Htmwg May09 Nontraditional Membranes

Embed Size (px)

Citation preview

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    1/26

    UNCLASSIFIEDUNCLASSIFIED

    IntegrationofNonTraditionalMembranesintoMEAs

    YuSeungKimSensorsandElectrochemicalDeviceGroup

    LosAlamosNationalLaboratory

    HighTemperatureMembraneWorkingGroupMeeting,WashingtonDC,May18,2009

    1

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    2/26

    Outline Background MEA Fabrication Part1.MembraneElectrodeInterface

    Interfacialresistancemeasurement ImpactofpoorMEAadhesion MethodofimprovingMEAadhesion

    Part2. NonPFSAIonomers Ionomertocatalystratio Dispersingagent Oxygenpermeability Chainmobility

    UNCLASSIFIED2

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    3/26

    UNCLASSIFIED

    IonomerBinderforNonTraditionalMembranes

    HT IonomerBinder

    HT Membrane

    MEA for PEMFCs

    Membrane

    High proton conductivity at low RH

    Good thermal/electrochemical stability

    Low reactant permeability

    Low electronic conductivity

    Ionomer Binder

    High proton conductivity at low RH

    Good thermal/electrochemical stability

    High reactant permeability

    Good catalyst-ionomer interaction

    Ionomerbinderhavingdissimilarstructurewithmembranesmaybedesirable.

    3

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    4/26

    StrugglingforRobustMEAFabrications Gubleretal.,Hotpressingofradiationgraftedmembraneswasnotsuccessfulinourlaboratory.SuccessfulfabricationofhotpressedMEASwaspossiblewhenthinner

    membraneswithlowerdegreeofgraftingwereusedFuelCells,(2005)5,317. Baeetal.,TheMEAcomposedofSPSgPPcompositemembranemaysufferfromthe

    heterogeneousinterfacialstructureincreasingthecontactresistancebetweenmembraneand

    catalyst

    layer

    J.

    Memb.

    Sci.

    (2003),

    220,

    75.

    Lufranoetal.Poorelectrode/electrolyte(sulfonatedpolysulfone)contactcausedfromthe

    assemblyofanonperfluorinatedmembranewithacatalyticlayercontainingNafionionomerandlowchainsmobilityoftheseglassypolymersJ.Appl.Sci.(2000)77,1250.

    LeNinivinetal.OptimizationofElectrodemembraneinterfaces(sulfonatedpolyphenylene)isnecessaryJ.Appl.Electrochem.(2004)34,1159.

    Vernonetal...WiththisinmindoptimizationofMEAfabricationprocessesaswellasthedevelopmentofmorecompatibleionomermaterialsintheelectrodesmayproduceverysignificantimprovementsinperformanceforthehybridmembraneMEAJ.PowerSources(2005)139,141151.

    Besseetal...Wehaveobservedthatthefuelcellperformancesofourpolyimidemembranesarerelativelydependentofprelimianryacidtreatment.Inordertoimprovetheelectrode/membraneinterface,athinsulfonatedpolyimidelayerwasdepositedontheelectrodesurfacebeforemakingtheassemblyNewMater.Electrochem.Sys.(2001),346.

    UNCLASSIFIED4

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    5/26

    LANLMEAProcessingforNonTraditionalMembranes DirectMembranePainting

    Y.S.Kim,J.Electrochem.Soc.151,A2150(2004) Catalystinkisdirectlypaintedonto

    membranesusingvacuumplate Simpleprocess Difficulttocontrolcatalystloading Difficulttoprocesshighlywater

    swollenmembrane Easytoisolatemembraneproperty

    MostlyusedforDMFCapplications

    Decaltransfer(Hotpressing)Wilson,USPatent5,211,984(1993)

    Catalystinkispaintedondecalthentransfertomembraneusinghotpressing

    Complexprocedure Precisecontrolofcatalystloading Easytoprocesshighlywaterswollen

    membrane Electrodeadhesiontomembraneis

    critical Difficulttoisolatemembrane

    property MostlyusedforPEMFCapplications

    UNCLASSIFIED5

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    6/26

    DirectMembranePaintingAdd water

    Mixing Catalyst

    + Ink

    Electrolyte Pt black catalyst

    dispersionNafion 5%Water/alcohol >90%

    Vacuum table

    Teflon masking sheet

    Ink Painting

    75-80oC

    current

    time

    Cell break-in

    U N C L A S S I F I E D

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    7/26

    DecalTransfer(Hotpressing)Glycerol

    TBAOH

    + Mixing

    Electrolyte Supported catalyst Catalyst Decal paintingPt 20%dispersion Ink & dryingCarbon 80%Nafion 5%

    Water/alcohol >90%

    time

    current

    Cell break-in Drying Acidif ication Hot pressing75oC/30 min 0.5M H2SO4 1.5 h 210oC few min.Under vacuum Water for 1.5 h

    at boiling temp.

    U N C L A S S I F I E D

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    8/26

    UNCLASSIFIED

    TwoMajorIssueswithDissimilarIonomerBindersHT IonomerBinder

    HT Membrane

    Interfacial Delamination

    membraneanode cathode

    GDL

    PtCarbon

    Binder

    (K.More,DOEHydrogenandFuelCellsAnnualReport(2005))

    Poor Performance due to lack of

    Understanding of electrode structure

    8

    Catalyst/support dispersityCatalyst-ionomer interactionIonomer morphologyPorosityReactant/water permeability

    Catalyst solubilityIonomer relaxationetc

    Membrane-electrode interface

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    9/26

    UNCLASSIFIED

    MeasurementofInterfacialResistance,RinterfaceRinterface=NonmembraneResistance ElectronicResistance

    Non-membrane Resistance

    Wet membrane thickness (m)0 50 100 150 200 250 300 350

    H

    FR

    (c

    m2)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Y = 7.2 x 10-4+0.035

    non-membrane resistance

    Electronic Resistance

    Current (A)

    0 5 10 15 20 25

    Voltage(V)

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    cell 1

    cell 2

    cell 3

    metal sheet replaced cell(including catalyst layers)electronic resistance

    (27 cm2)

    metal sheet replaced cell(excluding catalyst layers)

    (35 cm2)

    Rinterface for the example is 8 mcm2

    Ref. Y.S. Kim and B.S. Pivovar, J. Electrochem. Soc. (2007) 154, B739.

    9

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    10/26

    UNCLASSIFIED

    RinterfacebetweenHCmembraneandNafionElectrode

    Membrane Thickness (m)

    0 50 100 150 200 250

    HFR

    (c

    m2)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    1: BPSH-30

    2: BPSH-35

    3: BPSH-40

    4: Nafion

    1

    2

    30 2 4

    0.03

    0.040.05

    0.06

    0.07

    0.08

    4

    1

    2

    3

    4

    Membrane (mS/cm) Rinterface(mcm2)

    BPSH30 39 17

    BPSH35 54 31BPSH40 78 43

    Nafion 111 8

    Conductivity, , andInterfacial Resistance, R

    interface

    SulfonatedPoly(Aryleneether)Sulfone(BPSHx)*

    *Ref. M. Hickner et al. Chem. Rev. 104, 4587, 2004

    SO 2

    SO 3H

    O

    x

    Oco

    HO 3S

    SO 2OO

    1-x

    10

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    11/26

    ImpactofMembraneElectrodeIncompatibilityonDecalTransferElectrode transfer@ 210oC hot pressing

    Membrane Tg* Requiredhotpressing(oC)

    Temp.(oC)Nafion memb./Nafion electrodeBPSH30 260 280BPSH

    35 266 285

    BPSH40 271 >295Nafion 120 140210

    BPSH/Nafion electrode

    HighTgHCmembranesrequirehigherhotpressingtemperature.

    Hotpressingtemp.increaseswithdegreeofsulfonation.

    LowsurfaceadhesionpropertyofHCmembranesmakesdifficultto100%electrodetransfer.

    Ref. F.Wang et al. J. Memb. Sci. (2002), 197, 231.

    U N C L A S S I F I E D11

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    12/26

    Method of Improving Interfacial Adhesion: 1. Thin Coating LayerBPSH/Nafion electrode with thin coating layersThin coating layer system*

    Currentdensity(A/cm

    2)

    Cathode

    0.25

    0.0.2020

    0.0.1515

    0.0.1010

    0.0.0505

    0.2

    0.1

    Anode catalystcatalyst Low Proton Low 0.0layer

    layer swelling exchange swelling 0 250 500 750 1000 1250 1500 1750 2000PEM membrane PEMTime (hour)

    layer layer

    *Y.S. Kim and B.S. Pivovar, US Patent Applications, LANL (2006) Stable DMFC performance (and HFR) wasobtained with thin coating layer system.

    HFR

    (Ohmc

    m2)

    U N C L A S S I F I E D12

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    13/26

    UNCLASSIFIED

    LANLMEAFabricationStepsusingNontraditionalMembranes

    13

    Is your membranehighly water swollen?

    (i.e. >35 wt.%)

    yes

    no

    Direct membranepainting

    DecalTransfer

    Does HFR increaseover time (under fully

    humidification)?

    yes Thin layercoating*

    MEA testing

    no

    Are the electrodesadhered after acidification?

    no

    Plasticizedelectrode*

    MEA testing

    yes

    * LANL Intellectual properties

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    14/26

    Part1.MembraneElectrodeInterface Interfacialresistancemeasurement ImpactofpoorMEAadhesion MethodofimprovingMEAadhesion

    Part2. NonPFSAIonomers IonomertoCatalystRatio DispersingAgent OxygenPermeability ChainMobility

    Electrode formulation & testing

    conditions for electrode studies

    Catalyst: Carbon supported platinum (20 wt.%)

    Catalyst loading: 0.2 mg/cm2Anode ionomer: Commercial Nafion dispersionMembrane: Nafion 212MEA fabrication: LANL proprietary

    Cell temperature: 80oC

    Anode humidity bottle temperature: 105o

    CBack pressure: 20 or 30 psiBreak in time: >14 h

    UNCLASSIFIED14

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    15/26

    +

    UNCLASSIFIED

    NonPFSAElectrode Fact &Motivation

    15

    Current density (A/cm2)

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

    Cellpoten

    tial(V)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    BPSH-35 bonded Pt/C (Pt 0.2 mg/cm2)

    Nafion bonded Pt/C (Pt: 0.2 mg/cm2)

    80oC

    BPSH35

    O O SO2 O O SO2

    SO3HHO3S x1-x

    CF2 CF2 CF CF2

    OCF2 CF O(CF2)2 SO3-H

    CF3

    x y

    z

    n

    CF2 CF2 CF CF2

    OCF2 CF O(CF2)2 SO3-H

    CF3

    x y

    z

    n

    Nafion

    Electrodebondedbyhydrocarbonionomer(similarconductivitytoNafion)showedmuchinferiorperformancetotheelectrodebondedbyNafionionomer.

    NoelectrodeionomerisavailableforhightemperaturemembraneswherethePFSAionomercannotbeused.

    Membrane: Nafion 212

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    16/26

    EffectofIonomerContentonFuelCellPerformanceBPSH-35-bonded Electrode

    CellPotential(

    V)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    21

    29

    35

    Ionomer content wt.%

    Cell temp. 80oC with cathode bypass; backpressure: 30/30 psig

    Catalsyt : 20% Pt/C (ETEK): 0.2/0.2 mgpt/cm2, ionomer: BPSH-35

    ionomer Density(g/cm3) Wt.% Vol.%

    Nafion 2 29 30BPSH35 1.3 21 27

    29 4035 53

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    Current density (A/cm2)

    DuetothelowerdensityofBPSH35,electrodewithlessamountofBPSH35performedbetter. OptimumBPSH35contentis~21wt.%(~27vol.%).

    U N C L A S S I F I E D16

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    17/26

    SANS Study of Nafion Dispersion

    d/D(

    cm-1)

    1

    0.1

    0.01

    0.0010.001 0.01

    q (A-1)

    SolventNMPEthyleneglycolWater/IPA(2:3)ButanediolGlycerol

    Line represents slopecorresponding to sharpinterface betweensolvent and Nafion

    0.1 1

    Slope1.72.0

    2.03.33.5

    NMPdispersion:CoreShellCylinder*Structuresarevisualaidsreflectingcurrentunderstanding,andmaybelaterupdated

    102

    1239

    27SharpinterfacebetweencoreandshellSLD*ofcore=~calculatedNafionbackboneSLDofshell=~solventNosolventpenetrationintothecoreSolventpenetratessidechains(lowslope)Glyceroldispersion:CylinderModel

    14828

    LessphaseseparationbetweenNafionbackboneandsidechainsGlycerolappearstopenetrateNafionlessthanNMP(highslope),butsomepenetrationmayoccur* Moreinformation:FC_16ChristinaJohnston,LANL,Wed.9:00AM.

    U N C L A S S I F I E D17

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    18/26

    Effect of Dispersing Agent on Electrode PerformanceInitial Performance

    Durability (potential cycling)

    IR-corrected polarization curves Water/1-propanol/2-propanol0.901.1

    InitialNafion electrode 1.0 After 1000 cycles0.85 After 3000 cycles

    0.9After 10000 cycles

    0.8

    0.80

    (V)

    EIR-corrected

    Cellpo

    tential

    Cellpoten

    tial 0.7

    0.6

    0.5

    0.4

    0.75DISPERSION

    N-methylpyrrolidone

    water/2-propanol (1:3)0.700.3

    glycerol 1 A cm-2: 60 mV loss0.2

    0.650.1o

    Cell temp. 80 C with fully humidified; backpressure: 30/30 psig2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    Catalsyt : 20% Pt/C (ETEK): 0.2/0.2 mgpt/cm , ionomer: Nafion 212

    Current density (A/cm2

    )0.600.1 1 Glycerol

    1.1

    Initiali (A/cm2)

    1.0 After 1000 cyclesAfter 3000 cycles

    0.9After 10000 cycles Electrodes from NMP (and waterisopropanol) dispersion

    0.8

    exhibits good ORR kinetics while electrode from glycerol

    dispersion have relatively good mass transfer. Electrode from water/2propanol showed poor potential

    0.7

    0.6

    0.5

    0.4

    cycling durability while electrode from glycerol showed good

    durability. 0.20.3 1 A cm-2: 30 mV loss* More information: FC_16 Christina Johnston, LANL, Wed. 9:00 AM.

    U N C L A S S I F I E D

    0.10.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

    Current density (A/cm2)

    1.6 1.8 2.0

    18

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    19/26

    HC Ionomer Dispersion in Various Dispersing Agent*IR-corrected polarization curvesEW Dispersing Dispe Mechanical Wettability

    0.90medium rsion property 0.85

    670 1,4 butanediol NA NA 0.801519 0.75

    0.70670 Ethylene + Tough Good1519 glycol 670 Propylene + Tough Good

    glycol1519 670 Glycerol + Tough Good1519 + EIR

    -correc

    ted

    (V) 0.65

    0.60

    0.55

    0.50DISPERSION

    DMAc0.45

    0.40483 + water/2-propanol (1:1)glycerol670 Water/iso + Brittle Poor

    propanol (1:1)670 NMP + Tough Good1519 +670 DMSO +1519 +670 DMAc +1519 +*Y.S. Kim, T. Rockward, and K.S. Lee, US Patent Pending, LANL(2009)

    0.35

    0.30 oCell temp. 80 C with fully humidified; backpressure: 30/30 psig

    0.25 Catalsyt : 20% Pt/C (ETEK): 0.2/0.2 mgpt/cm2, ionomer: BPSH-35

    0.200.01 0.1

    i (A/cm2)

    Dispersing agent effect is much greater for BPSH35 electrode than Nafion but similar trend.

    We have difficulties using waterbaseddispersion due to poor mechanical properties

    and poor wettability.

    U N C L A S S I F I E D 19

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    20/26

    UNCLASSIFIED20

    ChronoamperometryofOxygenonPt/NafionandPt/6F40

    0 0.4 0.8 1.2

    0

    40

    80

    120

    t-1/2

    / s-1/2

    Current(n

    A)

    0.3 V

    0.4 V

    cv limiting

    current

    Ptglass

    Ionomer

    Oxygen

    0

    10

    20

    30

    40

    0 0.4 0.8 1.2

    Current(n

    A)

    t-1/2

    (s-1/2)

    0.3 V

    0.4 V

    cv limiting

    current

    60 C, 60% RH, 100 m

    (diameter) Pt UME(microdisk)Film thickness: Nafion 13.5 m, 6F40 - 26.5 m ;

    Pt/Nafionelectrode Pt/6F40electrode

    SignificantlyloweroxygenreductioncurrentsforthePt/6F40thanthoseforpt/Nafionindicatessignificantlyloweroxygenpermeabilityof6F40tooxygen.

    NonlineariltyandcurrentdecreaseofPt/NafionbeyondthecvlimitingcurrentindicatessignificantpolymerchainreorganizationofNafionduringchromoamperometryprocess.

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    21/26

    UNCLASSIFIED21

    EffectofCathodeHumidificationonFuelCellPerformance

    Current density (A/cm2)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    Cellpotential(V)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    HFR

    (c

    m2)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    no humidified cathodefully humidified cathode

    cell temp. 80oCcatalsyt : 0.2 mg/cm2 Pt/C

    membrane Nafion 212electrode binder:BPSH-35 (27 vol.%)back pressure 30 psig

    Redu

    ced R

    H

    HydrocarbonbondedelectrodeshowsbetterperformanceatlowRHconditions,duetobettermasstransfer

    GoodchancetoreplacePFSAbondedelectrodewiththermallystableHC bondedelectrodeforhightemp.andlessRHfuelcells

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    22/26

    UNCLASSIFIED22

    EffectofHydrophobicityofPolymers

    Decafluoro based Polyaromatic

    Hexafluoro bisphenol based Polyaromatic

    Biphenyl based Polyaromatic

    Courtesy: Profs. McGrath (VT) and Lee (GIST)

    PFSAFully humidified cathode

    Current density (A/cm2)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Cellpotential(V)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    No humidifed cathode

    PFSA

    Decafluoro

    Hexafluorobiphenyl

    PFSA

    Decafluoro

    Hexafluorobiphenyl

    Current density (A/cm2)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    C

    ellpotential(V)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    23/26

    UNCLASSIFIED

    StateofWaterinESF100andBPSH35using2HNMR

    23

    Neat water

    ESF-100

    BPSH-35

    BPSH35hasmoreboundwaterthanESF100whichpossiblyprohibitsoxygentransport.

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    24/26

    +

    UNCLASSIFIED

    EffectofChainMobilityonBreakinProcess

    BPSH35 O O SO2 O O SO2SO3HHO3S x1-x

    CF2 CF2 CF CF2

    OCF2 CF O(CF2)2 SO3-H

    CF3

    x y

    z

    nCF2 CF2 CF CF2

    OCF2 CF O(CF2)2 SO3-H

    CF3

    x y

    z

    nNafion

    PtSO3H

    PtSO3H

    Pt

    SO3H

    Pt

    SO3H

    Beforebreakin Afterbreakin

    Beforebreakin Afterbreakin

    Break in at 0.7 V

    time (h)

    0 20 40 60 80

    current(A

    )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    BPSH-35

    Nafion

    6F-40

    Nafion

    6F-40

    BPSH-35

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    25/26

    Summary PooradhesionbetweenmembraneandelectrodemayresultinprematureMEAfailure(poorelectrodetransfer)duringMEAprocessingorgradualinterfacialdelaminationduring

    longtermfuelcelloperation. Interfacialadhesioncanbeenhancedbythincoatinglayersorplasticizationofelectrode. Todate,propertiesandinteractionofnonPFSAionomerbinderswithfuelcellcatalystarepoorlyunderstood. SANSresultsindicatedthatdispersedandsolidionomerhaddifferentstructure(size,

    micelleformationandphaseseparation)andmechanicalpropertiesdependingondispersingagent.

    SolidNMRstudyindicatedthatstateofwatermaybeimportantfactorforelectrodefloodingwhichhaveobservedasapredominantfactor. Electrodeperformanceincreasedwithfluorinationofpolymers.

    Sidechainmobilitymaygivecriticalinfluenceonelectrodeperformance. Moreinvestigationisneededinthisarea.

    U N C L A S S I F I E D

  • 7/30/2019 Htmwg May09 Nontraditional Membranes

    26/26

    AcknowledgmentsBryanS.Pivovar(NREL)

    JamesE.McGrath(VirginiaTech)ChulSungBae(UNLV)

    MichaelGuiver(CanadaNRC)JaeSukLee(GIST)

    KwanSooLee(GIST,LANL)TommyRockward(LANL)AndreaLabourieu(LANL)

    BruceOrler(LANL)CindyWelch(LANL)

    MarilynHawley(LANL)RexHjelm(LANCE,LANL)ChristinaJohnston(LANL)

    JerzyChilstunoff(LANL)NancyGarlend

    (DOEEEREProgram)

    UN

    C

    LA

    SSIFIED

    26