45
1 Hybrid Additive and Subtractive Machine Tools- Research and Industrial Developments Joseph M. Flynn 1 , Alborz Shokrani 1 , Stephen T. Newman 1 and Vimal Dhokia 1 * * Email: [email protected] 1 Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK Abstract By synergistically combining additive and subtractive processes within a single workstation, the relative merits of each process may be harnessed. This facilitates the manufacture of internal, overhanging and high aspect ratio features with desirable geometric accuracy and surface characteristics. The ability to work, measure and then rework material enables the reincarnation and repair of damaged, high-value components. These techniques present significant opportunities to improve material utilisation, part complexity and quality management in functional parts. The number of single platform workstations for hybrid additive and subtractive processes (WHASPs) is increasing. Many of these integrate additive directed energy deposition (DED) with subtractive CNC machining within a highly mobile multi-axis machine tool. Advanced numerical control (NC), and computer aided design (CAD), manufacture (CAM) and inspection (CAI) software capabilities help to govern the process. This research reviews and critically discusses salient published literature relating to the development of Workstations for Hybrid Additive and Subtractive Processing (WHASPs), and identifies future avenues for research and development. It reports on state-of-the-art WHASP systems, identifying key traits and research gaps. Finally, a future vision for WHASPs and other hybrid machine tools is presented based upon emerging trends and future opportunities within this research area Keywords: Hybrid manufacturing processes; Machine tool design; Additive manufacturing; Subtractive manufacturing 1. Introduction The use of additively manufactured metal components in tight-tolerance and critical applications is limited by the attainable accuracy, uniformity of materials properties, and surface quality. Prevailing quality issues in additive manufacture relate to part resolution due to the smallest built-element, part density, partially bonded particulate and residual stresses. Until such a time as a step-change in build- material or energy delivery methods is made, it will not be possible to improve part tolerances without a significant increase in cost-to-build-rate ratio. This means that obtaining the resolution required to achieve conforming part in tight tolerance applications is currently not feasible. As such, additively manufactured metal parts almost always require post-processing to improve part quality characteristics and relieve residual stresses. One possible solution to overcome these limitations is to `hybridise’ two, or more, processes to create a heightened capability. At the present time, workstations for hybrid additive and subtractive processing (termed ‘WHASPS’ by the authors) are emerging on the machine tool market. These machines combine an additive manufacturing process, with a conventional subtractive process, such as CNC machining. WHASPs are creating significant opportunities in the design and manufacture of finished parts, and also in the reincarnation and remanufacture of high-value components [1]. The ability to both add and subtract material helps to address geometrical challenges, such as internal and

Hybrid Additive and Subtractive Machine Tools- …opus.bath.ac.uk/48688/1/WHASP_FINAL_Corrections...1 Hybrid Additive and Subtractive Machine Tools-Research and Industrial Developments

Embed Size (px)

Citation preview

1

HybridAdditiveandSubtractiveMachineTools-

ResearchandIndustrialDevelopments

JosephM.Flynn1,AlborzShokrani1,StephenT.Newman1andVimalDhokia1*

*Email:[email protected],UniversityofBath,BathBA27AY,UK

Abstract

Bysynergisticallycombiningadditiveandsubtractiveprocesseswithinasingleworkstation,therelativemeritsofeachprocessmaybeharnessed.This facilitatesthemanufactureof internal,overhangingandhighaspectratiofeatureswithdesirablegeometricaccuracyandsurfacecharacteristics.Theabilitytowork,measureandthen rework material enables the reincarnation and repair of damaged, high-value components. Thesetechniques present significant opportunities to improve material utilisation, part complexity and qualitymanagementinfunctionalparts.

The number of single platform workstations for hybrid additive and subtractive processes (WHASPs) isincreasing.Manyoftheseintegrateadditivedirectedenergydeposition(DED)withsubtractiveCNCmachiningwithinahighlymobilemulti-axismachinetool.Advancednumericalcontrol(NC),andcomputeraideddesign(CAD),manufacture(CAM)andinspection(CAI)softwarecapabilitieshelptogoverntheprocess.

This research reviews and critically discusses salient published literature relating to the development ofWorkstations for Hybrid Additive and Subtractive Processing (WHASPs), and identifies future avenues forresearchanddevelopment. Itreportsonstate-of-the-artWHASPsystems, identifyingkeytraitsandresearchgaps.Finally,a futurevision forWHASPsandotherhybridmachinetools ispresentedbaseduponemergingtrendsandfutureopportunitieswithinthisresearcharea

Keywords: Hybridmanufacturingprocesses;Machinetooldesign;Additivemanufacturing;Subtractivemanufacturing

1. IntroductionTheuseofadditivelymanufacturedmetalcomponentsintight-toleranceandcriticalapplicationsislimitedbytheattainableaccuracy,uniformityofmaterialsproperties,andsurfacequality.Prevailingqualityissuesinadditivemanufacturerelatetopartresolutionduetothesmallestbuilt-element,partdensity,partiallybondedparticulateandresidualstresses.Untilsuchatimeasastep-changeinbuild-materialorenergydeliverymethodsismade,itwillnotbepossibletoimproveparttoleranceswithoutasignificantincreaseincost-to-build-rateratio.Thismeansthatobtainingtheresolutionrequiredtoachieveconformingpart intighttoleranceapplications iscurrentlynotfeasible.Assuch,additivelymanufactured metal parts almost always require post-processing to improve part qualitycharacteristicsandrelieveresidualstresses.

Onepossiblesolutiontoovercometheselimitationsisto`hybridise’two,ormore,processestocreatea heightened capability. At the present time, workstations for hybrid additive and subtractiveprocessing (termed ‘WHASPS’ by the authors) are emerging on the machine tool market. Thesemachinescombineanadditivemanufacturingprocess,withaconventionalsubtractiveprocess,suchasCNCmachining.WHASPsarecreatingsignificantopportunitiesinthedesignandmanufactureoffinishedparts,andalso inthereincarnationandremanufactureofhigh-valuecomponents[1].Theabilitytobothaddandsubtractmaterialhelpstoaddressgeometricalchallenges,suchasinternaland

2

overhanging features,andpartswithahigh ‘buy-to-fly’ ratio [2].Theseadvantageshelptoreducematerialwastage,andexcessiveconsumptionoftooling.

Therearealreadyreviewpapersinthefieldofhybridadditiveandsubtractivemanufacturing.Wanget al. [3] discuss the repair of parts via laser-based additive manufacturing processes. This dealspredominantly with welding-based processes and gives a general discussion on the necessarycomponents for an integrated system. Similarly, reviews have been undertaken relating to hybridmanufacturingprocesses[4],[5];however,thesedonotgointodetailaboutspecificconfigurations,themes and challenges in HASPs. Lorenz et al. [6] have recently published a review of hybridmanufacturing processes and machine tools that incorporate directed energy deposition (DED)processes.Thisreviewishighlyfocusedanddoesoffercoverageofalternativeadditivemanufacturingprocesses.Intermsofprocessplanningandmanufacturingstrategies,SimhambhatlaandKarunakaran[7]introducestrategiestomanufactureundercutandinternalgeometriesusingHASPs,andKulkarnietal. [8]have reviewedprocessplanning in layeredmanufacturing. In recenthistory thisareahasdrawnsignificantattentioninacademiaandindustry, includingseveralcommercialisedsystems.Assuch, this review aims to update and extend previous works, covering manufacturing processexploitation,machineconfigurationanddesignprinciples.Finally,futurechallengesandopportunitiesinWHASPsareidentified,concludingwithafuturevisionofthisarea.

2. Additivemanufacturingofmetalcomponentsanditslimitations

Thecurrentadditivemanufacturingprocesslandscapecompriseseightprocessfamilies,asdefinedbythe “Standard Terminology for AdditiveManufacturing Technologies,” which is part of the ASTMF2792-12A standard series [9] (see Figure 1). In addition to those detailed in this standard, `coldspraying’hasbeenadded,whichreferstoanadditiveprocessthatpropelspowderedmaterialatasubstrateatasufficientlyhighvelocitytocauseadhesionandmaterialbuild-up[10].Inmetaladditivemanufacturing (MAM), material extrusion, sheet lamination, powder-bed fusion, directed energydepositionandcoldsprayingareused[10];however,industryhaspredominantlyfocusedonpowderbed fusion and directed energy deposition [11]. In both of these processes, high-localisedtemperaturesareusedtoeitherfusepowderwithinabed,orcreateameltpoolintowhichpowderedmetalisdepositedonthebuildsurface.Bytheirverynature,thesehigh-localisedtemperaturescausemanyissuesinMAMparts.

2.1. Limitationsofadditivelymanufacturedmetalparts

Consideringdirectedenergydeposition(DED)andpowderbedfusion(PBF)processes,limitingfactorsinclude:partresolutionoraccuracyduetosmallestbuiltelement,unsatisfactorysurfacequality,pooruniformity in material properties, and mechanical properties e.g. residual stresses. These issuesnecessitatepost-processingtoachievethedesiredpartproperties.

Partresolutionislargelydefinedbythesmallestbuilt-element.InbothPBF[13]–[16]andDED[17]–[19]processes, theresolution isdeterminedbythemelt-poolgeometry,which isaffectedby laserpower,scanningvelocity,hatchspacingandlayerthickness.InDED,feedstockdeliveryalsodefinestheprocessresolution,asmaterialfeedrateandthespatialdistributionofthedepositedparticulatechangetheshapethedepositedtrack[20],[21]e.g.width,heightanddilution.InbothPBFandDEDprocesses,thethermalhistoryofthebuildcanaffectthemeltpoolgeometry,aspreviouslyheatedmaterialcanbere-meltedbyadjacentscans[22]–[26].Also,errorsthatcompoundoverthecourseof

3

Figure1:ASTMF2792-12A[9]standardterminologyforadditivemanufacturingprocesses,withdescriptionquotedfrom

theWohlersReport2014[12].Coldsprayinghasbeenaddedusingthedescriptionof[10]

thebuildleadtoachangeinstandoffdistancebetweenfeedstockoutletandsubstrate[18].This,too,canleadtoachangeinmelt-poolgeometry.

TemperaturegradientsandthegeometryofthemeltpoolcaneachhavedetrimentaleffectsonMAMprocesses. Temperature gradients and associated surface tension can cause rapid hydrodynamicmotionsknownasMarangoniflow,resultinginthe`dishing’or`humping’ofthesolidifiedelement[27].Also,longthinmeltpoolscanresultthe‘balling’ofmaterial,whichdegradessurfaceroughnessandpartdensity [28]–[30].Otherprocessphenomenondegradethesurfacequality (roughness)ofMAMcomponents,whicharediscussed in [31]–[34].Oneof themost fundamentalof these is the‘staircaseeffect,’whichisaresultofthelayer-wiseapproximation(zerothorder)ofpartgeometries,affectingbothPBFandDED.Furthertothis,thepartialbondingofparticulateisacommoncauseofsurfacequalitydegradation.InPBF,thisoccursasaresultofconductiontosurroundingpowder.InDEDprocesses,propelledparticulatemaypassthroughtheheatsource,adheringtoany(hot)surfaces[21].

ThematerialpropertiesofMAMcomponentsarerelatedtothedensityofthebuiltmaterialandtheformationofanappropriatemicrostructureduringandafterDED[19],[35]–[38]andPBF[16],[39]–[46]processes.ForsomePBFprocesses(SelectiveLaserMelting-SLM), ithasbeenfoundthatthemicrostructureisdependentonlaserpower,scanningvelocity,hatchspacingandlayerthickness[16].Thisislargelyduetotheireffectsontherapidsolidificationofthemoltenmaterial.Scanningspeedaffectsgrain coarseness, grainalignmentandmaterialdensity,whereashatch spacingaffectspartdensity and grain orientation [16]. Another layer of complexity exists due the dependence ofmicrostructureonthematerialusedandpartgeometry[23].

ResidualstressinMAMpartsisoneofthegreatestconcernsinbothPBF[47]andDEDprocesses[22],[48].Localisedheatingandphasetransformationsinmaterialsinducestresseswithinthepart,whichcanexceedtheyieldstrengthofthematerialandcausepartdistortionorevenfracture.Researchhas

4

begun relating residual stress to thermal gradients, subsequently reducing induced stresses viachangesinprocessingparameters,suchaslaserpower,scanningvelocityandpreheatingofthepart[24],[25].Itissomewhatunanimouslyagreedwithintheliteraturethatpost-processingtoalleviateresidualstressesisanessentialpartofanyMAMprocess.

2.2. Mechanicalfinishingofadditivelymanufacturedmetalparts

The finishing of additively manufactured metal components may be categorised into threemechanisms, namely: (i) machining and mechanical conversion e.g. machining, shot-peening andgrinding; (ii) thermal processes including laser and electron beam melting; (iii) chemical andelectrochemical processes, such as etching and electropolishing.Machining and othermechanicalsubtractiveprocesseshavebeenwidelyusedinnear-netshapingprocesses,suchasmoulding,castinganddie-casting.Thishasnowbeenextendedtoadditivemanufacturing,allowingfeaturegeometriestoberealisedwithgreateraccuracyandsurfacequalityviasubtractiveprocessing.Togivecontexttosurfacequalityexpectations,aerospaceapplicationshavereportedlyspecifiedsurfaceroughness0.8μm<Ra<1.6μm.

Spieringsetal.[49]usedCNCturningtofinishAMpartsbuiltinAISI316and15-5HPsteels,resultinginasurfaceroughnessRaof0.4μm.ItwasalsonotedthatfinishingofAMpartshadlimitedaffectonthefatiguestressat106cycles,butsignificanteffectat107cycles.Tamingeretal.[50]utilisedhigh-speedmilling (HSM) to finish aluminium AM parts. HSMwas found to produce highly favourablesurface roughness (8-56 μin RMS) and waviness (400 μin RMS); however, compared with othersubtractiveprocesses,HSSintroducedlargeresidualstressesinthefinishedsurface.

GrindinghasalsobeenusedtofinishMAMparts.WithAISI316Lsteel,Löberetal.[51]wereabletoreducetheas-builtsurfaceroughness(15μm)to0.34μm.Rossietal.[52]reportedthatonhorizontalsurfaces,thesurfaceroughness(Ra)wasreducedfrom12μmto4μm,andonverticalsurfacesfrom15μmto13μminNickel-Iron-Copperparts.Thisclearlyillustratestheimportanceoforientationandbuild-direction.Complexandintricategeometriesposeachallengeforconventionalgrinding.Inanattempttoalleviatethis,Beauchampetal.[53]usedshape-adaptivegrindingtofinishTi6Al4VMAMparts.Withthisprocess,asurfaceroughness(Ra)of~10nmwasachievedbyusingthreedifferentdiamondabrasivepellets.

3. AnintroductiontoWHASPs

ThisresearchgivesaninsightintothetechnologicalandprocessdevelopmentsthathavefurtheredfieldofWHASPs.Most,ifnotall,WHASPsexhibitkeymodules,arrangedintosuitableconfigurations.ThegeneralarchitectureofaWHASPisdescribedinFigure2.Aswillbeseenthroughoutthisreview,thedefinitionofanewWHASPalmostalwaysbeginswithatargetmotionplatforme.g.anexistingmachine tool. This platform is typically optimised in its layout for either additive or subtractiveprocessing.Thesecondaryprocessisthenintroducedviasomeformofintegration,whichmightbethephysicalmountingof an additivedepositionhead,or the introductionof a separate industrialrobottodeliverthesecondaryprocess.Tobeabletointerchangebetweenprocesses,someformofcontroller logic or physical reconfiguration of themachinemust be present. The controller of themachineisresponsibleformotionandtheauxiliarycommandsthatfacilitateadditive,subtractiveand,inmanycases,metrologyprocessesduringmanufacture.Thiscontrollerreceivesinstructionsfromthesoftware layer, which encapsulates the representation of the part geometry, process sequences

5

(processplan)andanyinspectionrequirements.Thepresenceof in-processsensingandmetrologypermitsabidirectionalexchangebetweenthesoftwareandcontrollerlayers,resultinginanadaptiveorreactiveprocessplan.Eachlayerofthisarchitectureisgivenadedicatedsectioninthisreview.The`Hardware’layerisdiscussedforacademicresearchandindustrialdevelopmentsinSections4.1and5.1, respectively.Similarly, the `Controller’ layer isdiscussed inSection4.2and5.2and `Software’layersarediscussedinSections4.3and5.2.

TheremainingsectionsofthispapercorrespondtothelayersofthearchitectureproposedinFigure2.Theselayersareexploredforbothresearchandindustrialdevelopments,whicharelatercomparedandcontrastedtoidentifyemergingtrendsinWHASPdevelopment.

3.1. ThegeneralisedthehybridadditiveandsubtractiveprocessIn general, Figure 3 describes the process interactions in a hybrid additive and subtractivemanufacturingprocess.AnygivenprocessmayexhibitsomeoralloftheseinteractionsasaWHASPcreatesanewpart,oroperatesonanexistingpart.Themanufactureofnewpartsnecessarilystartswith theadditionofnewmaterial viaadditiveprocessing.Conversely,part repairor reincarnationtypicallystartswithameasurementorcharacterisationstagetoidentifythepositionandorientationofthepart,orthenatureofadefectinrelationtothemachine’scoordinateframeofreference.

Hybridadditiveandsubtractiveprocessingmaybeundertakeninanopenorclosed-loopfashion.Tocontinuetoprocessadditivelyorsubtractively,withoutconductingsomeformofverificationontherecentprocessoutcomes,istoconductanopen-loopprocess.Conversely,tocharacterisetherecent

Figure2:AgeneralarchitectureforWHASPs,coveringaspectsfromhardware,controllerandsoftwarecapabilities

6

Figure3:Processinteractionswithinahybridadditiveandsubtractiveprocess,showingopenandclosed-loop

operations

processoutcomesusingmetrologyandsensingcapabilities,beforecommittingtofurtheradditiveorsubtractiveprocessing,istoundertakeaclosed-loopoperation.Likewise,processcompletionisopenorclosed-loopdependingonwhichofthethreetypesofoperationisfinal.

Once processing begins, there are a total of 12 interactions within and between processes: (1)consecutive, open-loop additionofmaterial, (2) consecutive acquisitionofmeasurement data, (3)consecutive, open-loop subtraction of material, (4) interchange from additive to subtractiveprocessing,withoutverificationofadditiveoutcomes, (5) interchange fromsubtractive toadditiveprocessing, without verification of subtractive outcomes, (6) verification of additive processingoutcomes,(7)verificationofsubtractiveprocessingoutcomes,(8)additiveprocessingwithadditionalinsight from prior measurement and characterisation, (9) subtractive processing with additionalinsight prior measurement and characterisation, (10) verified process completion, based onmeasurementorcharacterisationofthefinalpart, (11)unverified(open-loop)processcompletion,endingwith additive processing, and (12) unverified (open-loop) process completion, endingwithsubtractiveprocessing.Whererequired,theremainingsectionsofthisreviewshallreferbacktothisinteraction diagram to help describe the process interactions and strategies employed in eachimplementation.

3.2. Motivationsforhybridisationofadditive&subtractivetechnologies

MAMpartsrequirefurtherpost-processingtorefinegeometricalaccuracy, improvesurfacequalityandrelieveresidualstresses.ConventionalmechanicalmechanismsforfinishingofmetalpartsmaybeadvantageousinfinishingMAMcomponents,duetoeaseofhardwareintegration,andtheabilityto selectively process material, producing the required surface characteristics imposed by somecritical applications (e.g. aerospace and medical). As many of the existing mechanical finishingtechniquesrequire`line-of-sight’toaccessoverhangingorinternalfeatures,itisadvantageoustobe

7

abletoselectthe intervalatwhichfinishingoccurs i.e.buildmaterial, finishthismaterialandthensubsequentlyaddmorematerial.

Theabilitytofluentlyaddandsubtractmaterialfromaworkpiececreatessignificantopportunitiesinthemanufactureofnewpartsandtheremanufactureofwornordamagedparts[3].Remanufactureisregardedasacostandenergyefficientwaytoextendtheusefullifeofpartsandproducts,receivingattentionformcivilianandmilitaryarenas[54].WHASPsprovidetheopportunityforrawmaterialstobetransformed intofinishedpartsusingonlyonevisit toasinglemachinetool, increasingprocesscapability[55].

The ability to work, inspect and then rework material until the part conforms to tolerances andspecificationsmayprovideastep-changeinqualitymanagement.Therealisationoftheseconceptsleadstoreductionsincostsincurredowingtofloorspacerequirements,generationofscrapandswarf,andpotentiallyimprovedprocessingtimes.Moreover,highlycomplexpartswithexternalandinternalfeaturesorhighgeometricalprecisionandsurfacequalitycanbeproduced[7],[56].Assuch,WHASPsmay overcome existingmanufacturing challenges, thereby satisfying the objective of “1+1=3” forhybrid manufacturing as defined by Lauwers et al. [5]. For these reasons, research into thedevelopment of workstations for hybrid additive and subtractive processing will be of significantimportancetohighvaluemanufacturingofthefuture.

4. Hybridadditiveandsubtractivemanufacturingprocesses–research

BasedonthearchitecturedetailedinFigure2,academicresearchrelatingtoWHASPsmaybebrokendown into the constituent layers, namely: the hardware, controller and software layers. Theproceedingsectionsreportontheliteraturefromtheperspectiveofeachoftheselayers.

4.1. ThehardwarelayerFigure 4 gives a cross-section of how academic research has addressed the `Hardware’ layer ofWHAPSs.Thediagramshouldbereadfromtoptobottom,firstselectingasubtractiveprocess,thenanadditiveprocess,thirdlyamotionplatformconfigurationischosenandfinallyamethodofprocessinterchangeorreconfiguration.Thenumberofreferencesineachboxofisindicativeoftheabundanceofresearchconcerningagivenconfiguration.

Figure4showsthatsubtractiveprocessingisalmostexclusivelylimitedtoCNCmachining,withasingleexampleofSelectiveLaserErosion(SLE).Similarly,DirectedEnergyDeposition(DED)dominatestheadditive processing tier, with a small number of cases considering powder bed fusion (PBF) andmaterial extrusion. As a final introductory observation, WHASPs are largely built upon existingcommercialmachinetools,withadaptationsintheformofadditiveprocessintegration.Typically,theonlyvariantsonthisthemeincludetheadditionofextraroboticmanipulators,orthedevelopmentoflow-costin-housemachinetools,whichcloselyresemblecommercialsystems.Eachconfigurationwillnowbeexaminedindetail,withacriticalassessmentofitscapabilityandsuitabilityinanindustrialsetting.

8

Figure4:Abreakdownofthehardwareconfigurationsdevelopedinacademicresearch,groupedaccordingtoprocess

inclusion,thetypeofmotionplatformusedandthemethodofmachinereconfigurationandinterchangebetween

additiveandsubtractiveprocesses.

4.1.1. CNCmachiningwitharc-baseddirectedenergydeposition

ThehybridisationofCNCmachininganddirected-energydepositionisthemostabundantcombinationinacademicresearch.Oneformofthisisarc-baseddirectedenergydeposition,whereanelectricalpowersupplyisusedtoestablishanarcbetweenananodeandcathode.Theheatfromthisarccreatesamelt-poolintowhichwire-fedorpowderedmaterialisdeposited.

The use of arc-based directed energy deposition has been realised through the mounting of anadditivehead(weldingtorch)withinamachinetool,oronanindustrialroboticmanipulator.Merzetal. [57] developed ‘Shape Deposition Manufacturing’ (SDM), which hybridised a newly definedadditiveprocess, ‘Microcasting,’ andCNCmachining. InMicrocasting an arc is initiatedwithin theweldingheadbetweentheelectrodeandthefeedstockwire.Thewireismeltedinthearc,depositing

9

astreamofrelativelylargedropletsontothesubstrate.MechanicaltestingshowedthatMicrocastingsurpassedthespecifiedtensilestrengthof308weldments.

In this researcha test-bed facilitywasdeveloped,which included fourdistinctprocessingstations,namely:5-axisCNCmachining,aroboticdepositionstation,partcleaningandshotpeeningstations.A further robotperformed transfersof thepart between stations. Thedeposition stationhad theabilitytodepositprimarymaterial(stainlesssteel)orsupportmaterial(copper)ontothesubstratetoassistwithoverhangingfeatures.Thepresenceofcleaningandshot-peeningstationsfacilitatestheremovalofcuttingfluidresidueandreliefofresidualstressesfromtheadditiveprocess,respectively.

Later in1997-1998,Amonetal. [58], [59]extendedtheworkof [57]bymodellinga ‘Microcasting’droplet impacting on an ambient substrate. As a result of this modelling, torch power, dropletdeposition rate, droplet size and free-fall distance were optimised to reduce the likelihood ofinterlayerde-bondingandexcessivethermalstressbuild-upinsingleanddual-materialparts.Amonet al. [19] also theorised about the integration ofmultiplemanufacturing processes into a singlemachinetool.Morespecifically,Amonetal.[58],[59]describethemountingofanadditiveheadtotheZ-axisofaCNCmillingmachine;aconfigurationthatwouldlaterbecomepopularinresearch-ledWHASPimplementations.SeeFigure7andFigure12forexamplesofthisconfiguration.

In2005,Songetal.[60]alsosoughttointegrateanadditiveprocesswithinsingle,commercial3-axismachinetool.InthisresearchGasMetalArcWelding(GMAW)wasutilisedinasimilarmannertothatproposedbyMerzetal.[57]andAmonetal.[58],[59].ThisresearchintegratedtwoGMAWweldingheadsbymountingthemadjacenttothespindleofacommercial3-axismachinetool.Thisfacilitatedthedepositionofdifferentmaterialsordepositionwidthsi.e.coarseandfine.Theprincipleaimofthisinvestigationwastoanalysetheeffectsofdifferentweldingparametersonthebuiltmaterial,suchaswelding voltage, current and speed. Itwas found thatbydepositinga layerofmetal, followedbyplanarmilling and then depositing the next layer resulted in high density parts (>90%),with finalsurfaceroughness2μm(Ra)aftermillingandtensilestrengththatiscomparabletowiremildsteel.Thisresearchwassupplementedin2006bySongandPark[61]whodemonstratedthemanufactureofmulti-material components using the same set-up. In a cubic specimen, amild steel core wasenshroudedwithinastainlesssteellayerusingtwoadditiveheads.Twodistinctmaterialswereclearlyevident on themicrograph; however, the authors expressed concerns over the induced stress inmaterialswithdissimilarthermalexpansioncoefficients.

Figure5:Complexfeatures,includingatriangularhelicalduct(left)andahollowtorus(right),manufacturesusing3-axis

hybridadditiveandsubtractivemanufacturingprocesses[7]

10

Akulaetal. [62], [63]developedan in-housemachine tool toaccommodatebothCNCmillingandGMAW (MIG / MAG) welding. By developing a machine tool and associated PLC-based controlinternally,theauthorsretainedtheabilitytoredesignbothhardwareandsoftwaremodules.Thefinalhybridprocessadoptedthenotionofdepositinglayer,planarmillingthislayer,andthendepositingthenextlayer.Onceanear-netshapewasachieved,profilemillingwasundertakentocompletethepart.TheresearchundertakenbyAkulaetal.[62],[63]focusedonoptimisingtheprocessparametersforadditive/subtractiveprocesses.Theauthorsclaimedthatbyusingthismethod,thecycletimeformanufacturingmouldsanddiescouldbesignificantlyreduced.Furthermore,integratingtheirsystemintoanexistingcommercialCNCcentrecouldreducecapitalinvestment.Investigationsindicatedthatthe desiredmaterial properties formoulds and dies could not be entirely achieved by arc-baseddirected energy depositionmethods. Akula et al. [62] concluded that partsmanufactured by thismethodaremechanicallyinferiortotheircounterpartsmanufacturedconventionally;however,afterCNC milling, similar geometrical accuracy is achieved. The overall part accuracy is process andworkpiecedependent;however figures stated in [64]describepartaccuraciesof±0.030mmforacombinedDEDandCNCmachiningprocesses.Inanotherstudy,Akulaetal.[63]analysedtheeffectof deposition parameters in additive/subtractive manufacturing and highlighted variations withinmaterialmicrostructureandinpart/buildplatedistortionduetounevenheatingandcoolingduringtheweldingprocess.

Karunakaranetal.[65]–[67]reportedontheintegrationoftheGMAW(MIG/MAG)additiveweldingprocess(asdescribedbyAkulaetal.[62],[63])intocommercial3-axismachinetools.Theyemphasisedthat the integration should not interfere with the existing capabilities of a CNC machine tool.Therefore,apneumaticactuatorconfigurationwasusedtoraiseandlowertheadditiveheadbetweenmanufacturingprocessestoavoidcollisions.Theweldingpowersourcewasalsohousedwithinthemachinetool’sprotectivepanels[67].Inthisresearch,theauthorscommentedonthepossibleuseofautomatictoolchangingtoreconfigureany3or5-axismachinetool;however,theydisregardedthisnotionduetotheneedtoestablishelectrical,gasandwirefeedstockconnections[65],[66].Inacasestudy[65],theauthorsfoundthatthisWHASPcansignificantlyreducethecostsandthetimerequiredformanufacturinganymetal toolordieascomparedtoother individual techniques.Furthermore,they identified near net-shape building and finish machining on a singular platform as the mostsignificant feature ofWHASPs. Example mould parts manufactured by the proposedmethod aredisplayedinFigure6.Karunakaranetal.[67]highlightedthatheatmanagementduringthisprocessisessential topreventunwanteddistortionand residual thermalandmechanical stresses in finishedparts.Furthermore,thepossibilityofthermalspikesduringthematerialdeposition(welding)processshouldbeconsideredtopreventundesirabledamagetothemachinetools’controller.

11

Figure6:Examplemanufactureofamouldcoreusingretro-fittedadditive(GMAW)andsubtractive(CNCmachining)[66]

TheSouthernMethodistUniversityinTexashavedevelopedtheirownWHASPcapabilityintheformoftheMULTIFABsystem[68],[69].TheMULTIFABsystemcomprisesamulti-axisrobotformaterialdepositionandweldingwhichissynergisticallyintegratedintoa5-axismachinetool[70].Thissystemcan accommodate both arc and laser-based directed energy deposition processes, using a 6-axisroboticmanipulatortoexecuteeitherlaser(1kW/2.5kWNd:YAG)ormicro-plasmaweldingfacilities.This robotic systemwasable toprocessmaterial that is fixturedwithina5-axismachine tool.TheMULTIFABcapabilityhasprimarilyfocusedontherepairofhigh-valuemetalcomponents,whichinturn necessitates integrated machine tool metrology to characterise and existing component’sgeometry.Scanningtechnologiesareusedtoachievethis,byenablingreverseengineeringand in-processinspectionofcomponentgeometries.

Thefollowingpointssummarisethedevelopmentsmadeinarc-baseddirectedenergydepositionandCNCmachiningWHASPs.Motionplatforms take the formof commercial three-axismachine tools,withretrofittedweldingfacilitiestodepositmaterial.Insomecases,theweldingheadisretractabletoavoidinterferencewiththeCNCmachiningoperations.Alternatively,industrialrobotshavebeenused to work collaboratively with commercial 5-axismachine tools. Process sequencing generallyalternatesbetweenlayerdepositionandplanarmilling.Therehasbeennoparticularfocusontheuseprofilemillingbetweendepositedlayers,whichcouldpotentiallymakefinishingofoverhangingandinternal features difficult. There are differing opinions on the mechanical and microstructuralpropertiesofthemanufacturedparts,withsomeresearchersclaimingcomparableperformance,andotherstipulatingtheneedforheattreatmentandcarefulavoidanceofthermalbuild-uptominimiseresidualstresses.

4.1.2. CNCmachiningwithlaser-baseddirectedenergydeposition

ThelimitationsofGTAW,suchaspooraccuracyandreliability,partdeformation,poorbondingandrestricted material choices, has resulted in an increased interests in using laser-based materialdeposition methods [54]. Laser-based directed energy deposition is similar to its arc-basedcounterpart; however, in these processes, a laser is used to create a localised melt-pool on thesubstratetowhichmaterial isthendeposited.Anotherwidelyadoptedtermfortheseprocesses is‘lasercladding.’

In 1996, Fessler et al. [71] described the installation of a laser-cladding head on a 4-axis roboticmanipulator.CNCmachiningwasusedachievedesirablegeometricalaccuracyandsurfacequalityin

12

additivelymanufacturednear-netparts. Inthisresearch,theauthorsutiliseda2.4kWCWNd:YAGlaser(spotsizeof2.5mm)intheDEDprocess.Additiveandsubtractiveprocessingwerealternatedonalayer-wisebasis,usingseparatedepositionheadstodepositcoppersupportstructureandstainlesssteelpart features. The supportmaterialwas later removedbyacidetching.A comparisonof themechanicalpropertiesofthedepositedmaterialandwrought316Lstainlesssteelshowedcomparableperformance,withheightenedyieldstrength.Thesepropertieswerealsofoundtobecomparablefordifferentbuild-directions.

Theauthorshighlightedthatresidualstressesresultingfromthermalgradientscanleadtowarpingandalossofstrength.Tocircumventthisissue,experimentswithalternativebuildstrategies,inwhichtowerswerebuiltandthenthegapswerelatterlyfilledintopromoterelaxationthroughoutthebuild.Additionally, thenotionof thermally stable (INVAR) support structureswasconsidered.Apossiblesolutionwasproposedwherebysupportmaterialisprotectedbyabufferlayerthatissacrificial.Thisresearchalsoalludedtothefutureuseofmulti-materialdepositiontoproducefunctionalmaterialgradients(i.e.multi-materialdeposition)byexperimentallydepositingINVAR,stainlesssteel,copperand bronze on a single part. Apart from the thermal issues associated with laser deposition ofmaterialswithvariousthermalproperties,theauthorsidentifiedbuildinguponanexistingpartmayadverselyaffectexistingfeatures,surfacequalityormaterialmicrostructure[71].

In2003,Himmeretal.[72],describedtheprocessoflaserbuild-upwelding.Inthisresearch,alaser-claddingunitwasintegratedwithinacommercial3-axismachinetoolbymountingitadjacenttothemachiningspindle.Inthisway,themachinecouldaddmaterialtosupportlaminatedmoulddiesbybuildinganear-netrepresentationofthefinalgeometry,whichwaslatterlyrefinedusingsubtractiveCNCmachining.Theauthorshypothesisedaboutthefutureuseoffive-axismachinetoolstofacilitatefinishmachiningofmorecomplexgeometries.

KerschbaumerandErnst[73]publishedresearchonthedevelopmentofahybridlaser-claddingandCNCmachiningsystem.TheauthorsintegratedaNd:YAGlasercladdingnozzleandpowderfeedingsystemintoacommercialRöders5-axisCNCmachinetool(Figure7).Inthisimplementation,5-axismaterial deposition permitted multiple build directions, avoiding molten material flow along aninclined build surface, whilst significantly reducing the requirements for support structures. Theheighteneddexterityalsoledtoincreasedtoolaccessibilityduringmaterialremoval.Intheirprocess,theauthorsmachinedtheadditivelybuiltcomponentaftereveryfewlayerstoallowmachiningaccesswithsmalltoolsintothecomplexinternalgeometriesofthepart,potentiallyreducingtheneedfordie sinking EDM. This study identified that alternating laser cladding and machining operationsprohibitstheuseofcuttingfluidsduringmachining.Furthermore,theynotedthatsincecompleteheattreatmentoftheworkpieceaftermachiningisnotpossible,onlyverytoughhighstrengthalloysshouldbeused.Thishashighlightedthematerialcostsforthisprocessandtherequirementforspecialisedmillingprocesses,whichcanwithstandmachiningofadvancedalloysathightemperatures.

13

Figure7:(Left)WHASPpresentedin[73],withadditiveheadpermanentlymounted

adjacenttothemachiningspindle,(Right–Top)Exampleofmulti-axisdepositioncapabilityofWHASP[73],(Right–Bottom)Componentafterfinish-machining[73]

The Laser-Assisted Manufacturing Process laboratory of the University of Missouri, Rolla, hasdevelopedtheLaser-AidedManufacturingProcess(LAMP).Eiamsa-ardetal.[54]describedahybridsystemwithlasercladdingandmachiningcapabilities.Theauthorsusedthissystemintherepairofmetalpartsbyfirstremoving(machining)materialsurroundingthedamagedzone,depositingnewmaterial and then finish-machining the deposited material to refine the geometry and surfacecharacteristics.Thisnotionofrepairbymaterialadditionandsubtractionsitsnaturallywithinsectorsthatproducelow-volume,high-complexitypartsthataresubjecttowearanddamagee.g.aerospace,military,medicalandmouldanddieindustries.Renetal.[74]describedtheintegrationofadditivelaser cladding capabilities on a FADAL 5-axis CNCmachine tool and extended Eiamsa-ard et al.’sresearchformulti-axissurfacepatchingofdamagedandworndietools.Theauthorsproposeda3-Dpatching method where the material is deposited on an existing feature and follows its surfacecontourasopposedto2-DmaterialdepositionasshowninFigure11.Theintegrationoflasercladdingintoa5-axisCNCmachinetoolmeantthatmaterialdepositionandfinishingcouldbeachievedwithasingle setup. This facilitated higher geometrical accuracy whilst minimising the time required forrepair,reducingassociatedcosts.

TheFraunhoferIPTinstitutedevelopedaWHASPthroughtheintegrationofawire-fedlaserdepositionheadona3-axishighspeedmillingcentre [64].This researchwas initiallyaimedat therepairandmodification of steel moulds. The layer-by-layer material deposition andmilling capability of thesystem allows machining to be carried out in-between building processes. Therefore, precisionfeatures could be manufactured using standard milling cutters, reducing the need for post EDMmachining. Synergistically utilising layered additive manufacturing techniques with conventionalmillingpermittedthemanufactureofengineeringfeatureswithhighaspectratios;however,this is

14

perhapsmoreapplicableto internal features,asexternal features,suchaspins(bosses),wouldbesusceptibletodamageduringmachining.

The‘RECLAIM’project[75]soughttodevelophybridmanufacturingtechnologiesviamulti-purposemachinetools[76].Thisresearchfocusedonthecombinationofadditive,subtractiveandinspectionprocessestofacilitatetheremanufactureofhigh-valueparts[77].AmoredetaileddescriptionofthisprocesscycleisillustratedinFigure8.TheinitialfocusofthisresearchwastorepairturbinebladesmadeofTi-6Al-4Valloywithtipdamageandwear. Inapreliminarycasestudy[76], timeandcostsaving could be achieved using this system. As shown in Figure 9, no significant microstructuralabnormalitiesweredetectedintherepairedturbineblades,whilstgoodfusiontobasematerialsandlowweldporositywerefound.However,Figure9doesshowaclearboundarybetweenthebaseandcladdedmaterials. The authors stated that further investigation on optimising the cladding headdesign and process parameters were necessary to guarantee part quality [76].Many commercialWHASPsnowadoptan identicalor similarapproach to this implementation,which isdiscussed inmoredetailinSection5.

Figure8:DescriptionoftheRECLAIMremanufacturingprocess[76]

Figure9:TransverseandlongitudinalsectionmicrographsofTi-6Al-4Vlasercladdedturbinebladetip[76]

InitialPartAlignment•ScanningTouchProbe

DefectCharacterisation•ScanningTouchProbe•Point-Cloud/Inspectionsoftware

AdaptiveToolpathGeneration•Point-CloudtoCADmodeltranslationSoftware

•CAMsoftware(ToolpathGeneration)

DefectRemoval•5-AxisCNCMachineTool

DefectRepair•DirectedEnergyDeposition(LaserCladding)

FinsihingandBlendMachining•5-AxisCNCMachineTool

15

4.1.3. Combinedselectivelasermeltingandselectivelasererosion

Producingfine(micro)featuresonmetaladditivepartsisasignificantchallenge.Externalfeaturesaretoodelicatetowithstandtheimpactfromthenextlayerofpowder,appliedusingthewiper.Internalfeaturesbecomepartiallyobscuredbytrappedorpartiallybondedparticulate.Traditionalmechanicalsubtractiveprocessesalsostruggletodealwiththistypeoffeature,especiallyifthefeaturehasahighaspectratio.

To address these issues, Yasa et al. [78] adopted a different approach to hybrid additive andsubtractiveprocessing.BytakingacommercialSelectiveLaserMelting(SLM)machineandoperatingtheNd:YAGlaserintwodifferentways,twodistinctmanufacturingprocessescouldbeexecuted.ThefirstoftheseisanadditiveSLMprocess,whichrequiresthelasertobeusedincontinuousmode.Thesecondprocess,SelectiveLaserErosion(SLE),utilisesapulsedlasermodetoevaporatematerialfromthe workpiece during or after SLM coalescence. Due to the non-contact nature of the process,cylindricalpinswithdiametersbetween50µmand350µmweproducedusingthisprocess.InternalfeatureswerealsoproducedusingSLEtodrillholesof126and120 µmdiameters.Itwasnotedthatthe laserwas commanded to follow the perimeter contour of the circle, rather than a stationaryprocessingpoint.

Usingthesamemachine,theauthorswerealsoabletoimprovesurfaceroughnessandreduceresidualporosity using laser re-melting. For planes normal to the build direction, the average surfaceroughness(Ra)wasreducedfromanaverageofRa12µmto1.5µm,whichiswithintherangethatisappropriateforcriticalapplicationse.g.aerospace[79].Thisprocesscouldbeundertakenlayer-wise,butalsoonside-profilesbyraisingthebuildpartoutofthepowderbedandblowingexcesspowderaway.Forinclinedplaneswithinclinationsof10and30degrees,a50%and75%reductioninsurfaceroughnessRacouldbeachieved.Usingarelativemetricderivedfromimageprocessing,theporosityofthelaserre-meltedspecimenhadamaterial-poreratioof0.036%,whereastheas-builtspecimenwas 0.77%, showing an improved density. This research represents the only example ofmachinereconfiguration via parameter change i.e. no hardware changes; offering a reminder that HASPprocessesarenotalwaysmanifestedviathephysicalconnectionofseparatehardwaremodules.

4.2. ThecontrollerlayerLiteraturereportingonthedevelopmentofdedicatedcontrollercapabilitiesforWHASPsandHASPsissparse.Thisisincontrasttoresearchaddressingadditivemanufacturingasadiscreteprocess.Inmetaladditivemanufacture(MAM),controlisbrokenoutintotwotranches:parameteroptimisation(open-loop),andclosed-loopcontrol.Closed-loopcontrolischallengingduetocomplexcorrelationsbetweenparametersandtheneedtousepenetrativemeasurementtechniquestogatherinformationaboutthebuildwithinapowderbed.

Therearenumerousexamplesofresearchintoclosed-loopcontrolofmetaladditivemanufacturingprocesses.Variousimagingtechniqueshavebeenusedtomeasuretheshapeandtemperatureofthemelt-poolinmetaladditiveprocesses.Themeltpoolgeometryandtemperaturehavebeenmeasuredwiththermalimaging[40],[80],andusingacombinationofahigh-speedcamerasandthermalimaging[22],[81].Othersystemsuseahigh-speedcameraandphotodiodetomeasuremeltpoolgeometry[82]–[84].Informationregardingtheshapeandtemperatureofthemeltpoolcanbeusedtofacilitatefeedbackcontrolofprocessparameters,suchaslaserpower.Researchhasalsoaddressedclosed-loopcontroloffeedstockmaterialflow-rate intheDEDprocessusinga laserdiodetomeasurematerial

16

throughput [80], [81]. Open loop control has also commanded the attention of several researchefforts. In additive processing, thismay be undertaken by optimising processing parameters.Oneexampleofthisisgivenin[85],wheretheauthorsexperimentwithdifferentlaserpowerprofilestocontrolheatingofthepowderedmaterial.Anotherformofcontroladjustsspatialaspectsofthebuild,compensating for shrinkageeffects in final part geometryby adjusting the commandedmelt poollocation[86]–[88].

Despitethisbodyofresearch,mostoftheliteratureonWHASPsandHASPsoptsforopen-loopcontrolstrategies,freezingparametersafterinitialoptimisation[62],[63].Jengetal.[89]identifiedlimitationsofopen-loopcontrolofDEDparameters,suchasexcessivematerialbuild-upincornerprofilesduetothe acceleration and deceleration phases whilst traversing the corner profile. Powder build-upresultingfromunsuitablepowderflow-ratesandamismatchbetweenmeltpoolandpowderstreamdiameterswerealsoinvestigated.Finally,theinabilitytodepositpowdereffectivelyoncetheprofileofpreviousdepositiontrackshadbecomepointedwasdiscussed.Researchinthisareaoftenexploitsthepresenceofasubtractiveprocesstocorrecterrorsgeometricalerrorsandpoorsurfacequalityarisingfromtheadditiveprocess[89].

Merzetal.[57]identifiedtheneedforclosed-loopcontrolofHASPparametersin1994.Karunakaranetal.[65]hasalsoexplicitlystatedtheneedforcontroloverseveralweldingparametersinordertoaffectachangeinasingleprocessoutput,suchasadditivelayerthickness.KerschbaumerandErnst[73]deviseanextendedCNCcontrol toaccommodate theadditiveprocess inacommercial5-axismachinetool.Thisresearchaddressedtheneedtoaccuratelycontrolmachinefeedratesandfeed-stockvolumetricflow-rates.Thelaserpowerwasrelatedtothefeedrateofthemachineviathirdorderpolynomialrelationshipcreatingaformofclosedloopcontrol.Choietal.[90]investigatedindividualwire-fedweldingparameterssuchastrackandlayerdimensions.Intuitively,anincreasedfeedrateforaconstantmaterialfeedrateresultedinareductiontrackwidthinthedeposition.Likewise,increasingthematerialfeedrate,withaconstantlaserpowerandtablefeedrate,resultedinanincreasedtrackwidth.Theworkof Jonesetal. [91]usesfixedadditiveparameters inanopen-loopsense,buthasprovision for inspection (tactile probing) of the workpiece to characterise the outcomes of bothadditive and subtractive processing. This makes it possible to operate closed-loop processing inaccordancewiththeinteractionsdescribedinFigure3.ThisresearchmakesuseofcommercialCNCcontrollersandCAD,CAMandCAIsoftwaretodeliverthisfacility.

Researchhasalsofocussedoncontrollingtheinterchangefromtheadditivetothesubtractiveprocessandviceversa.Theuseofavailablemachinecontrollertoolpreparatorycommands(GandM-codes)hasbeendiscusses[62],[63],[66],[67];particularlywhenaprocessiseitherinan‘on’or‘off’state(open-loop).

4.3. ThesoftwarelayerThe software layer of the WHASP architecture is largely concerned with three tasks, namely (i)Identifyingasuitablebuild-direction(partorientation),(ii)decomposingapartgeometryintoalayer-wiserepresentation,and(iii)Definingaprocesssequencetofacilitatethelayer-wisemanufactureofapart.Ineachcase,identifyingapreferablepartorientationandbuild-directioniskeytomaximisingtheeventualpartquality.

17

4.3.1. IdentifyingasuitablebuildorientationIdentifying a suitable build orientation is highly dependent on themanufacturing processes, partgeometryandhybridmanufacturingstrategyemployed.Forexample,DEDprocessesrequiresupportstructuresforfeaturesthatoverhangsignificantly,orthathavenocontactwithexistingstructures.The use of high degree-of-freedom motion platforms permits a change in build direction duringmanufacture.Thesequenceofmaterialdepositionandremovalalsochanges thebuildorientationrequirements. For example, planar milling of a deposited face will generally always be available;however,profilemillingofadepositedfeaturecanposetool-accessibilityissues.

KulkarniandDutta [62] identified thebuildorientationasan ‘essential’partof thehybridprocesschain.They identifiedconsiderationswhenchoosing thebuilddirectionaspartheight in thebuilddirection,theimplicationsonsurfaceroughnessduetothestaircaseeffect,theareaofthepartthatismountedto thebuild-plate, theeffectsonmechanicalproperties,partdistortionandvolumeofnecessarysupportmaterial.KulkarniandDutta[62]suggestedthatoptimisationofbuildorientationmaybeundertakenforeachofthesemetricsinisolation,oraspartofamulti-objectiveoptimisationproblem

Otherresearcheffortshaveidentifiedbuild-directionsviaoptimisation,withHuetal.[92]identifyingcandidate build directions that are assessed based on cutting tool accessibility, deposition time,machiningtime,numberofbridgedstructuresandthenumberofsupportstructures.Theauthorsuseaweightedcostfunctiontoallowuserstospecifytheirindividualrequirements.ZhangandLiou[56]alsosearchfortheoptimumbuild-directionbysettinganoptimisationproblem.Inthisresearch,build-directionsminimisingthetotalareaofoverhangingsurfacesorinaccessiblefeaturesarethetargetfortheoptimisationalgorithm.

4.3.2. Partdecomposition

Asadditiveprocessesbuildpartslayer-by-layer,researchfocusesonpartdecomposition.Forhybridadditiveandsubtractiveprocesses,thisisgenerallydividedintotwocategories,namely:planarslicingalgorithms and feature recognitionmethods. Planar slice thicknesses are either equally spaced oradaptivelychangedtosuitthepartgeometry.

TheworkofKulkarniandDutta[62]usesequallyspacedplanarslicesofthepart’sSTLfiletoidentifylayer-by-layerprocessplansandtool-paths.Thismethodisoftendescribedasa‘zeroth-order’edgeapproximation.Toreducethestaircaseeffect,coarseplanarslicesarefurtherdecomposedintofineslicestorepresentthepartgeometrytoasuitabledegreeofaccuracy.AkulaandKaranakuran[63]alsousedzeroth-orderedgeapproximationtocalculatetheslicethicknessandlayeringofthepartdesign. In each layer,materialwas built using either direction-parallel (zigzag) or contour-parallel(spiral)areafilling.Eachdepositedlayerwasface-milledtounifytheheightofthedepositedlayerandremovesurfacedefects.

Anadvancementofthefixed-thicknesspartslicingstrategyisthe‘adaptive’slicingstrategy.ZhangandLiou [56]were able to change theorientationof the slicingplane to alleviate thedependencyonsupportstructuresforoverhanginggeometries.Thisalgorithmfirstsearchesfortheoptimumslicingdirectionandthentool-accessibilityischeckedtoavoidcollisionandtoensurethatsuccessivelayersarewithinthelimitsofacceptableoverhang.Ruanetal.[93]furtheredthisworkbyintroducingnon-uniform layer building, where the thickness of the layer varies from point to point. Ruan et al.separatedthebuildprocessintotwostages,asshowninFigure10.Firstly,auniformlayerwith

18

Figure10:Partslicingusingnon-uniformlayerthicknessforusewithadditiveandsubtractiveprocesses[93]

constant thickness is deposited and then themachining capability is used to subtract the excessmaterialandformanon-uniformlayerwithatop-facethatisnormaltothepreferredbuilddirectionofthefollowinglayer.

Changetal.[94]decomposepartsbyidentifyingundercut,non-undercutandnon-monotonicsurfacesinanadditivebuild.Graphtheoryisthenemployedtoidentifyaminimalbuildsequence,inclusiveofmanufacturing precedents (e.g. surface B cannot be built before surface A). Furthermore,considerationtowardsavoidinginterferencebetweenthecuttingtoolandexistingpartstructuresisgiven.

OtherrelatedworksincludeHuandLee[95]andHuretal.[96].Bothofthesepublicationspresentpartdecompositionalgorithmsforpartsthataremadeviagluingfixed-thicknesssheetstogether,withinterimmachiningoftheassembledstructure.Althoughitcouldbearguedthatthisisahybridjoiningandsubtractiveprocess,thepartdecompositiontheoryremainsrelevant,asthelayerthicknesscouldsimply be adjusted to reflect the thickness of an additive layer. The algorithmemployed in thesepublicationsdividesapartintoslices,identifyingthesignoftheZ-componentofthesurfacenormalunitvectorforeachsurface.Positive(+)Z-componentsandnegative(-)Z-componentsareseparatedandtheirbuilddirectionchosenaccordingly.

4.3.3. ProcessplanningInHASPs,processplanningreferstotheidentificationofasequenceofoperationsthatwillleadtothemanufactureofthedesiredpart,alongwithanynecessarysupportstructure.Atthehighestlevel,thismaybebrokendown intosequencesofadditive, subtractiveandmetrology-basedprocesses.Atalower level, individual toolpaths and process parameters are defined. An important differencebetweenprocessplanningforHASPsandprocessplanningofaconventionalmanufacturingprocessisthefactthattheycanbebi-directional.Materialmaybeaddedandsubtracted,adinfinitum,untiladesirableoutcomehasbeenachieved.Thisnotioncangreatlyincreasethecomplexityoftheprocess-planningtask.

Forrepairing/remanufacturingprocesses,Eiamsa-ardetal.[54]andRenetal[74]identified4majorstepsforprocessplanning,namely:(i)definingtheworn/damagedfeature,(ii)generatingmachining

19

toolpathsforremovingthedamaged/wornfeature,(iii)generatingthedepositiontoolpathforre-buildingtheworn/damagedfeatureand(iv)post-processingthetoolpathsintomachiningcodes.In[54],toolpathsweredefinedbyusingMinkowskioperationsofdilationanderosiontooffsetthetool-centrepointfromthedesiredfeaturecontour.Later,[74]proposeda3-Dpatchingmethodwherethematerialisdepositedonanexistingfeatureandfollowsitssurfacecontourasopposedto2-Dmaterialdepositionasshownin.Theintegrationoflasercladdingintoa5-axisCNCmachinetoolmeantthatmaterial deposition and finishing could be achieved with a single setup. This facilitated highergeometricalaccuracywhilstminimisingthetimerequiredforrepair,reducingassociatedcosts.

Kerbratetal.[97]adoptanovelprocessassessmentandplanningapproach,whichisdrivenbytherelativecomplexityofmanufacturingafeatureeitheradditivelyorsubtractively.Complexity inthiscase is related towell understood process limitations, such as geometrical feasibility, diminishingstiffnessinstructuresandtoolswithhighaspectratios,andtoolaccessibility.Althoughnotexplicitlyappliedtothefieldofhybridprocesses,identifyingwhenitisadvantageoustomanufactureafeatureusingaparticularprocesscouldprovideavaluableinsightwhenprocessplanningforWHASPs.

The works of Zhu et al. [98]–[100] focus on process planning for hybrid additive and subtractivemanufacturing,includingtheuseofinspection.Theauthorsdecomposepartsinto‘manufacturable’sub-parts, eachwith their own build direction. Attention is given to the ability ‘promptly’ inspectfeaturesastheyareproduced.Inthisway,outoftolerancefeaturesmaybereworkedwhilsttheyarestillaccessible,whichavoidsunnecessarymaterialwastageandisessentialforinternaloroverhangingfeatures.Assuch,theprocessplanstartswithastaticsetofoperations,butquicklybecomesdynamicasfeaturesarecreated,measuredandreworked.

Figure11:Patchingofa2Dzigzagontocurvedsurface(top)andpartrepairusingmulti-axisadditivemanufacturing[74]

20

5. Hybridadditiveandsubtractivemanufacturingprocesses–industrial

perspective

Since2003,additivelymanufacturedpartproductionhasincreasedfrom3.9%to34.7%ofallproductandservicerevenues[12].WithspecificreferencetometalAMprocessesthefuturemarketsizeandgrowthrateareexpectedtoexceedpolymeric-basedAM[101].Furthermore,focusliesincustomisedand reconfigurable manufacturing, the application of layered and other freeform manufacturingtechniquestofabricate intermediateandend-useproducts,andnear-netshapingthatreducestheneedforexcessivesurfacefinishing[102].Despitehavingbeenafertileresearchtopicsincethemid-late1990s,thecommercialisationofhybridmanufacturingprocesseshasbeengradual.Atthepresenttime,thepaceofdevelopmentforcommercialhybridmanufacturingmachinetoolsisaccelerating.

Trends suggest that the future manufacturing economy will rely heavily on reconfiguration andresponsiveness, with a migration away from production lines and towards highly capable singlemachinesthatareabletotransformrawmaterialintoafinishedpartinasinglemachinevisit.ThisnotionisparticularlywellalignedwiththeWHASPvision.TheproceedingsubsectionsgiveasummaryofcommerciallyavailableandcommerciallyannouncedWHASPs.

5.1. TheHardwareLayerTable 1 gives a summary of the commercially available products and publically announceddevelopmentalworkbeingundertakeninindustrywithregardstoWHASPs.DMGMoriSeikipossesstwohybridadditiveandsubtractivemachinetoolcapabilities,eachatdifferentstagesofdevelopment.The most developed of these is the LASERTEC 65 3D, integrating laser cladding and 5-axis CNCmachining [106].DMGMori Seiki hasalsoannounced thedevelopmentof theNT43003Dhybridmachinetool[107],whichutilisesaturn-millmachine.Intermsofmaterialreadiness,DMGMoriSeikiliststainlesssteel,Nickel-basedalloys(Inconel625,718),tungstencarbidematrixmaterials,bronzeandbrassalloys,chrome-cobalt-molybdenumalloys,stelliteandweldabletool-steelsasbeing‘triedandtested’[118].Obviousomissionsfromthislistincludetitaniumalloysandaluminiumalloys,whichappeartostillposeconsiderablecommercialissuesinDEDadditiveprocesses.

In2013,HamuelReichenbacherannouncedthedevelopmentoftheHYBRIDHSTM1000machinetool[119], [120], focusing largely on the repair of high-valueparts.Using an existingHamuel turn-millmachine, this offering combines high speedmilling, directed energy deposition via laser cladding,inspection, deburring / polishing and lasermarking. Particular focus is given to the integration ofinspection processes to close the loop between the additive and subtractive processes, and thedamaged part. Mazak Corporation has announced a hybrid multi-tasking machine, namely theINTEGREXi-400AM.ThismachineutilisestwoAmbitlasercladdingheads[108],coarseandfine,forhigh speed and high accuracy deposition, respectively. This WHASP is based on a multi-taskingmachining centre as a foundation, permitting the end-user tomill, turn and laser-mark additivelymanufacturedpartsusing5-axismotion.

21

Table1:Announcedorcommerciallyavailablemachinetoolswithhybridmanufacturingprocesscapabilities.

Informationhasbeenpopulatedfromthepubliclyavailablereferences.(*ATC=AutomaticToolChange,(†)=

TerminologydefinedinASTMF2792standard[9])

Additive

Process

Product,Company Subtractive

Process

Additional

Capabilities

MotionPlatform Reconfig.

Mode

Ref.

Sheet

lamination(†)

Formation,Fabrisonic ü 3-AxisCNC

Machining

Dedicatedmachinetooldevelopment

ATC* [103]

Directed

Energy

Deposition(†)

AmbitLaserCladdingHead,HybridManufacturingTechonologies

- - - ATC* [104]

HYBRIDHSTM1000,HamuelReichenbacherLtd. ü 5-axisCNC

Machining

ü 3Dscanning,ü Inspection,ü Deburring/

Polishingü Lasermarking

HamuelReichebacherMill-Turn

ATC* [105]

LASERTEC653D,DMGMoriSeiki ü 5-axisCNC

Machining-

DMU65Monoblock5-axisMachiningCentre

ATC* [106]

NT43003D,DMGMoriSeiki ü 5-axisCNCMachining

ü Turning

-NT4300SZMTurn-Mill

ATC* [107]

INTEGREXi-400AM,MazakCorporation

ü 5–AxisCNCMachining,

ü Turning

ü LaserMarkingü Fine&Coarse

AdditiveNozzles

MazakINTEGREXi400Mill-TurnMachine

ATC* [108]

Replicator,CybamanTechnologies,traki-iskiLtd.

ü 6–AxisCNCMachining

ü Grinding

ü Robotweldingü 3Dscanningü Laser

Processing

Dedicatedmachinetooldevelopment

Automatedandmanual

[109],[110]

WFLMillturnTechnologies ü 5–AxisCNCMachining,

ü Turning

ü Laser-basedhardening

ü LaserWeldingü LaserCladding

WFLMillturnTechnologiesM80Turn-Mill

Unknown [111]

ZVH45/L1600ADD+PROCESS,Ibarmia ü 5-axisCNC

Machining-

Ibarmia5-axismachiningcentre

ATC* [112]

ColdSpraying MPA40,HermleAG ü 5–axisCNCMachining

ü Multi-metaldeposition

Hermle5-axismachiningcentre

Unknown[113],[114]

PowderBed

Fusion(†)

LumexAvance–25,MatsuuraMachineryCorp. ü 3–axisCNC

Machiningü Vision-based

monitoring

Dedicatedmachinetooldevelopment

Automated [115]

OPM250E,Sodick ü 3-AxisMachining

-DedicatedMachineToolDevelopment

Automated [116]

Material

Jetting(†)

SolidscapeProductlines,SolidscapeInc.(Stratasys) ü Planarmilling

-Dedicatedmachine

Automated [117]

Cybaman Technologies offer a comparatively compact solution [110], [121] built upon a 6-axismachinetool,whichmaybereconfiguredtodeliverCNCmilling,grinding,welding,laserprocessing,directedenergydeposition(additive)and3Ddigitising.Thesetechnologiesmaybecombinedtosuitend-userrequirements,oftenutilisingautomationforeaseofreconfiguration.

22

The year 2015 has also seen announcements from a consortium led by Optomec and backed byTechSolve,LockheedMartin,MachMotionandU.S.ArmyBenétLabsregardingthedevelopmentofalegacyCNCmachinetoolupgrade (retrofit) to includeadditivemanufacturingvia theLENSTM [122]DEDprocess[123].Thisresearch,undertakeninconjunctionwithAmericaMakes,aimstomakehybridmanufacturingmoreaccessibletomachinetoolownersbyfocussingonexistingmachineupgrades.Thistakestheformofamodular,permanentlymountedadditivehead,adjacenttothemachinetoolspindle. This is intended tobeamore ‘costeffective’meansbywhich tobridge thegapbetweenconventionalandhybridprocessing.Thisdevelopmentisoneofthefirstexplorationsoftheadjacentmountingconfigurationinacommercialsetting,havingbeenpopularisedintheresearch(SeeSection4.1andFigure12).

5.1.1. CNCmachiningwithadditivecoldsprayingprocesses

In this context, Cold Spraying refers to an additive process that propels powdered material at asubstrateatasufficientlyhighvelocitytocauseadhesionandmaterialbuild-up[10].Theuseoftheword‘cold’referstomaterialadhesionatatemperaturesignificantlylowerthanthematerial’smeltingpoint;although,uponcollision,localisedtemperaturesarehighasaresultofkineticenergytransfer[10].ThismethodcontrastswithotheradditiveprocessesconsideredforuseinWHASPs,asitoperatesat a comparatively low temperature. The only reference available for integration of cold sprayingprocesseswithasubtractiveprocesstoformaWHASPisbyHermle[124]–[126].

In2015,Hermlereleasedinformationpertainingtotheirhybridadditiveandsubtractivemachinetool[113], [114], [126].Throughvarying thecompositionof thepropelledmaterial, functionalmaterialgradientsmaybeadditivelyconstructed.ByintegratingHermle’s‘MetalPowderApplication’withinafive-axismachiningcentre,multi-metaldepositionmaybecombinedwith5-axisfinishmachiningtocreatepartsthatarebothgeometricallyandcompositionallycomplex(constituentmaterials).

5.1.2. CNCmachiningwithpowderbedfusion

Matsuura’sLumexAvance–25[115]offerscombinedlasersinteringandCNCmillingwithinasinglemachine tool. The technology is used to simplifymouldmanufacture by removingmould-splittingprocesses and including complex internal mould features such as conformal cooling channels. Incontrast to some of the other commercially available technologies, only three-axis machining isutilised. To avoid tool-accessibility issues, the machining process is sequentially interlaced withlayeredadditivemanufacturingtomachineinternalfeatureswhilsttheyarestillexposed.

AsimilarproducthasbeenreleasedbySodickviatheirOPM250Emachine[116].Primarilytargetingthemouldingmarket,thismachinecombineshigh-speedthree-axismillingwithpowder-bedfusioninwhatistermed‘afullyautomatic’fashion.Theadditiveprocessisdeliveredbya500WYbfiberlaser.Sodick describe their process, whereby ten layers are additively manufactured, before a singlemachiningpassismade.Thissequenceisthenrepeateduntilthebuildiscomplete.

5.1.3. CNCmachiningwithmaterialjetting

Solidscapeofferavarietyof3D-printingsolutions[117],allofwhichutilisematerialjetting(ink-jetting)toadditivelymanufacturepartgeometries.Avarietyofwax-blendsandwax-likeorganiccompoundsaremeltedtoallowhighfrequencydepositionofdropletsontoasubstrate[127].Betweenthelayers,thepartmaybe‘planarmilled’toprovideaflatbuildsurface,ataknownheight,forthenextlayertobebuiltupon.

23

5.2. ThecontrollerandsoftwarelayersWithaWHASP,materialmaybeadded,removedandalsomeasured.Assuch,itispossiblethattherewillbenowell-definedsequenceofoperationsasaHASPprocessmaybeadaptiveandreactive[99].Therefore,processplanningbecomessignificantlymorecomplexastherearepotentiallyaninfinitenumber of feasible process sequences to manufacture a part. Therefore, the need to updateinformationrelatingtothecurrentpartgeometryanddevelopnewprocessplansduringmanufactureisofgreatimportance.

Thefactthatsacrificialorsupportmaterialmaybeaddedtoa finishedpartmaynecessitatemoreinsightfulmetricssuchas:buildtime,materialusage,accuracyoffeatures,costetc.Inadditiontothis,lessobviousmetricsmayalsoplayan importantrole intheprocessplanningstage.Ahypotheticalexample of this might be the maximisation of tool-tip (or deposition head) access to a part’sengineeringfeaturesthroughoutthemanufacturingprocess;therebymaximisingtheopportunitytoreworkthesefeaturestomeetmanufacturingrequirements.Thistypeofmetricmaybecomecriticalin‘right-first-time’or‘zero-defect-manufacture’ofhigh-valueparts.

5.2.1. Commercialsolutionsinthecontrollerlayer

Table1canbedividedintothosethatutilisewell-establishedcontroller-vendorproducts,andthosethathavedevelopedtheirowncontrollercapabilities.Thesecontrollersareusedtoexactcontroloverthemachine’smotion,auxiliaryfunctionsandprocessparameters.IntermsofcommercialNCcontrolimplementations,theSiemens840D[128]hasbeenusedwith[129],[130]andFanuc31i[131]hasbeenusedwith[129].Thesecapabilitieshavebeenutilisedtocontrolbothadditive,subtractiveandinspectionprocessesduetotheirmulti-axisfunctionality,modularityandflexibility.Inadditiontotheapplication of general purpose NC control, dedicated NC control has been developed for specificmachines,suchaswiththeSodickOPM250E[116].

5.2.2. Commercialsolutionsinthesoftwarelayer

DuetothecomplexityofmanufacturingoperationsusingWHASPs,thereisoftenaneedtoincludeadditionalsoftwaretofacilitatemanipulationofthepartgeometryviaCAD,processplanningusingCAMandpotentiallycomputeraidedinspection(CAI)too.ForeachofthesolutionsinTable1,thereisanaccompanyingsoftwarecapability.Theavailability,complexityandbreadthofthesesoftwaresolutions can vary considerably. Traditionally, there is limited information available regarding theexact nature of proprietary process planning algorithms. Nevertheless, this subsection offers adescription of existing capabilities based on available information. A survey of publically availableinformationregardingtheuseofadditionalsoftwareproductshasbeenundertakenandthefindingsarelistinTable2.

Arecentadditiontothecommercialsoftware layer isaHybridManufacturingSimulationsoftware[136]. This software has been developed by MachineWorks Ltd. and offers a full-machine toolsimulation, including DED and CNCmachining capabilities. Although this is not a detailed processinteractionsimulation, itprovidesusefulvisualsimulationofthepartevolutionasmaterial isbothadded and subtracted. It also gives a clear indication of tool accessibility and collision risks. Thedeveloperssaythatthisdevelopmenthascomeinresponsetothe‘increasingnumberofhigh-profilemachinetoolmanufacturersthatarebringingtomarkethybridCNCmulti-taskingmachines[136].’

24

Table2:ExamplesofCAD,CAMandCAIimplementationsincommercialWHASPs

CAD,CAMandCAISoftwarefromVendor

WHASP Software Description Ref.

HSTM1000,HamuelReichenbacher

• DelcampowerINSPECT

• DelcampowerSHAPE

• DelcampowerMILL

Softwaretocapturemeasurementdata(powerInspect),translatethisdataintoalignmentanddefectcharacterisation(powerSHAPE),anddeviseaprocessplan(powerMILL),includingbothadditiveandsubtractivetool-paths[132].Itshouldbenotedthattheuseofallthreeofthesesoftwareproductsisnotexplicitlystated;however,thesethreeproductsformDelcam’sadaptivemachiningcapability,whichwasusedintheRECLAIMproject,which–aprecursortotheHSTM1000[75].

[132]

LaserTec653D,DMGMoriSeiki • SiemensNX

PartsandprocessplansaredesignedthroughtheSiemensNXsoftwaresuite.

[130],[133]

Replicator,CybamanTechnologies

• hyperMILLAcommercialCAMpackageformulti-axistoolpathgenerationformachiningparts.

[134]

In-houseCAD/CAMSoftwareDevelopment

WHASP Controller Description Ref.

Formation,Fabrisonic • SonicCAM

SonicCAM imports a CAD model of the part and thenautomaticallygeneratesthetool-pathsandpartprogramsforthesheetlaminationandCNCmachiningoperations.

[121]

MPA40,Hermle• MPA-Studio

Thissoftwareundertakesalayer-by-layerassessmentofapart,resultinginthegenerationofprocessplans,includingtool-path. Included within this software suite will be asimulation environment to allow checking of processsequencesandqualityassuranceissues.

[126]

Solid-ScapeProducts

• 3ZWorks• 3ZAnalyser• 3ZOrganiser

Software is divided into self-contained units, which takeresponsibility for CAD file processing, motion planning,design of necessary support structures, simulation ofanalysis of part manufacture, and batch processing ofmultiplejobs.

[135]

Sodick(OPM250E)

• MARKS-MILL• OPM-

GenLaser• OPM-

Optimizer• OPM-Verify

Sodick have developed a suite of softwares to facilitatehybridmanufactureviatheircombinedhigh-speedmillingand powder-bed fusion. MARKS-MILL is a CAM system,chargedwith the generation of generation ofmachiningtool-paths. OPM-GenLaser assists in path planning(scanning strategy) for the powder-bed fusion process.OPM-Optimizer permits editing of the machining tool-pathsgeneratedinMARKS-MILL.Finally,OPM-Verifyoffersa simulation capability for both additive and subtractiveprocessing,actingasacheckingprocedure.

25

6. Observations,emergingtrendsandfutureperspectives

Asaresultoftheliteraturesurveyundertakeninthisresearch,anumberofkeyobservationshavebeenmade,emergingtrendsidentifiedandfutureperspectivesforecasted.Thesearegroupedintosubsections addressing machining platforms and their structural elements, control systems andprocess planning software, metrology and the further integration of additive and subtractiveprocesses.Afinalsubsectionthenoutlinesthefuturevisionforthisresearcharea.

6.1. Machiningplatformsandstructuralelements

BysurveyingacademicresearchpertainingtothedevelopmentofWHASPs,somecommontraitshavebeenidentified.TheoverwhelmingmajorityofresearchconsiderstheintegrationofDirectedEnergyDeposition(DED)asanadditiveprocessandCNCmachiningasasubtractiveprocess.

Motionplatformsareeitherdevelopedin-housetoavoidtheinvestmentinunnecessarymachinetoolstructure and functions, or an existing machine tool is used as a foundation.When the latter isemployed,apopularconfigurationistopermanentlymountanadditiveheadadjacenttothemillingspindle,whichiscontrolledviatheNC(M-codes).Therearetwomorerecentexamplesofmachinetoolsthatarereconfiguredusingautomatedtool-changes.Thissolutionhasnowbecomeattractiveinthecommercialarena. Inaddition, thismore recent researchhasbegun toplaceemphasison theinclusionofin-processinspectiontoclosetheloopbetweentheadditiveandsubtractiveprocesses.

6.1.1. PopularhardwareconfigurationsAsaresultofthisliteraturesurvey,emergingtrendsinWHASPhardwareconfigurationshavebeenidentified. These configurations are illustrated in Figure 12. Figure 12a is a configuration that hasgainedtractioninindustry.Itcentresonthemodificationofacommercialmill-turnmachine,whereaworkpieceisheldinaspindle(rotaryaxis),whichrevolvestoachievedifferentpartorientations.Thetoolalsohasarotarydegreeoffreedom,toallowtool-accessthatisnormaltotheprocessedsurface.This configuration is well suited to hybrid processing of existing workpieces (e.g. part repair orreincarnation),astheworkpiecemaybeclampedateachendtoreduceunwanteddeflection.

Figure12brepresentstheadaptationofafive-axismachiningcentre,inwhichtheadditivecapabilityis interchangeableeithermanuallyorviaautomatictoolchange(ATC).Thisconfigurationhasbeenwidelyadopted inbothacademiaand industry.Unlike themill-turnconfiguration, thesemachineshavetheadvantageofaneasilyaccessiblebuild-plate,whichmakesthemwellsuitedtothehybridmanufacture of new parts. Figure 12c is similar to Figure 12b; however, the additive capability ispermanentlymountedtotheZ-axisofthemachinetool.Thissignificantlyreducesthecomplexityoftheintegration,astheadditiveheadistypicallyraisedandloweredusingavailableNCpreparatorycommands(G&M-codes).Thisconfigurationiswidelyutilisedinacademiabutisyettogainsignificantcommercialuptake.

Finally,Figure12disaconfigurationinwhichtheadditiveandsubtractivemanufacturingprocesseseachhavetheirownmotionplatform;typicallyanindustrialrobotandamachinetool.Inthisway,themachinesworkcollaboratively(notsimultaneously)toaddandsubtractmaterial.Despitebeinghighlydextrous, there is a significant requirement for additional investment in hardware, controllercapabilityandintegration.Thisconfigurationhasyettoseeindustrialuptake.Apossibleadvantageofthisconfigurationistheabilitytoundertakedifferingsimultaneousmotions,makingitpossibletoadd

26

(a)Turn-Mill (b)5-AxiswithATC

(c)3/5-AxiswithPermanentMounting (d)3/5-AxiswithIndustrialRobot

Figure12:MachinetoolconfigurationsthatareemergingaspreferredmethodsofintegrationforCNCmachiningand

DEDprocesses

andsubtractmaterialsinunison.Tothebestoftheauthors’knowledge,thispossibilityisyettobeexplored.

Although machine configurations for other manufacturing processes have been explored, bothacademicandindustrialhardwaredevelopmentshavefocusedontheintegrationofDEDprocesses.This is largelydueto theability toaddmaterial tonewandexistingworkpieces,andthe fact thattransitioningfromadditivetosubtractiveprocessesisconsiderablymorestraightforwardwithoutapowderbed.DespitePBFprocessesbeingthemostabundant in industrialadditivemanufacturing,theirusageislimitedinHASPs/WHASPs.

The review of the published literature suggests that there has been approximately equal use ofWHASPs for new part manufacture, and existing part repair or modification. It is also highlyforeseeablethatHASPswillcreatediffering,ifnotconflicting,designrequirementsforanyeventualWHASP.Assuch,designerswillhaveachoice:(i)Identifythelimitingprocessrequirementsanddesigntomeetthese;(ii)Trytogenerateadesignthatmeetsbothsetsofrequirementssimultaneously.

Theformeroftheseapproachesmaybethoughtofaspessimisticandperhapssuboptimal.Thesecondapproachisconsiderablymorecomplexandrequiressignificantdesigneffort;potentiallyatthe

27

Table3:AsummaryofthekeycharacteristicsofWHASPsdevelopedinaresearchenvironment(left)andthose

developedinacommercialsetting

AcademicPerspective IndustrialPerspective

Applications• Equalfocusonthemanufactureofnew

partsandtherepair/reincarnationofexistingcomponentse.g.moulddiesandturbineblades

• Equalfocusonthemanufactureofnewpartsandtherepair/reincarnationofexistingcomponentse.g.moulddiesandturbineblades

HardwareLayer

• SignificanttrendtowardstheintegrationofDEDandCNCmachiningprocesses

• Generallybuiltuponexistingmachinetoolstructures(3-axis&5-axis)

• Useofindustrialrobotsforparttransferbetweenprocessingstations

• Processinterchangeviapermanentmountingofadditivehead,adjacenttomachiningspindle

• SignificanttrendtowardstheintegrationofDEDandCNCmachiningprocesses

• Generallybuiltuponadapted5-axisandturn-millmachinetools

• ExamplesofPBFintegratedwithCNCmachining

• Automaticreconfiguration/interchangebetweenprocessesemergingaspopularchoice

• Metrologythroughtactileprobingand3Dscanning

ControllerLayer

• Researchfocusesprimarilyonintegratingadditivefunctionalitywithexistingcontrollersyntax(G&Mcodes)

• Controlofadditiveprocessispredominantlyopen-loop,whereparametersareoptimise,thenremainstatic

• Someexamplesofclosedloopprocessingfacilitatedbymetrology

• ProcesscontrolintegratedwithingeneralpurposecommercialNCcontrolandalsodedicatedcontrollerdevelopments

• Controlofadditiveprocessispredominantlyopen-loop,whereparametersareoptimise,thenremainstatic

• Someexamplesofclosedloopprocessingfacilitatedbymetrology

SoftwareLayer

• Softwaredevelopmentsfocusonpartdecompositionintolayers(zeroth-order&adaptiveslicing)

• Limitedexamplesofclosed-loopadditive-subtractiveprocessingfacilitatedbyCAD/CAM/CAI

• UsageofcommercialCAD/CAM/CAI• Morefocusonclosed-loopadditive-

subtractiveprocessingfacilitatedbyCAD/CAM/CAI

• Oneexampleofmachineandprocesssimulationsoftware

detrimentofdevelopmentcost.However,recentdevelopmentsinthemanufacturingcommunitymayprovideameansbywhichtocounteractconflictingmachinerequirements.Ultra-lightweightandhighlystiffstructuralcomponentsmayprovideameanstomeetthestiffnessrequirementsofsubtractiveprocesses,whilstalsomeetingthedynamicmotionrequirementsofadditiveandinspectionprocesses.Forinstance,dematerialisedmachinetoolsandnovelplatforms.

6.2. Controlsystemsandprocessplanningsoftware

The published research focuses predominantly software-based decisions regarding build-directionandplanarslicingofpartsintolayers.Particularattentionisgiventoundercut(overhanging)featuresand their implication on tool-accessibility. Some attention is given to other process planningconsiderations,suchastheintegrationofpartinspectiontoupdatetheprocessplan,andthedecisionprocessbehindwhethertoadditivelyorsubtractivelycreatepartgeometries.Basedonthefindingsofthispaper,processplanningisamajorresearchthemeforthefuture.Inparticular,itcouldbeofgreatbenefittointroduceadvancedcomputationandmathematicaltools,suchasmachinelearninganddecisionscience,todevelopresource-efficientprocessplanningtechniques.

28

Muchoftheresearchrelatingtothecontrolofhardwareandassociatedprocessparametersisrigidin its implementation. Typically, experiments are undertaken to identify parameters that givedesirable outcomes (e.g. laser cladding parameters), and then these are left unchanged duringmanufacture.Hence,futureresearchopportunitiesexistinthedesignofadaptiveprocesscontrolthatis governed by closed-loop feedback using in-situ measurements. An important factor in thisdevelopmentwillbetheavailabilityofreliableprocessmodelsandtestdata.Furthermore,theexistingresearch is heavily based on optimising the process parameters for individual operations namely,additiveandmachiningoperations.Aholistic viewofWHASPs is required tooptimise theprocessparameterswheretheadditiveandsubtractiveprocessesinteractandareusedinterchangeably.Forinstance,theeffectofmachiningonthematerialpropertiesduringthebuildprocessandtheeffectsofbuildheatonthemachiningprocessarestillunknown.

CommercialWHASPshavevaryingcontrolandsoftware implementations.Earlydevelopmentssawtheinclusionofbothin-houseandcommercialNCcontrolandsoftware.However,recentmachinesthatuseexisting5-axisandturn-millmachinesasafoundationare increasinglyadoptinghigh-levelcommercialNCcontrolproducts.ThesearethenusedinconjunctionwithadvancedCAD,CAMandCAIsoftwarepackagestodevelopprocessplansthatarebaseduponCADmodelandinspectiondata.FutureopportunitieslieinenhancedintegrationandcommunicationbetweenNCcontrol,andCAD,CAMandCAIsoftware.Ifthisisachieved,partinspectionmaybeusedtoagreaterextenttodetermineandadaptsuitableprocessplanstrategies.Thismaygivemorecertaintyinpartqualityandmakemoreefficientuseofmachineandmaterialresources.

TheintroductionofWHASPsthatcanalternatelyaddmaterialontoandsubtractmaterialfromexistingparts,makedecisionmakingforprocessplanningamajorchallenge.Themajorityofexistingprocessplanning systems is for parts that are generally built by additivemanufacturing on a build plate.Therefore,themachiningprocessplansareeitherforfinishingtheadditivelymanufacturedpartsorforinprocessfinishingtoimprovethequalityofthebuiltsurface.Aholisticapproachfordecision-makingandprocessplanningisrequiredtoindicatetheshapeoftheinitialbuildblockandwhereandwhen material should be added or removed. Subsequently, material, resources and powerconsumption,manufacturingcarbonfootprint, lifecycleandcostsanalysis,andmaterialpropertiesarepotentialdriversforprocessplanning.

6.3. Processmonitoringandinspection

Aspart of this reviewof published research, observations have beenmade, trends identified andfuture perspectives derived for WHASP process monitoring and inspection. The dominanttechnologiesinWHASPinspectionare:tactileprobingforcharacterisationoffeaturesandworkpieceorientation,andscanningsystemsforreverseengineeringoffeatureandpartgeometries.

There isanoticeable lackof researchcoveringprocessmonitoring inHASPs.Onlyoneexampleofprocessmonitoringandcontrolhasbeenidentified[73],wherematerialdeliveryandlaserpoweraremonitoredandsubsequentlycontrolledviatheWHASP’snumericalcontrol.Therearestillsubstantialopportunities for development of further WHASP process monitoring capabilities, which may beintegratedwithinaclosed-loopcontrolsystemasafurtherdevelopment.

29

Figure13:AroadmapforfutureresearchactivitiesandholisticdesignconsiderationsforWHASPs

7. ResearchchallengesandfuturevisionThisresearchscrutinisesemergingtrendsandtechnologiesandcurrentresearchchallengestoformwhattheauthorsbelievetobethefutureofWHASPresearch.Thesetrendsandchallengeshavebeencategorised and structured to form a roadmap for future lines of enquiry regarding research anddevelopment.ThisroadmapispresentedinFigure13,andselectedthemesareexpandeduponintheproceedingsubsections.

7.1. FurtheradditiveandsubtractivetechnicalchallengesSofar,bothresearchandindustrialcommunitieshavefocusedheavilyontherealisationofWHASPsthrough theamalgamationofDirectedEnergyDepositionandCNCmachiningprocesses.Althoughthesedevelopmentsareveryencouragingforthemanufacturingcommunity,theyonlyrepresentasmallsubsetofthelargerHASPandhybridmachinetoolfields.

30

Regardingadditiveprocessesformetalparts,powderbedfusionandcoldsprayingprocesseshavebeenunder-exploredcomparedtoDEDprocesses.ThereisscopeforfurtherconsiderationoftheseprocessesascandidatesforWHASPs.Asnear-netshapingdevelopsfurther,machiningprocessesmaybesubstitutedbyothersubtractive,modificationandtransformativeoperations.Examplesoftheseoperationsarecleaning,heattreatment,surfaceengineering,grindingandpolishing.Forthistobeviable,near-netgeometriesmustbeacloserepresentationofthefinalgeometry,whichnecessitatescontinuedimprovementofthegeometricalaccuracyofadditiveprocesses;particularlywithdifficulttomachinematerials.

There are opportunities for further exploration of metal additive processes that have analogouscounterparts inpolymericadditiveprocesses.Whenconsidering theuseofmetals, theabsenceofloose powder and the potential avoidance of support structures make wire-fed / droplet basedprocessesviablecandidatesforenclosedgeometriesandalsocircumventsomematerialmanagementissues.Intermsofprocessingspeed,currentpolymericprocessessuchasvatphotopolymerisationarecapableofproducingpartsofahighresolutionwithcomparativelylowprocessingtimesowingtotheability to cure an entire layer by projecting an image. Equivalent developments inmetal additiveprocesseswouldgreatly increase thesuitabilityofhybridmanufacturingprocesses toan industrialsetting.

Inordertorealisecompleteintegrationofadditiveandsubtractiveprocesses,holisticconsiderationoftherequirementsofadditiveandsubtractiveprocessesiscrucial.Swarfmanagementsystemsarenecessary to prevent mixing and provide a sustainable recycling/disposal of micro scale additiveparticles and machining chips. Additionally, the effects of materials management on machinelongevity,andhealthandsafetyshouldbeexploredindetail.Furthermore,thereisanopportunitytoinvestigatetheeffectofsurfacequalityofthebuildplate/existingpartsonthequalityofthefinishedparts.Theheatingcapabilitiesof the laserheadmaybeusedtoheatworkpiecematerialsprior tomachining,furtherhybridisingtransformativeprocesseswithoutthenecessitytoaddanotherphysicalcomponenttothesystem.Ontheotherhand,theapplicationofWHASPsisdominantlyutilisedfordifficult-to-machinematerialssuchastitanium,nickelandstainlesssteelalloys.Machiningofthesealloysiscommonlyundertakenusingcuttingfluids.Duetothecontaminationissuesandtheresidualsleft on the parts, the use of cutting fluids inWHASPS should be eliminated orminimised for themachining process. This necessitates the requirements for further research into development ofadvancedmachiningstrategiesandtoolingtorealisedrymachining.

Finishmachiningofadditivepartsonasingleplatformeliminatestheheattreatmentstageforstressreleaseafterbuildprocessandpriortomachining.Itisknownthatheattreatmentsaffectthematerialpropertiesandgeometryofmaterials[137].Therearesignificantresearchopportunitiesinstudyingtheeffectsof(i)eliminatingtotalheattreatmentfromthemanufacturingprocess,(ii)heattreatment(postfinish-machining)onresidualstressesandpartgeometry,and(iii)partialheattreatmentduringthemanufacturingprocessusingWHASPs.

HASPshavetheabilitytocreateinternal,otherwiseinaccessible,andgeometricallycomplexfeatures.Assuch,inspectionchallengesrelatingtoworkpiecegeometry,alone,aresignificant.Thefactsthatas-builtsurfacesofmanyadditiveprocessesareequivalentlycomplexduetopartiallyadheredmetalpowderetc.,furthercompoundsthiscomplexity.Finally,theintroductionofhigh-temperatureheatsourcesgivesrisetonumeroustemperaturecontrolandmaterialpropertiesissues.Therefore,surface

31

non-destructive inspection of geometry and surfaces and financially viable thermalmeasurementtechniqueswillplayamajorroleinfutureprocessmonitoringandinspectioninWHASPs.TheNationalInstituteofStandardsandTechnology(NIST)issuedareportontheMeasurementScienceRoadmapforMetal-BasedAdditiveManufacturing[138].Thisdocumentishighlyrelevantintheforecastingofcurrent and futureprocessmonitoringand inspection challenges thatWHASPswill bring.Anothersignificant publication in the field of metrology issues relating to additive manufacture is theproceedingsfromthe2014AmericanSocietyforPrecisionEngineeringtopicalmeeting:‘DimensionalAccuracyandSurfaceFinishinAdditiveManufacturing’[139].

7.2. FuturevisionAs a result of this research, a future vision for the architecture ofWHASPs and their associatedcontrollerandsoftwarecapabilitieshasbeendefined.ThisisrepresenteddiagrammaticallyinFigure14. TheWHASP and its associated HASP are delivered through a machine tool that is inherentlyreconfigurableinaccordancewiththeabovedefinitions.Hardwareandsoftwarearebothmodularintheirarchitecture,withwelldefinedinterfacesfortheadditionofnewmodules.Thesemoduleseachdeliveraprocessor sensing (measurement) capability andnewmaterialsorproduction scalesareachievedviaintegrationofnewmodules.

Itisproposedthatallprocessingoftheworkpieceshouldformaclosedloop.Eachconstituentprocessshould be adaptive to tolerate a variety of material composition, processing conditions and partgeometries. Measurements of cutting forces and melt-pool conditions would be an essentialrequirementforsuchacapability.Onadifferentlevel,processingbetweendifferingmanufacturingprocesses should also be closed-loop in accordance with Figure 3. This will necessarily requireadequatemetrologycapabilitiestoinspecttheworkpiecebeforeinterchangingprocesses.

To generate an initial processplan and specificmanufacturing instructions, an advancedand fullyintegratedsoftwarelayerisrequired.TheidealpartisrepresentedintermsofitsgeometryandqualitycharacteristicsinCAD.Thesearethenpassedtoacomputer-aidedprocessplanning(CAPP)stagetodecompose the part into a sequenceof feasible sub-features that should result in successful partmanufacture.Inaccordancewiththequalityrequirements,computer-aidedinspection(CAI)interlacesmeasurementroutineswithintheprocessplan.Instructionsregardingthespecificprocessparametersandmotion profiles required to execute a givenmanufacturing process are developed via a CAMcapability.Theseinstructionsinformapredictionofmanufacturingoutcomesusingvirtualmodelsofmaterials, processes,machine tool and controller behaviour. The outcomes of this stage undergonegotiations with overarching manufacturing objectives relating to cost, resource efficiency,productivityandqualityetc.Iftheresultsofthevirtualmanufacturingphasesatisfythemanufacturingobjectivestowithinapredefinedacceptancelevel,manufactureofthepartmaycommence.Failureto meet the objectives results in an iteration of the process, thus far, to propose an alternativemanufacturingstrategy.

Afternegotiations, the instructionsarepassed to thecontroller layer.Thiscontroller isopen in itsarchitectureandcanbereconfiguredthroughtheadditionandomissionofmodules.Thecontrollercommunicateswithamachinetoolhardware,whichalsohasreconfigurablearchitecturetorespondtochangesinmanufacturingrequirements.Duringmanufacture,dataisfedbackfromthemetrologydomaintoupdatevirtualmodelsofmaterials,processes,machineandcontrollerbehaviour,suchthattheymimicwhatishappeningin-process.Furthertothis,measuredpartdataisfedbacktotheCAD

32

stage(viaCAI)toupdatetheperceivedpartgeometryandtomakeacomparisonwiththethenominalCADmodel andmanufacturing objectives. Interventions are put in place to correct discrepanciesthrough additional processing. In this sense, the process plan andmanufacturing instructions areadaptiveandandreactive.Thisloopofprocess-measure-reassess-processcouldberunad-infinitum.However,acrucialroleoftheoverarchingobjectivesistopreventexcessiveconsumptionofpower,materials and tooling. To realise this vision, significant developmentsmust bemade in regardingsupporting software, sensing and metrology capabilities, adaptive processing, and a generallyreconfigurablearchitectureforbothhardwareandcontrollerelements.

7.2.1. Designformachinetoolandcontrollerreconfiguration

It is the contention of this research that WHASPs are, by their very nature, reconfigurable.ReconfigurableMachine Tools (RMTs) have been a fertile research area since the late 1990s andthroughout the 2000s. A cross section of this research may be gleaned from [140]–[142]. Theunderlying research in this area has matured into with well-defined characteristics, and designmethodologiesandtools[143]–[148].SynonymouscontrollerarchitecturesexistintheformofOpen-Architecture Control Systems (OACS) [149]. WHASPs are closely aligned with these paradigms,exhibiting aspects of portability, extendibility, interoperability and scalability [149]. According to[150],‘modularity’requiresthatallmajorcomponentsaremodularindesign;‘convertability’requiresthattheoptimaloperatingmodeisachievedthroughreconfiguration,whichcanbeupdatedwithashortconversiontime;‘scalability’stipulatesthatnewscalesofproductionareachievablethroughtheaddition and reconfiguration of modules; ‘customisation’ provides permits flexibility within thedesiredpartandfeaturerange,whichmaylaterbechangedthroughreconfiguration;‘integrability’ensuresmodulesaredesignwithinterfacesforeaseofcomponentintegration;and‘diagnosability’isachievethroughtheabilitytorapidlyidentifytheperformanceofthecurrentconfiguration,andrelatepoorperformancetoagivenmoduleorinterfacewithinthesystem.

AlmostallofthecurrentWHASPimplementationsinbothacademiaandindustryhaveusedanexistingmachinetoolasafoundation.Althoughunderstandablefromafinancialstandpoint,thisnotionriskscontradicting RMT tool concepts, as the final WHASP solution should be equally sympathetic toadditiveandsubtractiveprocessing requirements,without incorporating redundantcapability. It issuggestedthatfutureresearchshouldconsiderthedesignofadedicatedmachinetoolstructurethatistailoredtobothprocesses,usingwell-definedinterfacestopermittheinclusionoffurthermodules.

Control systems development should follow a in a similar vein, taking on a modular and openarchitecture. It has become clear that bidirectional communication between the machine’s NCcontrollerandtheCAD,CAMandCAIsoftwareneedstobedetailedandfrequent.Thisislargelydueto theneed to regularlyacquire time-specific information relating to theworkpieceandhardwareinteractions,whichisthenusedthistoupdateadigitalrepresentationofthemanufacturingprocess.Atpresent,itisonlythroughtheuseofNCandadvancedPC-basedsoftwarethatthiscanbeachieved.It is, therefore, likely that therewillbea convergencebetween thecontrollerandPCworkstationunits,forminganintegratedsolutionwithsignificantlygreaterexchangeofmanufacturingdata.

33

Figure14:ThefuturevisionforWHASParchitectureconsideringsoftware,controllerandhardware

34

7.2.2. Processmonitoringandinspection

Asaresultofthisliteraturereview,theauthorshaveidentifiedmetrologyandprocessmonitoringasan area of vast potential for future research. It is expected that futuremetrology for HASPs andWHASPswillbegovernedbyafewcentralissues.Thereisaneedtodevelopfinanciallyviable,non-destructiveandpenetrativemeasurementtechniques(andtechnologies)toacquiredatapertainingtogeometry,surfacecharacteristicsandmaterialproperties.Atpresent,technologiessuchasx-raycomputedtomographyarestartingtoaddresssomeoftheseissues.

Itisenvisagedthatanymetrologysolutionthatissufficienttopermitqualitymanagementandprocesscontrol would, by its very nature, produce large quantities of data. Therefore, data processing,transmissionandstoragearelikelytobecomeimportantissuesintherealmofmetrologyforHASPsandWHASPs.

Thepresenceofcross-manufacturing-processinteractioninHASPswillnecessitatetheintegrationofmetrologywithprocessplanningandprocesscontrol.Issuessuchasthermalgradients,partdeflectionandchangingworkpiecegeometrieswillrequiremetrologysolutionsthatcandeliversalientmetrologyinformation, ina timeandcost controlledmanner. Inparticular,affordable thermalmeasurementsystemsandrapidpartgeometryscanningareburgeoningrequirements.

Finally,HASPsandWHASPsopenupnewpossibilitiesformetrologysolutions,asnewmanufacturingmetricsmaybecomesignificant.Theabilitytomeasurematerialandpartproperties,in-process,mayfacilitatecontrolovermaterialmicrostructure,porosity,materialinterfacecharacteristicsandmulti-material(functionalmaterialgradient)composition.

8. ConclusionsThedesignofhybridadditiveandsubtractiveprocesseshasbeenanactiveresearchthemesincethelate 1990s; however, the transition from research into the commercial arena has been gradual.Research has shown that HASPs may be used to manufacture geometrically and compositionallycomplexparts,whichwerepreviouslyconsideredtootimeconsumingorevenimpossible.Withtheexception of some early-adopters, the number of commercialWHASPs has increased significantlysincethelate2000s.

This researchhas surveyed literature fromboth academic and commercial sources, and identifiedcurrenttrends inthedesignofWHASPs.Thispredominantly includesthetendencytousedirectedenergydepositionasamanufacturingprocess,combinedwithahighlymobilemachinetool.TherehasbeenanequalapplicationofWHASPsinboththemanufactureofnewpartsandalsotherepair(remanufacture) of damaged components. The latter has clearly illustrated the need to uniteadvancedmetrology,CAD,CAMandCAIcapabilitiestoupdateanadaptiveprocessplanbaseduponin-situmeasurements.Theserequirementsalsotranslateintonewpartmanufacture,astheabilitytofreelyaddorsubtractmaterialpresentssignificantopportunitieshybridwork,measureandre-workprocessplanningstrategies,whichmayfacilitateastepchangeinqualitymanagement.

Amajorcontributionofthisresearchistheidentificationofresearchthemesthatarecurrentlyunder-explored,orthatcouldpresentsignificantopportunitiesandchallengesinthefuturedevelopmentofHASPsandWHASPs.Thisextendstothedesignofhighlyreconfigurablemachinetoolhardwareandcontrollerstoaccommodatetwo,ormore,manufacturingprocesseswithinthesamemachine.The

35

needformultipleandvaried inspectioncapabilitiestoprovideclosed-loopfeedbackbetweeneachconstituentmanufacturingprocessandthemachinetool,aswellastheacquisitionofdataforthedevelopment of predictive feed-forward process and machine models, is discussed. Finally, largeopportunitiesinthedevelopmentofnovelprocessplanningtechniquesarerequired,asmanufacturemovesawayfromwell-definedsequencesofoperationsintoamorefluid‘crafting’ofpartsthatmeetmanufacturingrequirements.

The future vision of this research area is the emergence of highly capable hybrid machines thatcombinemanufacturingprocessesfromanumberofprocesscategoriestotransformnumerousrawmaterials into finished parts and even assemblies. These machines will intelligently, fluently andautomaticallyswitchmanufacturingprocessestowork,inspectandreworkmaterialuntilallnecessarymanufacturing requirements aremet. This is envisioned to be a largely unsupervised process, asintegratedsensorsandcomprehensivemetrologysolutionsprovideautomaticupdates toanever-changing process plan, thereby demonstrating ‘smartmachine’ characteristics.With the arrival ofthesetechnologies,manufacture,remanufactureandreincarnationofpartswillbecomepossiblewithasingleworkstationvisit.

Acknowledgements

TheauthorsarepleasedtoacknowledgeInnovateUKfortheirsupportinProjectFALCON(FinishingofAdditiveLayeredComponentsonaNovelPlatform–102183),andtheEngineeringandPhysicalSciences Research Council for their support in Project DHarMa (Design for HybridManufacture –EP/N005910/1).

References

[1] S.T.Newman,Z.Zhu,V.Dhokia,andA.Shokrani,“Processplanningforadditiveandsubtractivemanufacturingtechnologies,”CIRPAnn.-Manuf.Technol.,vol.64,no.1,pp.467–470,2015.[2] F.G.ArcellaandF.H.Froes,“ComponentsfromPowderUsingLaserForming,”Jom,vol.52,no.5,pp.28–30,2000.[3] J.Wang,S.Prakash,Y.Joshi,andF.Liou,“Laseraidedpartrepair-areview.”[4] Z.Zhu,V.G.Dhokia,a.Nassehi,andS.T.Newman,“Areviewofhybridmanufacturingprocesses–stateoftheartandfutureperspectives,”Int.J.Comput.Integr.Manuf.,vol.26,no.7,pp.596–615,Jul.2013.[5] B.Lauwers,F.Klocke,A.Klink,a.E.Tekkaya,R.Neugebauer,andD.McIntosh,“Hybridprocessesinmanufacturing,”CIRPAnn.-Manuf.Technol.,vol.63,no.2,pp.561–583,2014.[6] K.A.Lorenz,J.B.Jones,D.I.Wimpenny,andM.R.Jackson,“AReviewofHybridManufacturing,”inSolidFreeformFabricationConferenceProceedings,2015,vol.53.[7] S.SimhambhatlaandK.P.Karunakaran,“Buildstrategiesforrapidmanufacturingofcomponentsofvaryingcomplexity,”RapidPrototyp.J.,vol.21,no.3,pp.340–350,2015.

36

[8] P.Kulkarni,A.Marsan,andD.Dutta,“Areviewofprocessplanningtechniquesinlayeredmanufacturing,”RapidPrototyp.J.,vol.6,no.1,pp.18–35,2000.[9] “ASTMF2792-12A,StandardTerminologyforAdditiveManufacturingTechnologies.”ASTMInternational,WestConshohocken,PA,2012.[10] V.K.Champagne,TheColdSprayMaterialsDepositionProcess:FundamentalsandApplications.ElsevierScience,2007.[11] W.E.Frazier,“Metaladditivemanufacturing:Areview,”J.Mater.Eng.Perform.,vol.23,no.6,pp.1917–1928,2014.[12] T.T.Wohlers,WohlersReport2014:3DPrintingandAdditiveManufacturingStateoftheIndustryAnnualWorldwideProgressReport.WohlersAssociates,2014.[13] S.Das,“PhysicalAspectsofProcessControlinSelectiveLaserSinteringofMetals,”Adv.Eng.Mater.,vol.5,no.10,pp.701–711,2003.[14] T.Childs,“Selectivelasersintering(melting)ofstainlessandtoolsteelpowders:experimentsandmodelling,”Proc.…,vol.219,no.4,pp.339–357,2005.[15] J.P.Kruth,G.Levy,F.Klocke,andT.H.C.Childs,“Consolidationphenomenainlaserandpowder-bedbasedlayeredmanufacturing,”CIRPAnn.-Manuf.Technol.,vol.56,no.2,pp.730–759,2007.[16] L.Thijs,F.Verhaeghe,T.Craeghs,J.VanHumbeeck,andJ.P.Kruth,“AstudyofthemicrostructuralevolutionduringselectivelasermeltingofTi-6Al-4V,”ActaMater.,vol.58,no.9,pp.3303–3312,2010.[17] C.DoumanidisandY.-M.Kwak,“GeometryModelingandControlbyInfraredandLaserSensinginThermalManufacturingwithMaterialDeposition,”J.Manuf.Sci.Eng.,vol.123,no.1,p.45,2001.[18] J.LiuandL.Li,“In-timemotionadjustmentinlasercladdingmanufacturingprocessforimprovingdimensionalaccuracyandsurfacefinishoftheformedpart,”Opt.LaserTechnol.,vol.36,no.6,pp.477–483,2004.[19] M.Gharbi,P.Peyre,C.Gorny,M.Carin,S.Morville,P.LeMasson,D.Carron,andR.Fabbro,“InfluenceofvariousprocessconditionsonsurfacefinishesinducedbythedirectmetaldepositionlasertechniqueonaTi-6Al-4Valloy,”J.Mater.Process.Technol.,vol.213,no.5,pp.791–800,2013.[20] J..Milewski,G..Lewis,D..Thoma,G..Keel,R..Nemec,andR..Reinert,“Directedlightfabricationofasolidmetalhemisphereusing5-axispowderdeposition,”J.Mater.Process.Technol.,vol.75,no.1–3,pp.165–172,1998.[21] R.Vilar,“Lasercladding,”J.LaserAppl.,vol.11,no.2,p.64,1999.[22] M..Griffith,M..Schlienger,L..Harwell,M..Oliver,M..Baldwin,M..Ensz,M.Essien,J.Brooks,C..Robino,J..Smugeresky,W..Hofmeister,M..Wert,andD..Nelson,“UnderstandingthermalbehaviorintheLENSprocess,”Mater.Des.,vol.20,no.2–3,pp.107–113,1999.

37

[23] L.Costa,R.Vilar,T.Reti,andA.M.Deus,“Rapidtoolingbylaserpowderdeposition:Processsimulationusingfiniteelementanalysis,”ActaMater.,vol.53,no.14,pp.3987–3999,2005.[24] P.AggarangsiandJ.Beuth,“Localizedpreheatingapproachesforreducingresidualstressinadditivemanufacturing,”Proc.SFFSymp.,Austin,pp.709–720,2006.[25] A.Vasinonta,J.L.Beuth,andM.Griffith,“ProcessMapsforPredictingResidualStressandMeltPoolSizeintheLaser-BasedFabricationofThin-WalledStructures,”J.Manuf.Sci.Eng.,vol.129,no.1,p.101,2007.[26] B.Dillingh,G.Hayes,M.Hoppenbrouwers,V.Westerwoudt,andG.vanBaars,“ControlofMicrostructuralEvolutioninPowderBedFusionAdditiveManufacturinginRelationtoFunctionalPropertiesofMetals,”inASPE2014SpringTopicalMeeting:DimensionalAccuracyandSurfaceFinishinAdditiveManufacturing,2014,pp.205–208.[27] K.C.Mills,B.J.Keene,R.F.Brooks,anda.Shirali,“Marangonieffectsinwelding,”Philos.Trans.R.Soc.AMath.Phys.Eng.Sci.,vol.356,no.1739,pp.911–925,1998.[28] C.Hauser,T.H.C.Childs,K.W.Dalgarno,andR.B.Eane,“Atmosphericcontrolduringdirectselectivelasersinteringofstainlesssteel314Spowder,”Proc.Solid…,1999.[29] F.Abe,K.Osakada,M.Shiomi,K.Uematsu,andM.Matsumoto,“Themanufacturingofhardtoolsfrommetallicpowdersbyselectivelasermelting,”J.Mater.Process.Technol.,vol.111,no.1–3,pp.210–213,2001.[30] F.Klocke,C.Wagner,andF.Klocke,“CoalescenceBehaviourofTwoMetallicParticlesasBaseMechanismofSelectiveLaserSintering,”CIRPAnn.-Manuf.Technol.,vol.52,no.1,pp.177–180,2003.[31] J.Kruth,B.Vandenbroucke,J.Vaerenbergh,andP.Mercelis,“BenchmarkingofdifferentSLS/SLMprocessesasrapidmanufacturingtechniques,”Int.Conf.Polym.Mould.Innov.(PMI),Gent,Belgium,April20-23,2005,pp.1–7,2005.[32] K.MumtazandN.Hopkinson,“TopsurfaceandsideroughnessofInconel625partsprocessedusingselectivelasermelting,”RapidPrototyp.J.,vol.15,no.2,pp.96–103,2009.[33] G.Strano,L.Hao,R.M.Everson,andK.E.Evans,“Surfaceroughnessanalysis,modellingandpredictioninselectivelasermelting,”J.Mater.Process.Technol.,vol.213,no.4,pp.589–597,2013.[34] J.Kranz,D.Herzog,andC.Emmelmann,“DesignguidelinesforlaseradditivemanufacturingoflightweightstructuresinTiAl6V4,”J.LaserAppl.,vol.27,no.S1,p.S14001,2015.[35] J.Mazumder,a.Schifferer,andJ.Choi,“DirectMaterialsDeposition:DesignedMacroandMicrostructure,”MRSProc.,vol.542,pp.118–131,1998.[36] A.Suárez,M.J.Tobar,A.Yáñez,I.Pérez,J.Sampedro,V.Amigó,andJ.J.Candel,“ModelingofphasetransformationsofTi6Al4Vduringlasermetaldeposition,”Phys.Procedia,vol.12,no.PART1,pp.666–673,2011.

38

[37] G.Sun,S.Bhattacharya,G.P.Dinda,A.Dasgupta,andJ.Mazumder,“Microstructureevolutionduringlaser-aideddirectmetaldepositionofalloytoolsteel,”Scr.Mater.,vol.64,no.5,pp.454–457,2011.[38] J.Yu,M.Rombouts,G.Maes,andF.Motmans,“MaterialPropertiesofTi6Al4VPartsProducedbyLaserMetalDeposition,”Phys.Procedia,vol.39,pp.416–424,2012.[39] P.A.Kobryn,E.H.Moore,andS.L.Semiatin,“Effectoflaserpowerandtraversespeedonmicrostructure,porosity,andbuildheightinlaser-depositedTi-6Al-4V,”Scr.Mater.,vol.43,no.4,pp.299–305,2000.[40] W.HofmeisterandM.Griffith,“SolidificationindirectmetaldepositionbyLENSprocessing,”Jom,vol.53,no.9,pp.30–34,2001.[41] L.C.Zhang,D.Klemm,J.Eckert,Y.L.Hao,andT.B.Sercombe,“ManufacturebyselectivelasermeltingandmechanicalbehaviorofabiomedicalTi-24Nb-4Zr-8Snalloy,”Scr.Mater.,vol.65,no.1,pp.21–24,2011.[42] E.Brandl,U.Heckenberger,V.Holzinger,andD.Buchbinder,“AdditivemanufacturedAlSi10MgsamplesusingSelectiveLaserMelting(SLM):Microstructure,highcyclefatigue,andfracturebehavior,”Mater.Des.,vol.34,pp.159–169,2012.[43] Z.Wang,K.Guan,M.Gao,X.Li,X.Chen,andX.Zeng,“Themicrostructureandmechanicalpropertiesofdeposited-IN718byselectivelasermelting,”J.AlloysCompd.,vol.513,pp.518–523,2012.[44] I.Yadroitsev,P.Krakhmalev,I.Yadroitsava,S.Johansson,andI.Smurov,“Energyinputeffectonmorphologyandmicrostructureofselectivelasermeltingsingletrackfrommetallicpowder,”J.Mater.Process.Technol.,vol.213,no.4,pp.606–613,2013.[45] Q.JiaandD.Gu,“SelectivelasermeltingadditivemanufacturingofInconel718superalloyparts:Densification,microstructureandproperties,”J.AlloysCompd.,vol.585,pp.713–721,2014.[46] I.Yadroitsev,P.Krakhmalev,andI.Yadroitsava,“SelectivelasermeltingofTi6Al4Valloyforbiomedicalapplications:Temperaturemonitoringandmicrostructuralevolution,”J.AlloysCompd.,vol.583,pp.404–409,2014.[47] P.MercelisandJ.-P.Kruth,“Residualstressesinselectivelasersinteringandselectivelasermelting,”RapidPrototyp.J.,vol.12,no.5,pp.254–265,2006.[48] S.GhoshandJ.Choi,“ModelingandExperimentalVerificationofTransient/ResidualStressesandMicrostructureFormationinMulti-LayerLaserAidedDMDProcess,”J.HeatTransfer,vol.128,no.7,p.662,2006.[49] A.B.Spierings,T.L.Starr,andK.Wegener,“Fatigueperformanceofadditivemanufacturedmetallicparts,”RapidPrototyp.J.,vol.19,no.2,pp.88–94,2013.[50] K.M.B.Taminger,R.aHafley,D.T.Fahringer,andR.E.Martin,“EffectofSurfaceTreatmentsonElectronBeamFreeformFabricatedAluminumStructuresKarenM.B.Taminger,RobertA.Hafley,DavidT.Fahringer,andRichardE.MartinNASALangleyResearchCenter,Hampton,VA.”

39

[51] L.Löber,C.Flache,R.Petters,U.Kühn,andJ.Eckert,“ComparisonofdifferentpostprocessingtechnologiesforSLMgenerated316lsteelparts,”RapidPrototyp.J.,vol.19,no.3,pp.173–179,2013.[52] S.Rossi,F.Deflorian,andF.Venturini,“Improvementofsurfacefinishingandcorrosionresistanceofprototypesproducedbydirectmetallasersintering,”J.Mater.Process.Technol.,vol.148,no.3,pp.301–309,2004.[53] A.T.Beaucamp,Y.Namba,P.Charlton,S.Jain,andA.aGraziano,“Finishingofadditivelymanufacturedtitaniumalloybyshapeadaptivegrinding(SAG),”Surf.Topogr.Metrol.Prop.,vol.3,no.2,p.024001,2015.[54] K.Eiamsa-ard,H.J.Nair,L.Ren,J.Ruan,T.Sparks,andF.W.Liou,“PartReapirusingaHybridManufacturingSystem,”in16thSolidFreeformFabricationSymposiumSFF2005,2005,pp.425–433.[55] J.M.Pinilla,J.-H.Kao,andF.B.Prinz,“Processplanningandautomationforadditive-subtractivesolidfreeformfabrication,”inProceedingsoftheSolidFreeformFabricationSymposium,1998,pp.245–258.[56] J.ZhangandF.Liou,“AdaptiveSlicingforaMulti-AxisLaserAidedManufacturingProcess,”J.Mech.Des.,vol.126,no.2,p.254,2004.[57] R.Merz,F.B.Prinz,K.Ramaswami,M.Terk,andL.Weiss,Shapedepositionmanufacturing.EngineeringDesignResearchCenter,CarnegieMellonUniv.,1994.[58] C.H.Amon,“Shapedepositionmanufacturingwithmicrocasting,”1997.[59] C.H.Amon,J.L.Beuth,L.E.Weiss,R.Merz,andF.B.Prinz,“ShapeDepositionManufacturingWithMicrocasting:Processing,ThermalandMechanicalIssues,”J.Manuf.Sci.Eng.,vol.120,no.3,p.656,1998.[60] Y.A.Song,S.Park,D.Choi,andH.Jee,“3Dweldingandmilling:PartI-adirectapproachforfreeformfabricationofmetallicprototypes,”Int.J.Mach.ToolsManuf.,vol.45,no.9,pp.1057–1062,2005.[61] Y.A.SongandS.Park,“Experimentalinvestigationsintorapidprototypingofcompositesbynovelhybriddepositionprocess,”J.Mater.Process.Technol.,vol.171,no.1,pp.35–40,2006.[62] S.AkulaandK.P.Karunakaran,“Hybridadaptivelayermanufacturing:AnIntelligentartofdirectmetalrapidtoolingprocess,”Robot.Comput.Integr.Manuf.,vol.22,no.2,pp.113–123,2006.[63] S.Akula,K.P.Karunakaran,andC.Amarnath,“Statisticalprocessdesignforhybridadaptivelayermanufacturing,”RapidPrototyp.J.,vol.11,no.4,pp.235–248,2005.[64] W.Meiners,C.Over,H.Pleteit,S.Stührmann,I.Wirth,T.Wirtz,andK.Wissenbach,“Researchonlayermanufacturingtechniquesatfraunhofer,”2004.[65] K.P.Karunakaran,V.Pushpa,andS.B.Akula,“Techno-EconomicAnalysisofHybridLayeredManufacturing,”Int.J.Intell.Syst.Technol.Appl.,vol.4,no.1,pp.382–394,2008.

40

[66] K.P.Karunakaran,S.Suryakumar,V.Pushpa,andS.Akula,“RetrofitmentofaCNCmachineforhybridlayeredmanufacturing,”Int.J.Adv.Manuf.Technol.,vol.45,no.7–8,pp.690–703,2009.[67] K.P.Karunakaran,S.Suryakumar,V.Pushpa,andS.Akula,“Lowcostintegrationofadditiveandsubtractiveprocessesforhybridlayeredmanufacturing,”Robot.Comput.Integr.Manuf.,vol.26,no.5,pp.490–499,2010.[68] “MULTIFAB,”SouthernMethodistUniversity,2015.[Online].Available:https://www.smu.edu/Lyle/Centers/RCAM/Labs/RapidManufacturing/MultiFab.[Accessed:20-Apr-2015].[69] E.YarrapareddyandR.Kovacevic,“Numericalsimulationandcharacterizationofslurryerosionoflasercladdedsurfacesbyusingfailureanalysisapproach,”J.Fail.Anal.Prev.,vol.7,no.6,pp.464–474,2007.[70] R.KovacevicandM.E.Valant,“Systemandmethodforfabricatingorrepairingapart,”US7020539B1,2003.[71] J.R.Fessler,R.Merz,A.H.Nickel,F.B.Prinz,andL.E.Weiss,“Laserdepositionofmetalsforshapedepositionmanufacturing,”inProceedingsoftheSolidFreeformFabricationSymposium,1996,pp.117–124.[72] T.Himmer,A.Techel,S.Nowotny,andE.Beyer,“Recentdevelopmentsinmetallaminatedtoolingbymultiplelaserprocessing,”RapidPrototyp.J.,vol.9,no.1,pp.24–29,2003.[73] M.KerschbaumerandG.Ernst,“Hybridmanufacturingprocessforrapidhighperformancetoolingcombininghighspeedmillingandlasercladding,”inProceedingsofthe23rdInternationalCongressonApplicationsofLasersandElectro-Optics(ICALEO),SanFrancisco,CA,2004,vol.97,pp.1710–1720.[74] L.Ren,A.P.Padathu,J.Ruan,T.Sparks,andF.W.Liou,“Threedimensionaldierepairusingahybridmanufacturingsystem,”17thSolidFree.Fabr.Symp.SFF2006,August14,2006-August16,2006,pp.51–59,2006.[75] “LeadingaRemanufacturingRevolution,”CATAPULTHighValueManufacturing,2015.[Online].Available:https://www.catapult.org.uk/-/leading-a-remanufacturing-revolution?inheritRedirect=true.[Accessed:29-Apr-2015].[76] J.B.Jones,P.McNutt,R.Tosi,C.Perry,andD.I.Wimpenny,“Remanufactureofturbinebladesbylasercladding,machiningandin-processscanninginasinglemachine,”inInternationalSolidFreeformFabricationSymposium,2012,pp.821–827.[77] “ReclaimProject-RemanufacturingtheFuture,”CATAPULTHighValueManufacturing,2012.[Online].Available:https://hvm.catapult.org.uk/-/reclaim-project-remanufacturing-the-future.[Accessed:17-Aug-2015].[78] E.Yasa,J.P.Kruth,andJ.Deckers,“ManufacturingbycombiningSelectiveLaserMeltingandSelectiveLaserErosion/laserre-melting,”CIRPAnn.-Manuf.Technol.,vol.60,no.1,pp.263–266,2011.

41

[79] M.Villeta,B.DeAgustina,J.M.S.DePipaón,andE.M.Rubio,“Efficientoptimisationofmachiningprocessesbasedontechnicalspecificationsforsurfaceroughness:Applicationtomagnesiumpiecesintheaerospaceindustry,”Int.J.Adv.Manuf.Technol.,vol.60,no.9–12,pp.1237–1246,2012.[80] D.HuandR.Kovacevic,“Sensing,modelingandcontrolforlaser-basedadditivemanufacturing,”Int.J.Mach.ToolsManuf.,vol.43,no.1,pp.51–60,2003.[81] D.Hu,H.Mei,andR.Kovacevic,“Improvingsolidfreeformfabricationbylaser-basedadditivemanufacturing,”Proc.Inst.Mech.Eng.PartBJ.Eng.Manuf.,vol.216,no.9,pp.1253–1264,2002.[82] T.Craeghs,F.Bechmann,S.Berumen,andJ.P.Kruth,“FeedbackcontrolofLayerwiseLaserMeltingusingopticalsensors,”Phys.Procedia,vol.5,no.PART2,pp.505–514,2010.[83] T.Craeghs,S.Clijsters,E.Yasa,andJ.-P.Kruth,“Onlinequalitycontrolofselectivelasermelting,”SolidFree.Fabr.Proc.,pp.212–226,2011.[84] T.Craeghs,S.Clijsters,J.-P.Kruth,F.Bechmann,andM.-C.Ebert,“DetectionofProcessFailuresinLayerwiseLaserMeltingwithOpticalProcessMonitoring,”Phys.Procedia,vol.39,pp.753–759,2012.[85] K.a.MumtazandN.Hopkinson,“SelectiveLaserMeltingofthinwallpartsusingpulseshaping,”J.Mater.Process.Technol.,vol.210,no.2,pp.279–287,2010.[86] X.Wang,“CalibrationofshrinkageandbeamoffsetinSLSprocess,”RapidPrototyp.J.,vol.5,no.3,pp.129–133,1999.[87] Y.Ning,Y.S.Wong,J.Y.H.Fuh,andH.T.Loh,“Anapproachtominimizebuilderrorsindirectmetallasersintering,”IEEETrans.Autom.Sci.Eng.,vol.3,no.1,pp.73–80,2006.[88] M.Mahesh,Y.S.Wong,J.Y.H.Fuh,andH.T.Loh,“ASix-sigmaapproachforbenchmarkingofRP&Mprocesses,”Int.J.Adv.Manuf.Technol.,vol.31,no.3–4,pp.374–387,2006.[89] J.JengandM.Lin,“Moldfabricationandmodi®cationusinghybridprocessesofselectivelasercladdingandmilling,”J.Mater.Process.Technol.,vol.110,pp.98–103,2001.[90] D.-S.Choi,S..Lee,B..Shin,K..Whang,Y..Song,S..Park,andH..Jee,“DevelopmentofadirectmetalfreeformfabricationtechniqueusingCO2laserweldingandmillingtechnology,”J.Mater.Process.Technol.,vol.113,no.1–3,pp.273–279,Jun.2001.[91] J.B.Jones,P.McNutt,R.Tosi,C.Perry,andD.I.Wimpenny,“Remanufactureofturbinebladesbylasercladding,machiningandin-processscanninginasinglemachine,”in23rdAnnualInternationalSolidFreeformFabricationSymposium,Austin,Texas,USA,2012,pp.821–827.[92] Z.Hu,K.Lee,andJ.Hur,“Determinationofoptimalbuildorientationforhybridrapid-prototyping,”J.Mater.Process.Technol.,vol.130–131,pp.378–383,2002.[93] J.Ruan,K.Eiamsa-ard,andF.W.Liou,“AutomaticProcessPlanningandToolpathGenerationofaMultiaxisHybridManufacturingSystem,”J.Manuf.Process.,vol.7,no.1,pp.57–68,2005.

42

[94] Y.ChangandJ.Pinilla,“Automatedlayerdecompositionforadditive/subtractivesolidfreeformfabrication,”inProceedingsoftheSolidFreeformFabricationSymposium,1999,pp.111–120.[95] Z.HuandK.Lee,“Concaveedge-basedpartdecompositionforhybridrapidprototyping,”Int.J.Mach.ToolsManuf.,vol.45,no.1,pp.35–42,2005.[96] J.Hur,K.Lee,Zhu-Hu,andJ.Kim,“Hybridrapidprototypingsystemusingmachininganddeposition,”CADComput.AidedDes.,vol.34,no.10,pp.741–754,2002.[97] O.Kerbrat,P.Mognol,andJ.Y.Hascoet,“Manufacturingcomplexityevaluationatthedesignstageforbothmachiningandlayeredmanufacturing,”CIRPJ.Manuf.Sci.Technol.,vol.2,no.3,pp.208–215,2010.[98] Z.Zhu,V.Dhokia,andS.T.Newman,“Anovelprocessplanningapproachforhybridmanufacturingconsistingofadditive,subtractiveandinspectionprocesses,”IEEEInt.Conf.Ind.Eng.Eng.Manag.,pp.1617–1621,2012.[99] Z.Zhu,V.Dhokia,andS.T.Newman,“Thedevelopmentofanovelprocessplanningalgorithmforanunconstrainedhybridmanufacturingprocess,”J.Manuf.Process.,vol.15,no.4,pp.404–413,Oct.2013.[100] Z.Zhu,V.Dhokia,S.T.Newman,andA.Nassehi,“Applicationofahybridprocessforhighprecisionmanufactureofdifficulttomachineprismaticparts,”Int.J.Adv.Manuf.Technol.,vol.74,no.5–8,pp.1115–1132,2014.[101] “AdditiveManufacturing:StrategicResearchAgenda.”AMSub-Platform,2014.[102] TSB,“HighValueManufacturingStrategy2012-2015,”2012.[103] “FabrisonicTechnology,”Fabrisonic,2015.[Online].Available:http://fabrisonic.com/technology/.[Accessed:26-Apr-2015].[104] “HybridManufacturingTechnologies,”HybridManufacturingTechnologiesLtd.,2015.[Online].Available:http://www.hybridmanutech.com/.[Accessed:26-Apr-2015].[105] “HamuelMaschinenbau-Products-HSTM-Hybridmanufacturing,”HamuelReichenbacher.[Online].Available:http://www.hamuel.de/en/produkte/hstm/hybrid/index.php.[Accessed:26-Apr-2015].[106] “lasertec-65-3d,”DMGMORISEIKI,2015.[Online].Available:http://uk.dmgmori.com/products/lasertec/lasertec-additivemanufacturing/lasertec-65-3d.[Accessed:26-Apr-2015].[107] “NT4300AdditiveManufacturing-New:Additivemanufacturinginfinishedpartquality,”DMGMORISEIKI.[Online].Available:http://en.dmgmori.com/products/lathes/turn-mill-complete-machining-centres/nt/nt4300additivemanufacturing.[Accessed:26-Apr-2015].[108] “MazakIntroducesNewHYBRIDMulti-TaskingTechnology,”Mazak,2015.[Online].Available:https://www.mazakusa.com/news-events/press-releases/mazak-introduces-new-hybrid-multi-tasking-technology/.[Accessed:26-Apr-2015].

43

[109] “CybamanReplicator,”cybaman,IntelligentRoboticManufacturing,2015.[Online].Available:http://www.cybamantech.co.uk/.[Accessed:26-Apr-2015].[110] C.Connolly,“InnovationsandapplicationsoftheCybamanreplicatorfromTraki-iskiLtd,”Assem.Autom.,vol.29,no.3,pp.209–213,2009.[111] A.Allcock,“WFLMillturnTechnologiesOpenHouseunderlinesbigdevelopments,”2015.[Online].Available:http://www.machinery.co.uk/machinery-features/wfl-millturn-technologies-kyal-machine-tools-additive-manufacturing/75353/.[Accessed:03-Nov-2015].[112] IBARMIAINNOVATEK,“IBARMIA,AdditiveManufacturingandMultitaskingMachiningintheSameMachine,”2015.[Online].Available:http://www.ibarmia.com/en/today/ibarmia-additive-manufacturing-multitasking.[Accessed:03-Nov-2015].[113] L.Griffiths,“Hermleintroduceshybrid5-axisadditivemanufacturingmachine,”TCTMagazine,2015.[Online].Available:http://www.tctmagazine.com/3D-printing-news/hermle-introduces-hybrid-5-axis-additive-manufacturing-machi/.[Accessed:26-Apr-2015].[114] T.Edwards,“HermleBuildsHybrid5-axisCNCMill&3DPrintingMarvel,”3DPrint,2015.[Online].Available:http://3dprint.com/46227/hybrid-cnc-mill-and-additive-manufacturing-marvel/.[Accessed:26-Apr-2015].[115] “Uniqueoneprocesssolution:Lasersinteringandmilling,”MatsuuraCorporation,2015.[Online].Available:http://www.matsuura.co.jp/english/contents/products/lumex.html.[Accessed:26-Apr-2015].[116] SodickEuropeLtd.,“SodickOPM250E(L),”2015.[Online].Available:http://www.sodick.jp/product/tool/metal_3d_printer/index.html.[Accessed:03-Nov-2015].[117] “3DPrintingSolutions,”Solidscape,AStratasysCompany,2015.[Online].Available:http://www.solid-scape.com/products/3d-wax-printers-rapid-prototyping-services-dimension-3d-printers.[Accessed:26-Apr-2015].[118] DMGMoriSeiki,“AdditiveManufacturinginMillingQuality,”2015.[119] “HybridManufacturing,”HamuelReichenbacher,2015.[Online].Available:http://www.hamuel.de/en/produkte/hstm/hybrid/index.php.[Accessed:17-Apr-2015].[120] “TheWorld’sFirstHybridTurbineBlade&TurboFanRemanufacturingMachine,”HamuelReichenbacher,2015.[Online].Available:http://www.hamuel.de/documents/13-09-11_Korr_Prosp_HAMUEL_Laser_engl_LR.pdf.[Accessed:17-Apr-2015].[121] “CybamanReplicator,”cybaman,IntelligentRoboticManufacturing,2015..[122] Optomec,“LENSSystems,”2015.[Online].Available:http://www.optomec.com/3d-printed-metals/lens-printers/.[Accessed:21-Sep-2015].[123] L.Griffiths,“AmericaMakesunveilsfirsthybridCNCmachinetoolwithOptomec3Dprintingupgrade,”TCTMagazine,2015.[Online].Available:http://www.tctmagazine.com/3D-printing-news/america-makes-legacy-cnc-tool-with-optomec-3d-printing-upgrade/.[Accessed:21-Sep-2015].

44

[124] L.Griffiths,“Hermleintroduceshybrid5-axisadditivemanufacturingmachine,”TCTMagazine,2015..[125] T.Edwards,“HermleBuildsHybrid5-axisCNCMill&3DPrintingMarvel,”3DPrint,2015..[126] Hermle,“HERMLEMPATechnology,”2015.[Online].Available:http://www.hermle-generativ-fertigen.de/cms/en/technology/.[Accessed:30-Apr-2014].[127] “3DPrintingMaterials,”Solidscape,AStratasysCompany.[Online].Available:http://www.solid-scape.com/products/3d-printer-wax-materials-lost-wax-and-investment-casting.[Accessed:30-Apr-2015].[128] SiemensAG,“SINUMERIK840Dsl,”2015.[Online].Available:http://w3.siemens.com/mcms/mc-systems/en/automation-systems/cnc-sinumerik/sinumerik-controls/sinumerik-840/sinumerik-840d-sl/Pages/sinumerik-840d-sl.aspx.[Accessed:14-Sep-2015].[129] “HSC-TURN-MILLINGCENTREOFTHEHSTM-SERIES,”HamuelReichenbacher,2015.[Online].Available:http://www.hamuel.de/en/produkte/hstm/index.php.[Accessed:29-Apr-2015].[130] “AdditiveManufacturinginMillingqualityALLIN1 :LaserDepositionWeldingandMilling.,”DMGMORISEIKI,2015.[Online].Available:http://en.dmgmori.com/blob/334060/ca4dd739aa0a0e367d40ead23f53c9f8/pl1uk14-lasertec-65-3d-pdf-data.pdf.[Accessed:01-Jan-2015].[131] FanucEuropeCorporation,“FanucCNCControlSeries,”2015.[Online].Available:http://www.fanuc.eu/uk/en/cnc/controls/cnc-control-series.[Accessed:14-Sep-2015].[132] “Delcamsupportsaward-winningHamuelhybridrepairmachine,”DelcamLtd.,2013.[Online].Available:http://www.delcam.co.uk/news/press_article.asp?releaseId=1664#.VUC8va1Viko.[Accessed:29-Apr-2015].[133] “AboutNXSoftware,”SiemensPLMSoftware,2015.[Online].Available:http://www.plm.automation.siemens.com/en_gb/products/nx/about-nx-software.shtml.[Accessed:29-Apr-2015].[134] OPENMINDTechnologiesAG,“OneCAMSoftwareForEverything,”2015.[Online].Available:http://www.openmind-tech.com/en/products/hypermill-cam-software.html.[Accessed:03-Nov-2015].[135] “3DPrintingSolutions,”Solidscape,AStratasysCompany,2015..[136] C.Sesma,“MachineWorksDeliversHybridManufacturingSimulation,”2015.[Online].Available:http://www.machineworks.com/machineworks-delivers-hybrid-manufacturing-simulation.[Accessed:21-Sep-2015].[137] M.Neslušan,I.Mrkvica,R.Čep,D.Kozak,andR.Konderla,“DeformationsAfterHeatTreatmentandTheirInfluenceonCuttingProcess,”Teh.Vjesn.,vol.18,no.4,pp.601–608,2012.

45

[138] NationalInstituteofStandardsandTechnology(NIST),“MeasurementScienceRoadmapforMetal-BasedAdditiveManufacturing:WorkshopSummaryReport,”Columbia,Maryland,2013.[139] “DimensionalAccuracyandSurfaceFinishinAdditiveManufacturing,”inASPE2014SpringTopicalMeeting,2014.[140] R.G.Landers,B.-K.Min,andY.Koren,“ReconfigurableMachineTools,”Ann.CIRP,vol.50,no.1,pp.269–274,2001.[141] Y.Koren,U.Heisel,F.Jovane,T.Moriwaki,G.Pritschow,G.Ulsoy,andH.VanBrussel,“ReconfigurableManufacturingSystems,”Ann.CIRP,vol.48,no.2,pp.527–540,1999.[142] M.G.Mehrabi,A.G.Ulsoy,andY.Koren,“Reconfigurablemanufacturingsystemsandtheirenablingtechnologies,”Int.J.Manuf.Technol.Manag.,vol.1,no.1,p.114,2000.[143] R.PérezR,J.AcaS,A.ValverdeT,H.AhuettG,A.MolinaG,andC.RibaR,“AModularityFrameworkforConcurrentDesignofReconfigurableMachineTools\nCooperativeDesign,Visualization,andEngineering,”vol.3190,pp.87–95,2004.[144] C.Riba,R.Pérez,H.Ahuett,aSánchez,M.Domínguez,andaMolina,“MetricsforEvaluatingDesignofReconfigurableMachineTools,”Coop.Des.Vis.Eng.Des.,vol.4101,pp.234–241,2006.[145] T.Lorenzer,S.Weikert,S.Bossoni,andK.Wegener,“Modelingandevaluationtoolforsupportingdecisionsonthedesignofreconfigurablemachinetools,”J.Manuf.Syst.,vol.26,no.3–4,pp.167–177,2007.[146] M.Tolouei-rad,“IntelligentDesignofReconfigurableMachines,”vol.3,no.11,pp.278–282,2009.[147] R.Pérez,A.Molina,andM.Ramírez-Cadena,“DevelopmentofanIntegratedApproachtotheDesignofReconfigurableMicro/MesoscaleCNCMachineTools,”J.Manuf.Sci.Eng.,vol.136,no.3,p.031003,2014.[148] H.Azulay,J.K.Mills,andB.Benhabib,“AMulti-TierDesignMethodologyforReconfigurableMillingMachines,”J.Manuf.Sci.Eng.,vol.136,no.4,p.041007,2014.[149] G.Pritschow,Y.Altintas,F.Jovane,Y.Koren,M.Mitsuishi,S.Takata,H.VanBrussel,M.Weck,andK.Yamazaki,“OpenControllerArchitecture-Past,PresentandFuture,”CIRPAnn.-Manuf.Technol.,2001.[150] Y.Koren,U.Heisel,F.Jovane,T.Moriwaki,G.Pritschow,G.Ulsoy,andH.VanBrussel,“ReconfigurableManufacturingSystems,”Ann.CI,vol.48,no.2,pp.527–540,1999.