2
HAL Id: hal-01731053 https://hal.archives-ouvertes.fr/hal-01731053 Submitted on 31 Jul 2018 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinΓ©e au dΓ©pΓ΄t et Γ  la diffusion de documents scientifiques de niveau recherche, publiΓ©s ou non, Γ©manant des Γ©tablissements d’enseignement et de recherche franΓ§ais ou Γ©trangers, des laboratoires publics ou privΓ©s. Hybrid Analog and Digital Precoding in Millimeter Wave Massive MIMO Systems with Realistic Hardware and Channel Constraints Mohamed Shehata, Matthieu CrussiΓ¨re, Maryline HΓ©lard, Patrice Pajusco, Bernard Uguen To cite this version: Mohamed Shehata, Matthieu CrussiΓ¨re, Maryline HΓ©lard, Patrice Pajusco, Bernard Uguen. Hybrid Analog and Digital Precoding in Millimeter Wave Massive MIMO Systems with Realistic Hardware and Channel Constraints. 2017 IEEE SPS Summer School on Signal Processing for 5G Wireless Access, May 2017, Gothenburg, Sweden. 2017. hal-01731053

Hybrid Analog and Digital Precoding in Millimeter Wave

  • Upload
    others

  • View
    3

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Hybrid Analog and Digital Precoding in Millimeter Wave

HAL Id: hal-01731053https://hal.archives-ouvertes.fr/hal-01731053

Submitted on 31 Jul 2018

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinΓ©e au dΓ©pΓ΄t et Γ  la diffusion de documentsscientifiques de niveau recherche, publiΓ©s ou non,Γ©manant des Γ©tablissements d’enseignement et derecherche franΓ§ais ou Γ©trangers, des laboratoirespublics ou privΓ©s.

Hybrid Analog and Digital Precoding in MillimeterWave Massive MIMO Systems with Realistic Hardware

and Channel ConstraintsMohamed Shehata, Matthieu Crussière, Maryline Hélard, Patrice Pajusco,

Bernard Uguen

To cite this version:Mohamed Shehata, Matthieu Crussière, Maryline Hélard, Patrice Pajusco, Bernard Uguen. HybridAnalog and Digital Precoding in Millimeter Wave Massive MIMO Systems with Realistic Hardwareand Channel Constraints. 2017 IEEE SPS Summer School on Signal Processing for 5G WirelessAccess, May 2017, Gothenburg, Sweden. 2017. �hal-01731053�

Page 2: Hybrid Analog and Digital Precoding in Millimeter Wave

INSTITUT D’ÉLECTRONIQUE ET DE

TÉLÉCOMMUNICATIONS DE RENNES

1

Hybrid Analog & Digital Precoding in Millimeter

Wave Massive MIMO Systems with Realistic

Hardware & Channel Constraints

M. Shehata1, M. Crussière1, M. Hélard1, P. Pajusco2, B. Uguen3

Signal Processing for 5G Wireless Access 2017, Gothenburg, Sweden

1 INSA, IETR, CNRS UMR 6164, Rennes, France 2 Institut Mines-Telecom, Telecom Bretagne, Brest, France

3 UniversitΓ© Rennes 1, IETR, CNRS UMR 6164, Rennes, France

Authors

Abstract

System & Channel Model

Initial Results

0 100 200 300 400

010

020

030

040

050

0

X(m)

Y(m

)

Tx

Rx K

Rx 1

Outdoor LOS Scenario

User

Broadside axis

ΞΈ

Ξ¦

MH

Mv

Square Planar Array

DH=Ξ»/2

Dv=Ξ»/2

15

m

10 m

30 m

Line of Sight

Ground Reflection

Wall Reflection

Downlink Scenario 1 (Digital Massive MIMO)

Transmitter (eNodeB)

ArrayElements

Nt ≀ 64

Power Amplifiers

FrequencyUpconverters

Dig

ita

l Ba

seb

an

d S

ign

al

Antenna WeightsAssignment

(Beamforming)

Receiver 1 (User Equipment)

Antenna Weights Assignment (Combinning)

ArrayElements

Nr ≀ 2 Low Noise Amplifiers

FrequencyDownconverters

βˆ‘

Dig

ital

Bas

eban

d Si

gnal

Propagation Channel

DAC

RF Chain 1

RF Chain 2

DAC

RF Chain Nt

DAC

RF Chain 1

ADC

RF Chain 2

ADC

Receiver k (User Equipment)

Antenna Weights Assignment (Combinning)

ArrayElements

Nr ≀ 2 Low Noise Amplifiers

FrequencyDownconverters

βˆ‘

Dig

ital

Bas

eba

nd

Si

gnal

RF Chain 1

ADC

RF Chain 2

ADC

Beamforming Scenarios

Downlink Scenario 2 (Analog Massive MIMO)

Transmitter (eNodeB)

FrequencyUpconverters

DAC

Dig

ita

l B

ase

ba

nd

Sig

na

l

Antenna WeightsAssignment

(Beamforming)

ArrayElements

Nt ≀ 64

Power Amplifiers

Propagation Channel

Receiver 1 (User Equipment)

Antenna Weights Assignment (Combinning)

ArrayElements

Nr ≀ 2

βˆ‘ ADC

FrequencyDownconverters

Dig

ita

l B

ase

ba

nd

S

ign

al

Receiver K (User Equipment)

Antenna Weights Assignment (Combinning)

ArrayElements

Nr ≀ 2

βˆ‘ ADC

FrequencyDownconverters

Dig

ita

l B

ase

ba

nd

S

ign

al

Downlink Scenario 3 (Hybrid Analog/Digital MIMO)

Transmitter (eNodeB)

RF ChainsNRF ≀ 64

Nu

mb

er

of

Str

ea

ms

Ns

Baseband Precoder(FBB)

RF Chain 1

RF Chain NRF

Array Elements (Nt can be > 64)

βˆ‘

βˆ‘

βˆ‘

RF Precoding (FRF) through phase

shifters

Receiver 1 (User Equipment)

RF Chain 1

RF Chain 2

Nu

mb

er

of

Str

ea

ms

Ns

BasebandCombiner

(WBB)

Array Elements (Nr can be > 2) RF Chains NRF ≀ 2

RF combiner (WRF) through phase shifters

Receiver k (User Equipment)

RF Chain 1

RF Chain 2

Nu

mb

er

of

Str

ea

ms

Ns

BasebandCombiner

(WBB)

Array Elements (Nr can be > 2) RF Chains NRF ≀ 2

RF combiner (WRF) through phase shiftersPropagation Channel

M5HESTIA

2 projects in parallel project Organization Consortium

Digital Beamforming

METIS TC2 (Madrid Grid)

Antenna Array Structure

β€’ Multi-User (MU) MIMO system with 𝐾 User Equipments (UEs) each equipped with

π‘π‘Ÿ antennas.

β€’ The transmitting Base Station (BS) is equipped with 𝑁𝑇 antennas & serving each UE

with 𝑁𝑠 streams.

β€’ The received signal vector π’š is given as follows (we omit the UE index π‘˜ for clarity):

π’š = πœŒπ‘Ύπ»π‘―π‘­π’” +𝑾𝐻n

𝑯 = πœΆπ‘™π‘’βˆ’π‘—2πœ‹π‘“πœπ‘™π’‚π‘…(πœƒπ‘…,𝑙 , πœ‘π‘…,𝑙)𝒂𝑇

𝐻 (πœƒπ‘‡,𝑙 , πœ‘π‘‡,𝑙)

𝑁𝑝

𝑙=1

Street Canyon

Analog Beamforming

Hybrid Beamforming

Simulation Chain Architecture

MHESTIA: Millli-Meter-wave Multi-user Massive MIMO Hybrid Equipment for

Sounding, Transmissions and hardware ImplementAtion.

Number of paths

Complex gains

considering pathloss

and reflections

Delays Receive steering

vector, where:

πœƒπ‘…,𝑙: Elevation angle

πœ‘π‘…,𝑙: Azimuth angle

Millimeter-Wave (mmWave) systems recently attracted attention as one of the key

enablers for the Fifth Generation (5G) networks. The small wavelength at mmWave

frequencies enables deploying massive Multiple Input Multiple Output (MIMO) antenna

arrays with reasonable form factor. However, Massive MIMO mmWave systems

suffer from a lot of practical limitations, specifically due to channel and hardware

characteristics at such high frequencies. In this poster we propose multiple solutions

to design a realistic massive MIMO cellular system that takes into account the

imposed limitations and achieves considerable gains in terms of spectral efficiency.

Advantages β€’ Can serve interference free MU scenarios with

number of UEs = 𝑁𝑇

β€’ A lot of existing digital precoding techniques

exist in the literature

Disadvantages β€’ RF chain is required for each antenna

β€’ This applies limitations on implementing

Massive MIMO mmWave systems, since RF

chains are complex and power hungry in

mmwave regime

Advantages β€’ Low hardware complexity and power

consumption (Only 1 RF chain is required)

β€’ Can increase the link budget

β€’ Can serve MU scenarios through multiplexing

in Time/Frequency

Disadvantages β€’ Can’t support MU MIMO scenarios with spatial

multiplexing

β€’ Therefore it is not favourable from Spectral

Efficiency (SE) point of view

Advantages β€’ Can employ much more transmit antennas than

the number of RF chains

β€’ Henceforth, can achieve higher transmit gain

compared to digital systems with the same

number of RF chains (hardware complexity)

Disadvantages β€’ Analog impairments due to the power loss

and limited resolution of phase shifters

Simulation Parameters:

π’š = πœŒπ‘Ύπ΅π΅π»π‘―π‘­π΅π΅π‘  + 𝑾𝐡𝐡

𝐻𝒏

Total transmit power constraint: 𝑭𝐡𝐡2𝐹 ≀ 1

π’š = πœŒπ‘Ύπ‘…πΉπ»π‘―π‘­π‘…πΉπ‘  + 𝑾𝑅𝐹

𝐻𝒏

Phase shifters constraints (constant Amplitude &

quantized angles): 𝑭𝑅𝐹 ∈ 𝓕𝑅𝐹 ,𝑾𝑅𝐹 ∈ 𝓦𝑅𝐹

π’š = πœŒπ‘Ύπ΅π΅π»π‘Ύπ‘…πΉ

𝐻𝑯𝑭𝑅𝐹𝑭𝐡𝐡𝑠 + 𝑾𝐡𝐡𝐻𝑾𝑅𝐹

𝐻𝒏

Total transmit power constraint: 𝑭𝑅𝐹𝑭𝐡𝐡2𝐹 ≀ 1

Phase shifters constraints (constant Amplitude &

quantized angles): 𝑭𝑅𝐹 ∈ 𝓕𝑅𝐹 ,𝑾𝑅𝐹 ∈ 𝓦𝑅𝐹

β€’ Environment: Street Canyon

β€’ System: MU-MIMO

β€’ Channel Model: PyLayers [1]

β€’ Antenna Array height: 10m

β€’ Antenna Spacing: Ξ»

2

β€’ Scenario: Outdoor LoS

β€’ Center Frequency: 60 GHz

β€’ Intercarrier spacing: 20 MHz

β€’ Transmit Antennas: 16

β€’ Transmit Antenna Array: Square

β€’ Receive Antennas: 1

β€’ UEs interdistance: 1m

β€’ Transmit Power: 26 dbm

[1] PyLayers : An Open Source Dynamic Simulator for Indoor Propagation and Localization, N.

Amiot, M.Laaraiedh, B.Uguen, Communications Workshops ICC 2013

Sum Capacity Comparison

Conclusion: β€’ ZF overperfoms CB and DBS in sum capacity when the

number of UEs is smaller than the channel rank.

β€’ CB and DBS still achieve high sum capacity in mmWave

systems even with exceeding the degrees of freedom

with lower complexity compared to ZF.

β€’ The main advantage of the DBS lies on estimating only

2𝐾 angles instead of 𝐾×𝑁𝑇×𝑁𝐹𝐹𝑇

𝑁𝐡𝐢 parameters in ZF and

CB.

𝐾: the number of UEs 𝑁𝑇: number of transmit antennas, 𝑁𝐹𝐹𝑇: number of

subcarriers, 𝑁𝐡𝐢 : number of subcarriers per coherence BW

Transmit power Combiner matrix of

dimensions 𝑁𝑠 Γ— π‘π‘Ÿ

Precoder matrix of

dimensions 𝑁𝑇 ×𝑁𝑠

Signal vector of

dimensions 𝑁𝑠 Γ— 1

AWGN

Transmit steering

vector, where:

πœƒπ‘‡,𝑙: Elevation angle

πœ‘π‘‡,𝑙: Azimuth angle

Research Objectives

Channel Estimation Course Quantization

Spatial sparsity of channel –

Compressive Sensing