40
HLAB MEETING -- Paper -- T.Gogami 30Apr2013

HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Embed Size (px)

Citation preview

Page 1: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

HLAB MEETING-- Paper --

T.Gogami30Apr2013

Page 2: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Experiments with magnets(e,e’K+) reaction

Page 3: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

• Dispersive plane• Transfer matrix• R12 , R16

• Emittance• Beam envelope• ・・・

詳細な計算  [参照 ]Transport AppendixK.L.Brown and F.Rothacker

Page 4: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Paper

Page 5: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Contents

• Introduction• Field-path integrals• First order imaging• Matrix formalism• Beam envelope and phase ellipse• Second order aberrations and sextupole elements• Practical magnet design

Page 6: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Contents

• Introduction• Field-path integrals• First order imaging• Matrix formalism• Beam envelope and phase ellipse• Second order aberrations and sextupole elements• Practical magnet design

Page 7: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Contents

• Introduction• Field-path integrals• First order imaging• Matrix formalism• Beam envelope and phase ellipse• Second order aberrations and sextupole elements• Practical magnet design

Page 8: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Design requirements

1. Correct beam transport properties2. To reduce the – Weight– Cost– Power

Page 9: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Dipole, Quadrupole, Sextupole

By(x) = a + bx + cx2 + ・・・・The field of the magnet as a multpole expansion about the central trajectory

Dipole term Quadrupole term Sextupole term

Page 10: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Dipole elements

R0 = mv/qB0

ObjectImage

Particle of higher momentum

Dipole termQuadrupole termSextupole term

Page 11: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Contents

• Introduction• Field-path integrals• First order imaging• Matrix formalism• Beam envelope and phase ellipse• Second order aberrations and sextupole elements• Practical magnet design

Page 12: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Field-path integral

Field-path integral B0R0

1 rad

𝑅0=𝑝

𝐵0𝑞

[rad]

Page 13: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Contents

• Introduction• Field-path integrals• First order imaging• Matrix formalism• Beam envelope and phase ellipse• Second order aberrations and sextupole elements• Practical magnet design

Page 14: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

A quadropole element

A) By a separate quadrupole magnetB) By a rotated input or output in a bending magnetC) By a transverse field gradient in a bending magnet

Page 15: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

A quadropole element

A) By a separate quadrupole magnetB) By a rotated input or output in a bending magnetC) By a transverse field gradient in a bending magnet

Extra cost

Page 16: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Rotated pole edge (1)

Imaging in the dispersive plane( Frequently used to generate first order imaging )

ΔB y=𝜕𝐵 𝑦𝜕 𝑥

𝑥

−𝜃=−𝑠 Δ𝐵 𝑦𝐵0𝑅 0

=−x

𝜕𝜕𝑥

(𝐵 𝑦 𝑠)

𝐵0𝑅 0

B y s=−𝐵0𝑥 tan𝛼

1𝑓 𝑥

=−𝜃𝑥

=−tan𝛼𝑅0

−𝜃=−𝑥tan𝛼𝑅0

Optical focusing power

Page 17: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Rotated pole edge (2)( Frequently used to generate first order imaging )

Imaging in the non-dispersive plane

ΔB x=𝜕𝐵𝑥𝜕 𝑦

𝑦=𝜕𝐵 𝑦𝜕𝑥

𝑦

𝜑=𝑠 Δ𝐵𝑥𝐵0𝑅 0

=𝑦

𝜕𝜕 𝑥

(𝐵 𝑦 𝑠)

𝐵0𝑅 0

B y s=−𝐵0𝑥 tan𝛼

1𝑓 𝑦

=−𝜑𝑦

=tan𝛼𝑅0

𝜑=−𝑦tan𝛼𝑅0

(Rot B = 0 )

Page 18: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Rotated pole edge (3)( Frequently used to generate first order imaging )

1𝑓 𝑥

=−tan𝛼𝑅0

Optical focusing power

Dispersive plane

Non-dispersive plane

Page 19: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Transverse field gradient (1)

𝑑𝑥 ′𝑥

=−𝑑𝑠𝑅02

1𝑓 𝑥

=𝑑𝑠𝑅02

Focusing power

𝑑𝑥 ′𝑥

=−𝜕𝐵 𝑦𝜕 𝑥

𝑑𝑠𝐵0𝑅 0

=𝑛

𝑅02𝑑𝑠

Transverse field gradient is zero (Pure dipole field)

Transverse field gradient is not zero

dB y=𝜕𝐵 𝑦𝜕 𝑥

𝑥

𝑛=−𝑅0𝐵0

𝜕𝐵 𝑦𝜕 𝑥 Field index

Page 20: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Transverse field gradient (2)

Total focusing power ( Dipole + transverse field gradient )

𝑛=−𝑅0𝐵0

𝜕𝐵 𝑦𝜕 𝑥

Field index

Page 21: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

A) A pure dipole filedFocusing in the dispersive plane

B) A transverse field gradient characterized by n– Focusing in both plane– Sum of the focusing powers is constant

1/fx + 1/fy = (1-n)/(R02)ds – n/R0

2 = ds/R02

C) If n=1/2Dispersive and non-dispersive focusing power: ds/2R0

2

D) If n < 0– Dispersive plane focusing power : strong and positive– Non-dispersive plane focusing power : negative

Transverse field gradient (3)

𝑛=−

𝑅0𝐵0

𝜕𝐵 𝑦𝜕 𝑥

Field index

Page 22: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Contents

• Introduction• Field-path integrals• First order imaging• Matrix formalism• Beam envelope and phase ellipse• Second order aberrations and sextupole elements• Practical magnet design

Page 23: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Matrix formalism (first order)

x1 = x

x2 = θ = px/pz(CT)

x3 = y

x4 = φ = py/pz(CT)

x5 = l = z – z(CT)

x6 = δ = (pz – pz(CT))/pz(CT)

𝑥𝑖 (𝑠 )=∑𝑗=1

6

𝑅𝑖𝑗 𝑥 𝑗 (0)

Page 24: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Examples of transport matrices Rij

Page 25: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Imaging

• R12 = 0– x-image at s with magnification R11

• R34 = 0– y-image at s with magnification R33

Page 26: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Focal lengths and focal planes

• x-plane

• y-plane

Page 27: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Dispersion

Page 28: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Contents

• Introduction• Field-path integrals• First order imaging• Matrix formalism• Beam envelope and phase ellipse• Second order aberrations and sextupole elements• Practical magnet design

Page 29: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Phase ellipse and Beam envelope

√𝜎 22

√𝜎 11x

θ

Phase ellipse

Beam emittance

x

z

√𝜎 11

1/2

Beam Envelope

s = 0 beam size (beam waist)

Page 30: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Output beam matrix

• Initial beam ellipse• R-matrix

σ (0 )=(𝜎 11(0) 00 𝜎 22(0))

𝜎 (𝑠 )=𝑹 σ (0 ) 𝑹𝑇=(𝜎 11(𝑠) 𝜎 12(𝑠)𝜎12(𝑠) 𝜎 22(𝑠))

𝜎 22 (𝑠) 𝑥2−2𝜎 12 (2 )𝑥𝜗+𝜎 11 (𝑠 )𝜗 2=|𝜎||𝜎|=𝜎 11 (𝑠)𝜎 22 (𝑠)−𝜎 212(𝑠)=𝜎 11(0)𝜎 22(0)

Initial Beam matrix

After a magnet system with an R-matrix (Rij)

Output beam ellipse

• Final beam matrix• Final beam ellipse

Page 31: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Contents

• Introduction• Field-path integrals• First order imaging• Matrix formalism• Beam envelope and phase ellipse• Second order aberrations and sextupole elements• Practical magnet design

Page 32: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Parameters

Page 33: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Practical magnet design

A) Bending power

B) Pole gap

C) Coil power

D) Magnet weight : Coil weight

: Steel weight

Key constrains

An advantage B0

R0 Focal length

Page 34: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

“Strong focusing” techniqueLarge pole edge rotation + Large field index

NOVA NV-10 ion implanter

Bend : 70 degreesGap : 5 cmBending radius : 53.8 cmPole gap field : 8 kGParticle : 80 keV antimonyWeight : 2000 lbPole edge rotation : 35 degreesField index : -1.152

x-defocusy-focus

x-focusy-defocus

x : DFDy : FDF

Uniform field bending magnet• Weight : 4000 lb• Pole gap field : 16 kG• Coil power : substantially higher

Page 35: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

SPL with field clamp + ENGE

New magnetic field map Committed to the svn

Page 36: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Split pole magnet (ENGE)

Page 37: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Matrix tuning (E05-115)

Before

After

FWHM ~ 4 MeV/c2

Page 38: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Backup

Page 39: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction

Transverse field gradient (2)

Total focusing power ( Dipole + transverse field gradient )

𝑛=−𝑅0𝐵0

𝜕𝐵 𝑦𝜕 𝑥

Field index

Simple harmonic motion

Simple harmonic motion

Page 40: HLAB MEETING -- Paper -- T.Gogami 30Apr2013. Experiments with magnets (e,eK + ) reaction