Homework1[m] (1)

Embed Size (px)

Citation preview

  • 8/16/2019 Homework1[m] (1)

    1/11

    Homework 1 : Classical Mechanic   I

    Harirak Intarak 

    5405282

    Finding the force by knowing the potential energy

    Our staring point we consider particle acted by conservative force  F(r)   , with corresponding potential energy  U(r)  ,

    and examine the word done by  F(r)  in a small displacement from  r  to dr , From the definition of work ;

    W (r → r + dr) = F (r) · dr

    = F xdx + F ydy + F zdz    (1)

    for any small displacement dr  with component (dx,dy,dz) On the other hand, From the definition of potential

    energy is

    U r+dr − U r  = −

    ∫   r+drr

    F (r′) · dr′

    When dr   is the small displacement that   F   is not vary appreciably over the path, the integral on the right side is

    approximately to −F   · drdU  = −F   · dr   (2)

    When we put (2) to (1) we get ;

    W (r → r + dr) = −dU  = −[U (r + dr) − U (r)]

    = −[U (x + dx, y + dy, z  + dz )− U (x,y ,z )]   (3)

    For functions of one variable, a difference like that in (3) can be expressed in terms of the derivative :

    df  = f (x + dx)− f (x) =  df 

    dx dx

    We have functions of three variable in (3) ,the corresponding result is

    dU  = U (x + dx, y + dy, z  + dz ) − U (x,y ,z )

    =  ∂U 

    ∂x dx +

     ∂U 

    ∂y  dy +

     ∂U 

    ∂z   dz    (4)

    Where the three derivatives are the  partial derivatives with respect to the three in dependent variable (x,y,z)

    1

  • 8/16/2019 Homework1[m] (1)

    2/11

    Substituting (4) into (3), we can find that the work done in the small displacement from  r  to  r+dr is

    W (r → r + dr) = −

    ∂U 

    ∂x  dx +

     ∂U 

    ∂y  dy +

     ∂U 

    ∂z   dz 

      (5)

    We can choose dr  to point in the  x  direction, in which case d y =d z  = 0. We can see that F x  =  −∂U /∂x  . Bychoosing dr to point in the y  or  z  direction, we get corresponding results for F y  and F z  , and we conclude that

    F x = −∂U /∂x, F  y  = −− ∂U /∂y, F  z  = −∂U /∂z    (6)

     This is  F   , is the vector whose three components are minus the partial derivatives of U with respect to x, y, and z. We

    can write this result with this :

    F   = −x̂∂U 

    ∂x − ŷ

    ∂U 

    ∂y − ẑ

    ∂U 

    ∂z   (7)

     The vector whose three components are the partial derivatives of  f (r)  is called the  gradient of  f , denoted∇f   :

    ∇f  = x̂∂f 

    ∂x

     + ŷ∂f 

    ∂y

      + ẑ∂f 

    ∂z 

      (8)

    From ( 7 ) we can write that

    F   = −

    ∂U 

    ∂x  + ŷ

    ∂U 

    ∂y  + ẑ

    ∂U 

    ∂z 

      (9)

    From (9) we can write  x̂∂U ∂x

     + ŷ ∂U ∂y

      + ẑ ∂U ∂z

      into (8) form :

    F   = −∇U    (10)

    2

  • 8/16/2019 Homework1[m] (1)

    3/11

    Problem 2 : Taylor 4.16   If a particle's potential energy is U (r) =  k(x2 + y2 + z 2) ,where k is a constant, what isthe force on the particle?

    Solution

    From   ⃗ F c  = −⃗  ∇U 

    = −⃗  ∇{k{x2 + y2 + z 2}}

    = −

     ∂ 

    ∂x + ŷ

      ∂ 

    ∂y + ẑ

      ∂ 

    ∂z 

    k(x2 + y2 + z 2)

    = −2kxx̂− 2kyŷ − 2kz ̂z

    3

  • 8/16/2019 Homework1[m] (1)

    4/11

    Problem 3: Kleppner 5.1

    Find the forces for the following potential energies.

    a. U  = Ax2 + By2 + Cz 2

    b. U  = A ln(x2 + y2 + z 2) (ln =  loge)

    c. U  = A cos θ/r2 ( plane polar coordinates)

    Solution

    a.

    From   ⃗ F  = −⃗  ∇U 

    = −⃗  ∇

    Ax2 + By2 + Cz 2

    = −

      ∂ 

    ∂x + ŷ

      ∂ 

    ∂y + ẑ

      ∂ 

    ∂z 

    Ax2 + By2 + Cz 2

    = −2Axx̂− 2Byŷ − 2Cz ̂z

    b.

    From   ⃗ F   = −⃗  ∇U 

    = −⃗  ∇

    A ln

    x2 + y2 + z 2

    = −

      ∂ 

    ∂x + ŷ

      ∂ 

    ∂y + ẑ

      ∂ 

    ∂z 

    A ln

    x2 + y2 + z 2

    = −x̂A

      1x2 + y2 + z 2

      ∂ ∂x (x

    2

    + y2

    + z 2

    )

    + ŷA

      1

    x2 + y2 + z 2

      ∂ 

    ∂y(x2 + y2 + z 2)

    + ẑA

      1

    x2 + y2 + z 2

      ∂ 

    ∂z (x2 + y2 + z 2)

    = −  2Ax

    x2 + y2 + z 2 x̂−

      2Ay

    x2 + y2 + z 2 ŷ −

      2Az 

    x2 + y2 + z 2ẑ

    4

  • 8/16/2019 Homework1[m] (1)

    5/11

    Problem 3: Kleppner 5.1

    Solution

    c.

    From   ⃗ F   = −⃗  ∇U    ( plan polar coordinates)

    Because it is in plan polar coordinates, the  ⃗ ∇ = r̂   ∂ ∂r

     + θ̂ 1r∂ ∂θ

    = −⃗  ∇

    A cos θ/r2

    = −

     ∂ 

    ∂r + θ̂

    1

    r

    ∂ 

    ∂θ

    A cos θ/r2

    = −

    r̂A cos θ

     ∂ 

    ∂r

     1

    r2

     + θ̂A

     1

    r3

      ∂ 

    ∂θ(cos θ)

    = −r̂A cos θ−2r3 + θ̂A 1

    r3 (− sin θ)

    = 2A

    cos θ

    r3

    r̂ + A

    sin θ

    r3

    θ̂

    5

  • 8/16/2019 Homework1[m] (1)

    6/11

    Problem 4 : Taylor 5.1   A massless spring has unstretched length l0  and force constant k   . One end is now attached to

    the ceiling and a mass m is hung from the other. The equilibrium length of the spring is now l1.

    (a) Write down the condition that determines l1. Suppose now the spring is stretched a further distance x beyond its new

    equilibrium length. Show that the net force (spring plus gravity) on the mass is F   =  −kx. That is, the net force obeysHooke's law, when x is the distance from the equilibrium position - a very useful result, which lets us treat a mass on a vertical

    spring just as if it were horizontal.

    (b) Prove the same result by showing that the net potential energy (spring plus gravity) has the form

    U (x) = const +   12kx2.

    Solution a.   Consider a mass m while it is in the equilibrium after hung with massless spring∑F   = 0

    kx  =  mg

    k(l1 − l0) = mg   (11)

    Consider the mass m while it is in stretched a further distance x beyond its new equilibrium length.

    F   = −k(l1 − l0 + x) + mg= −k(l1 − l0) − kx + mg

    Use (11) ;

    F   = −mg − kx + mg

    = −kx

    so that the net force on the mass is

    F   = −kx

    Solution b.   From the gravity potential energy U g(x) =   mgx +  C , when x is the vertical displacement fromarbitrary point that have potential energy is equal C and spring potential energy  U sp(x) =

      12

    kx2 , when x is the distance

    of the spring that has unstreched

    Consider a mass m while is stretched a further distance  x from the equilibrium position. Define that the reference point

    of potential energy is the equilibrium point of spring.

    U (x) = U g(x) + U sb(x)

    = −mgx + C  + 1

    2k(l1 − l0 + x)

    2

    = −mgx + C  +  12

    k((l1 − l0)2 + 2(l1 − l0)(x) + x

    2)

    Use (11)   mg =  k(l1 − l0) ;

    U (x) = −k(l1 − l0)x + C  + 1

    2k((l1 − l0)

    2 + 2(l1 − l0)(x) + x2)

    = C  + 1

    2k(l1 − l0)

    2 + 1

    2kx2

    6

  • 8/16/2019 Homework1[m] (1)

    7/11

    Problem 4 : Taylor 5.1

    Due to term of   12

    k(l1 − l0) that is the constant. So we can write ;

    U (x) = const + 1

    2kx2

    From  ⃗ F   = −⃗  ∇U  and it is only in x-axis, so we can find net force on the mass ;

    F   = −  d

    dx

    const +

     1

    2kx2

    F   = −kx

    7

  • 8/16/2019 Homework1[m] (1)

    8/11

    Problem 4: Taylor 5.2   The potential energy of two atoms in a molecule can sometimes be approximated by the Morse

    function, U (r) = A[(e(R−r)/s− 1)2− 1] where r is the distance between the two atoms and A, R, and S are positiveconstants with S ≫ R. Sketch this function for 0

  • 8/16/2019 Homework1[m] (1)

    9/11

    Problem 4: Taylor 5.2

     To make sure that  R =  r0   is true, we can check from (13) by substitute r0  =  R  .  U ′′(r0) must be positive. ;

    U ′′(r0) = U ′′(R) =

     2A

    S 2

    e(R−R)/S 

    2+

     2A

    S 2

    e(R−R)/S − 1

    e(R−R)/S 

    U ′′(R) = 2AS 2

      (14)

    U ′′(r0)  is positive, so the system has a stable equilibrium position  R =  r0

    Consider U (r0 + x) whereas x is small , when expanded in Taylor series. ;

    U (r0 + x) = U (R + x)

    = U (R) + U ′(R)x + 1

    2U ′′(R)x2 +

      1

    3!U ′′′(R)x3 + ...

    As long as x remains small, the first of three term in this series should be a good approximation. And  U ′

    (R) = 0 ;

    U (r0 + x) = A

    e(R−R)/S − 1

    2− 1

     + 0 +

     1

    2U ′′(R)x2

    = −A + 1

    2U ′′(R)x2 ; From(14)   U ′′(R) =

     2A

    S 2

    = −A + 1

    2

    2A

    S 2

    x2

    If the displacement x from stable equilibrium position is the lowest, the potential energy will be ;

    U  = const + 12

    kx2

    Whereas   k =   2AS 2

    9

  • 8/16/2019 Homework1[m] (1)

    10/11

    Problem 4: Taylor 5.3   Write down the potential energy U(0) of a simple pendulum (mass m, length 1) in terms of the

    angle 0 between the pendulum and the vertical. (Choose the zero of U at the bottom.) Show that, for small angles, U has

    the Hooke's law form U (0) =   12

    kφ2,in terms of the coordinate φ.

    What is k?

    Solution   From potential energy is U (h) =  mgh  ,when h is the different from the bottom to the height of massm can reach.

    h =  l − l cos φ

    = l(1 − 1 cos φ)

    F rom U  (h) = mgh

    U (φ) = mgl(1 − 1 cos φ)

    When the angle φ   is small then cos φ = 1−   φ2

    2

    U (φ) = mgl(1 − (1 − φ2

    2 ))

    = mglφ2

    2

    = 1

    2mglφ2

    From the problem, U has the Hooke's law form U (φ) =   12

    kφ2

    We totally find k that

    k  =  mgl

    10

  • 8/16/2019 Homework1[m] (1)

    11/11

    Problem 4 : Magnitude VS Component

    Force  ⃗ W   = m⃗g  =  mg(−ˆ j)

    Magnitude of  ⃗  W   = mg

     The component in ˆ j  direction is 0 The component in −ˆ j  direction is mg

    11