikus szabályozhatósági vizsgálata, Diplomamunka, BME (1997).

Annakou, O. and P. Mizsey, Rigorous comparative study of energy integrated distillation schemes, Ind. & Eng. Chem., 35, pp. 1877-1885 (1996).

2. Gábor, M., Termikusan csatolt desztilláló rendszerek összetett vizsgálata, Diplomamunka, BME (2006)

3. N. T. Hau, Energiaintegrált desztilláló rendszerek dinamikus szabályozhatósági vizsgálata, Diplomamunka, BME (1997).

Mizsey, P. and I. Kalmar, Effects of recycle on control of chemical processes, Comp. Chem Engng, 20, pp. S883-S888 (1996).

1. Horváth Marcell: Recirkulációt tartalmazó vegyipari rendszereke szabályozhatóságának vizsgálata, Diplomamunka, BME (2004)

2. Dinh Duy Thanh, Recirkulációs rendszerek szabályozhatóságának vizsgálata, Diplomamunka, BME, 1996.

30

Annakou, O., Z. Fonyo and P. Mizsey, Economic and operability study of energy integrated ternary distillation schemes, AIChE Spring Mtg., Paper 30e, Houston, March (1995).

1. N. T. Hau, Energiaintegrált desztilláló rendszerek dinamikus szabályozhatósági vizsgálata, Diplomamunka, BME (1997).

Annakou, O., Z. Fonyo and P. Mizsey, Economic study of energy integrated distillation schemes, Workshop on Chemical Engineering (Mûszaki Kémiai Napok), Veszprém, April (1995).

1. N. T. Hau, Energiaintegrált desztilláló rendszerek dinamikus szabályozhatósági vizsgálata, Diplomamunka, BME (1997).

Mizsey P., Waste reduction in the chemical industry - a two level problem, Journal of Hazardous Materials, 37 pp. 1-13 (1994).

1. Berbekár Éva, Szakdolgozat (2008)2. Tóth András, Szakdolgozat (2008)3. Barta Kinga, Szakdolgozat (2008)

Mizsey P., A környezetvédelem időszerű kérdései a vegyiparban, Magyar Kémikusok Lapja, XLVIII évfolyam (10-11), pp. 411-420 (1993).

1. Simonyi I., A környezetvédelem aktuális problémái a magyar vegyiparban, Szakdolgozat, BME Természet és Társadalomtudományi Kar, 1994.

Mizsey, P., O., Annakou, A., Meszaros, and Zs. Fonyo, Operability investigation of energy integrated distillation schemes, AIChE Spring National Meeting, Paper 85d, New Orleans (1996).

1. N. T. Hau, Energiaintegrált desztilláló rendszerek dinamikus szabályozhatósági vizsgálata, Diplomamunka, BME (1997).

P. Mizsey, A global approach to the synthesis of entire chemical processes, Ph. D. Thesis No. 9563, ETH-Zürich (1991).

1. Szanyi, A., Separation of highly non-ideal quaternary mixtures with extractive heterogeneous azeotropic distillation, PhD, Budapest University of Technology and Economics (2005)

2. Raab, A., http://www.diplomica.com/db/diplomarbeiten6309.html3. Meinshausen, M., Aspekte eines Brennstoffzellensystems für mobile Anwendungen,

Semesterarbeit, ETH-Zürich (1998).

Mizsey P. and Z. Fonyo, Assessing plant operability during process design. Computer-Oriented Process Engineering, Elsevier, pp. 411-416 (1991).

31

1. N. T. Hau, Energiaintegrált desztilláló rendszerek dinamikus szabályozhatósági vizsgálata, Diplomamunka, BME (1997).

Mizsey, P., O. Annakou and Z. Fonyo, Operability study of energy integrated ternary distillation schemes, Preprints 10th Conference Process Control' 95, pp. 148-151, Tatranské Matlare, Slovak Republic (1995).

1. N. T. Hau, Energiaintegrált desztilláló rendszerek dinamikus szabályozhatósági vizsgálata, Diplomamunka, BME (1997).

Mizsey P., Fonyó Zs., Hajdú H., Baranyai G., Kovács A. és Hegedûs D., Kőolajipari főlepárló oszlop modellezése, Magyar Kémikusok Lapja, XLII évfolyam (5), pp. 174-178 (1987).

1. Hguyen The Hau, Hagyományos és a Petlyuk desztilláló kolonnák modellezése és összehasonlítása, Szakdolgozat, BME 1994.

Bekassy-Molnar E., P. Mizsey, and P. Földes, Optimum parameters of plate absorbers I and II., Hung. Journal of Ind. Chem., 8, pp. 281-288, 8, pp 289-298 (1980).

1. Sugar Judit, Rezgőnyelves tányéros abszorbert becslő program, Diplomamunka, Budapesti Műszaki Egyetem (1989).

2. Omar Annakou, Hydrodynamic and mass transfer behaviour of textile vibrating-valve plate, Diplomawork, Technical Unversity of Budapest (1991).

3. Busa Csilla, Rezgőnyelves gázmosó hatásfoka oldoszergőz abszorpció esetén, Diplomamunka, Budapesti Műszaki Egyetem (1989).

4. Eker Rashid, Hidrodinamikai, anyágatadási és keverési összefüggések rezgőnyelves tányérokra, Diplomamunka, Budapesti Műszaki Egyetem (1988).

5. Bíró István, Tányérszerkezetek hidrodinamikai és abszorbciós vizsgálata, Szakdolgozat, Budapesti Műszaki Egyetem (1984).

6. Németh Sándor, Abszorbert számító és adatfeldolgozó programok fejlesztese, Szakdolgozat, Budapesti Műszaki Egyetem (1991).

7. Jurácsik József, Kompromisszumos optimáló eljárások összehasonlító vizsgálata, Diplomamunka, Budapesti Műszaki Egyetem (1994).

32