161
Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and Ultra-Small Biomimetic Containers A Dissertation Presented by David Aaron Issadore to The School of Engineering and Applied Sciences In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Applied Physics Harvard University Cambridge, Massachusetts May 2009

Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

HybridIntegratedCircuit/MicrofluidicChips

fortheControlofLivingCellsandUltra­Small

BiomimeticContainers

ADissertationPresented

by

DavidAaronIssadore

to

TheSchoolofEngineeringandAppliedSciences

Inpartialfulfillmentoftherequirements

forthedegreeof

DoctorofPhilosophy

inthesubjectof

AppliedPhysics

HarvardUniversity

Cambridge,Massachusetts

May2009

Page 2: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

©2009byDavidIssadore

Allrightsreserved.

Page 3: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

iii

DavidAaronIssadoreAdviser:RobertWestervelt

HybridIntegratedCircuit/MicrofluidicChipsfortheControlof

LivingCellsandUltra­SmallBiomimeticContainers

Abstract

Thisthesisdescribesthedevelopmentofaversatileplatformfor

performingbiologyandchemistryexperimentsonachip,usingtheintegrated

circuit(IC)technologyofthecommercialelectronicsindustry.Thiswork

representsanimportantsteptowardsminiaturizingthecomplexchemicaland

biologicaltasksusedfordiagnostics,research,andmanufacturinginto

automatedandinexpensivechips.

HybridIC/microfluidicchipsaredevelopedinthisthesisto

simultaneouslycontrolmanyindividuallivingcellsandsmallvolumesoffluid.

Takinginspirationfromcellularbiology,phospholipidbilayervesiclesareused

topackagepLvolumesoffluidonthechips.Thechipscanbeprogrammedto

trapandposition,deform,setthetemperatureof,electroporate,andelectrofuse

livingcellsandvesicles.ThefastelectronicsandcomplexcircuitryofICsenable

thousandsoflivingcellsandvesiclestobesimultaneouslycontrolledonthechip,

allowingmanyparallel,well‐controlledbiologicalandchemicaloperationstobe

performedinparallel.

Page 4: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

iv

Thehybridchipsconsistofamicrofluidicchamberbuiltdirectlyontopof

acustomIC,thatusesintegratedelectronicstocreatelocalelectricandmagnetic

fieldsabovethechip’ssurface.Thechipsoperateinthreedistinctmodes,

controlledbysettingthefrequencyoftheelectricfield.ElectricfieldsatkHz

frequenciesareusedtoinduceelectroporationandelectrofusion,electricfields

atMHzfrequenciesareusedfordielectrophoresis(DEP)totrapandmove

objects,andelectricfieldsatGHzfrequenciesareusedfordielectricheating.In

addition,magnetophoresis,usingmagneticfieldscreatedwithDCcurrentonthe

chip,isusedtodeformandtopositionobjectstaggedwithmagnetic

nanoparticles.

TodemonstratethesefunctionstwocustomhybridIC/microfluidicchips

andadropletbasedPDMSmicrofluidicdevicewithexternalelectronicsare

presented.Thelaboratoryfunctionsdemonstratedonthesechipsprovide

importantbuildingblocksforaversatilelab‐on‐a‐chipplatformthatcanbebuilt

onthewell‐developedICtechnologyofthecommercialelectronicsindustry.

Page 5: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

v

TableofContents

Abstract……………………………………………………………………………………………iiiAcknowledgements………………………………………………………………….............viiAbbreviationsandSymbols……………………………………………………………….ixListofTableandFigures………………………………………………………...…………xiChapter1.Introduction……………………………………………………….……………1

1.1Lab‐on‐a‐Chip–Motivation…………………………………...…………11.2HybridIC/MicrofluidicChips–Concept…………………………..41.3OverviewofThesis…………………………………………………………..7

Chapter2.Theory:DielectricandMagneticControlofMicroscopicObjects………………………………………………………………………….16

2.1TheDielectricPropertiesofWaterandSolutions………………182.2Dielectrophoresis…………………………………………………………….222.3DielectricModelsforCellsandVesicles…………………………….232.4TransmembranePotentialDifferenceanditsApplications...282.5DielectricHeating…………………………………………………………….322.6Magnetophoresis……………………………………………………………..34

Chapter3.HybridIntegratedCircuit/MicrofluidicChips…………………...36

3.1Overview…………………………………………………………………………363.2DielectrophoresisChip(Fabutron1.0)……………………………...37

3.2.1OperatingPrincipals……………………………………………383.2.2CharacteristicTimes………………………………………...…393.2.3IntegratedCircuitDesign…………………………………….413.2.4Capabilities………………………………………………………...46

3.3ExperimentalApparatus…………………………………………………..483.3.1Fluidics……………………………………………………………….483.3.2Electronics…………………………………………………………493.3.4Optics………………………………………………………………….503.3.5ThermalManagement…………………………………………513.3.6ComputerControl……………………………………………….54

Chapter4.AHybridIntegratedCircuit/MicrofluidicPlatformtoControlLivingCellsandpLBiomimeticContainers…………………………….56

4.1Overview…………………………………………………………………………564.2Methods…………………………………………………………………………..60

4.2.1TheHybridIntegratedCircuit/MicrofluidicChipPlatform………………………………………………………………604.2.2UnilamellarVesicles……………………………………………60

Page 6: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

vi

4.2.3DielectrophoresisofVesiclesSuspendedinWater………………………………………………….…614.3.4ElectroporationandElectrofusion……………………….63

4.3Demonstrations……………………………………………………………….674.3.1TrappingandMovingCellsandVesicles……………....674.3.2TriggeredReleaseoftheContentsofVesicles………704.3.3ElectroporationofCells……………………………………....704.3.4TriggeredFusionofVesicles………………………………..714.3.5DeformingVesicleswithDielectrophoresis………….74

4.4Discussion…………………………………………………………………….…76Chapter5.HybridMagneticandDielectrophoreticIC/MicrofluidicChip………………………………………………………………………..78

5.1Overview………………………………………………………………………....785.2DescriptionoftheChip……………………………………………………..80

5.2.1FieldSimulations………………………………………………..805.2.2ChipArchitecture………………………………………………..83

5.3Demonstrations……………………………………………………………….865.3.1Dielectrophoresis:TrappingandPositioningVesicles……………………………………………....865.3.2Magnetophoresis:TrappingandPositioningMagneticBeads………………………………...…895.3.3DielectrophoresisandMagnetophoresis:DeformingVesicles……………………………………………………...91

5.4Discussion…………………………………………………………………….…93

Chapter6.MicrowaveDielectricHeatingofDropsinMicrofluidicDevices……………………………………………………...…….95

6.1Overview…………………………………………………………………………956.2ModelofDielectricHeatingofDrops…………………………………986.3TheMicrofluidicDevice……………………………………………………1006.4Demonstration………………………………………………………………...1086.5Discussion…………………………………………………………………….…115

Chapter7.Conclusions…………………………………………………………………..…117

7.1Summary………………………………………………………………………...1177.2FutureDirections………………………………………………………….…119

WorksCited…………………………………………………………………………..…………121AppendixA.DataSheetandUsersGuidefortheDEPChip(Fabutron1.0)……………………………………………………………...126 AppendixB.DataSheetandUsersGuidefortheHV‐DEPMagneticChip(Fabutron2.0)………………...………………………………..………...130AppendixC.FabutronControlSoftware………………………………....………...134

Page 7: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

vii

Acknowledgements

FirstIwouldliketoexpressmyappreciationandgratitudeformyadviser,Bob

Westervelt.Bob’sdeepunderstandingofphysicsandhisuniqueandoftentimes

unusualperspectiveonresearch,science,andtechnologyhavechallengedme

intellectuallyandhelpedmedevelopasascientist.Hehasbeenaconstant

sourceofinsightfulideasandthoughtfulfeedbackandhasgivenmethesupport

andfreedomthatIneededtodrivemyownresearch.IamverygratefulthatI

endedupinhislab.ItseemsthatIwasverylucky.

IwouldliketothanktheWesterveltLabfolksthatIhavehadthepleasureto

workwithandsharespacewithoverthelast5years.Firstandforemost,I’dlike

tothankTomHunt.Tomhelpedmefinddirectioninmyresearchandkeptme

ontrackwhenmyresearchwaslackingfocus.Healsotaughtmethepleasuresof

roadbiking.I’dliketothankKeithBrownwhojoinedthegrouptwoyearsafter

me.Keithhasbeengreattoworkwith,heprovidedmewiththekeyfeedback

thatIsooftenneededandhisearnestenthusiasmandscientificrigoroften

improvedmywork.Also,heisanadmirableWormsplayer.Jonathan,Ognjen,

Lori,andAlmalchiandtherestoftheundergradsthathaveworkedtheirway

throughtheWesterveltlabhavekeptlifeinterestingandwereapleasureto

workwith.Erin,Halvar,andJesseareawesomepeopletosharealabwithandI

amgratefultothemforkeepingmesomewhatknowledgeableaboutcold

temperaturephysics.Alex,Nan,andTinaarenewcomerstothegroupandseem

tobekeepingthegoodtraditionsalive.

Page 8: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

viii

IwouldalsoliketothankthepeopleIhadthepleasuretocollaboratewith

outsideoftheWesterveltGroup.ThomasFrankeatUniversityofAugsburgin

Germany’sexpertiseinpreparingvesicleswaskeytothesuccessofthisthesis.

KatieHumphryintheWeitzGroup’sabilityinsoftlithographywasessentialfor

themicrowavedropheatingproject.RickRogersandRosalindaSepulvedaatthe

SchoolofPublicHealthprovidedcellsandgreatadviceonbiologyformanyof

theprojectsinthisthesis.

The5yearsthatI’vespentinCambridgehavebeenavariedlot,andIowealotto

myfriendsandfamilyforgettingmethroughitinonepiece.Firstandforemost,

myparentshavealwayssupportedmeandhavebeensupremelyunderstanding,

evenattimeswhenI’msureIwasintolerable.I’dliketothankmybrotherfor

alwaysbeingsupportive,myGrandmomChipforremindingmewhat’s

importantinlife,andTheoforgenerouslysharingwithmehisenlightened

philosophyonlife.

Alan,myroommateof5years,isresponsibleformyeducationonallofthetopics

thatIwasn’tlearninginschoolsuchastheworkingsofevilhedgefunds,

bosanovamusic,andDjango.MikewasafantasticadditiontoMagdaddyand

significantlyimprovedourqualityoflife.BenandClemensbothmightaswell

havelivedwithusandaregreatfriends.Andfinally,Imani.It’dbeinappropriate

towritehereallthatIamthankfulforaboutyou.But,Iamverygratefulandmy

lifeissomuchfullerbecauseofyou.

Page 9: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

ix

AbbreviationsandSymbols

a Particleradius

B MagneticField

C Capacitance

Cmem Specificmembranecapacitance

CM ClausiusMosottiFactor

χ MagneticSusceptibility

CMOS ComplimentaryMetalOxideSilicon

D DiffusionConstant

DC Directcurrent

DEP Dielectrophoresis

ΔT ChangeinTemperature

E ElectricField

ε RelativePermittivity

εo VacuumPermittivity

ε' RealComponentofthePermittivity

ε' ' ImaginaryComponentofthePermittivity

f Frequency

F Force

gm SurfaceConductivity

GUI GraphicalUserInterface

HV HighVoltage

η Viscosity

I/O Input/Output

IC IntegratedCircuit

j

−1 kB Boltzmann’sConstant

L Thelengthofapixel

Page 10: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

x

LD CharacteristicLengthintheHeatingModelforDrops

MOSIS MetalOxideSemiconductorImplementationService

MUX Multiplexer

n Concentration

NMR NuclearMagneticResonance

PBS PhosphateBufferSaline

R Resistance

Re ReynoldsNumber

RF RadioFrequency

ROI RegionofInterest

SPICE SimulationProgramwithIntegratedCircuitEmphasis

SRAM StaticRandomAccessMemory

σ Conductivity

T Temperature

ΔTSS SteadyStateChangeinTemperature

τdiff CharacteristicTimeforanObjecttoDiffuseaHalfPixellengthL/2

τmem CharacteristicChargingTimeofaVesicleorCell’sMembrane

τmove CharacteristicTimetoMoveanObjectaPixelLengthL

τSS CharacteristicTimetoReachSteadyStateTemperature

τMW DielectricRelaxationTimeofavesicleorcell

τW DielectricRelaxationTimeofWater

µo VacuumPermeability

V Volume

V Voltage

VTM TransmembraneVoltage

ω AngularFrequency

Page 11: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

xi

ListofFigures

Figure1.1aJackKilby’sIC………………….…………….……………………………….6

Figure1.1bAnIntelQuad‐CoreIC…..…....…….……………………………………..6

Figure1.1cASimpleMicrofluidicChip……………………………………..……….6

Figure1.1dAComplexMicrofluidicChip…………………….…………………….6

Figure1.1eAHybridIC/MicrofluidicChip……………………………………….6

Figure1.2TheDEPChipSpelling“LabonaChip”withYeastCells…..….9

Figure1.3aTheDEPHybridIC/MicrofluidicChip…..…………….………….15

Figure1.3bTheHighVoltageDEP/MagneticChip…….………………..…….15

Figure1.3cTheMicrowaveDielectricDropHeatingChip……………....…..15

Figure2.1FrequencyDomainPlotoftheEfficacyofDEP,Electroporation,andDielectricHeating………………...…………….….17

Figure2.2aPermittivityofWatervs.Frequency………………………………...21

Figure2.2bPermittivityofAqueousSolutionswithVaryingConductivityvs.Frequency…………………….…………...……….…………………….21

Figure2.3aLumpedCircuitModelforthePermittivityofaVesicle….…27

Figure2.3bClausius‐Mosottivs.InteriorConductivityforaVesicle... 27

Figure2.3cClausius‐Mosottivs.frequencyforaVesicle…………….……. 27

Figure2.4aTransmembraneVoltagevs.FrequencyforaVesicle.…….…31

Figure2.4bSchematicofElectrofusion……………………………………………..31

Figure2.5DielectricHeatingPowerDensityvs.Frequencyfora SolutionwithVaryingConduct...………………………………………..………………34

Figure3.1aPlotofSimulatedElectricFieldStrengthAboveTheDEPChip………………………………………………………………………….40

Figure3.1bPlotoftheForceExperiencedbyaVesicleonTheDEPChip…………………………………………………………..............40

Figure3.2aSchematicoftheArchitectureoftheDEPChip….……………...45

Page 12: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

xii

Figure3.2bSchematicofanindividualDEPPixel………………………………45

Figure3.2cMicrographoftheDEPArray,ShiftRegister,andRowDecoder……………………………………………………………………………...45

Figure3.3aDemonstrationofTrappingandPositioningYeastontheDEPChip……………………………………………………………………….47

Figure3.3bDemonstrationofTrappingandPositioning DropsofWaterinOilontheDEPChip……………….............................................47

Figure3.3cTheDEPChipSpelling“Harvard”withYeastCells…...............47

Figure3.4aFlowChartoftheExperimentalApparatusSurroundingtheHybridIC/MicrofluidicChips……………………………………………………..53

Figure3.4bMicrographoftheDEPChip’sIC………………………………….….53

Figure3.4cPhotographoftheHybridIC/MicrofluidicChip initsChipCarrier………………………………………………………………….………..…53

Figure3.4dPhotographoftheExperimentalApparatus SurroundingtheHybridIC/MicrofluidicChips…………………….……………53

Figure3.5ScreenShotsoftheGUIthatControlsthe HybridIC/MicrofluidicChip…………………………………………………………….55

Figure4.1ASchematicofUnilamellarVesiclesandEmulsions……………59

Figure4.2aPlotoftheConcentrationGradientofaSubstance ReleasedfromaVesicle………………………………………………………………….....66

Figure4.2bPlotoftheConcentrationGradientofaSubstance ConsumedontheSurfaceofaCellorVesicle…………………………………...…66

Figure4.3aDemonstrationofIndependentlyTrappingand MovingSeveralVesiclesontheDEPChip…………………….………..........……..69

Figure4.3bTheDEPChipDrawing‘H’withVesicles…..………………………69

Figure4.3cSimultaneouslyTrappingandMovingYeastCellsandVesiclesontheDEPChip…………………………………………....69

Figure4.4aTriggeringtheReleaseoftheContentsofaVesicleontheDEPChip…………...………………………………………………….73

Figure4.4bElectroporatingaYeastCellontheDEPChip….………………..73

Figure4.4cElectrofusingTwoVesiclesontheDEPChip…..…………………73

Page 13: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

xiii

Figure4.5DeformingVesiclesontheDEPChip…………………………..…..….75

Figure5.1aMicrographoftheHV‐DEP/MagneticIC…………………………83

Figure5.1bPlotoftheSimulatedElectricFieldStrengthAboveTheHV‐DEP/MagneticChip……………………………………………………………..83

Figure5.1cPlotoftheSimulatedMagneticFieldStrengthAboveTheHV‐DEP/MagneticChip………………………………………………………..……82

Figure5.2aMicrographoftheHV‐DEP/MagneticIC,showing thecircuitArchitecture……………………………………………………………………..85

Figure5.2bSchematicofaDEPPixelontheHV‐DEP/MagneticChip...85

Figure5.2cSchematicofaMagneticWireontheHV‐DEP/MagneticIC.………………………………………………………………........... 85

Figure5.3TrappingandMovingVesiclesontheHV‐DEP/MagneticChip…………………………………………………..……..88

Figure5.4TrappingandMovingMagneticBeadsontheHV‐DEP/MagneticChip…………...……………………………………….……90

Figure5.5DeformingVesiclesontheHV‐DEP/MagneticChip…...….…...92

Figure6.1aSchematicofMicrofluidicDielectricHeater……………………..102

Figure6.1bPlotofElectricFieldSimulationsfortheMicrofluidicDielectricHeater……………………………………………………………102

Figure6.1cCalibrationCurvefortheCdSeTemperatureSensor……..….102

Figure6.2aFlowDiagramoftheMicrowaveDielectricHeater…………...107

Figure6.2bMicrographoftheDropMaker………………………………………..107

Figure6.2cMicrographoftheDropSplitter………………………………………107

Figure6.2dMicrographoftheMicrowaveHeatingDevice………………....107

Figure6.2ePhotographoftheExperimentalSetupofthe MicrowaveDielectricDropHeater……………………………...………………..……107

Figure6.3aFluorescenceImageofDropsHeating……………………………..110

Figure6.3bLine‐averageofFluorescenceIntensityvs.Distance….……..110

Figure6.3cPlotofChangeinTemperaturevs.DistanceandTime……...110

Figure6.4aPlotofChangeinTemperaturevs.MicrowavePower….……114

Page 14: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

xiv

Figure6.4bPlotofLog‐LinearplotofChangeinTemperaturevs.Time……………………………………………………………………….114

ListofTables

Table1.1ListofFunctionsthatarePerformedinthisThesis….............…13

Table7.1Lab‐on‐a‐ChipFunctionsDemonstratedinthisThesis………...118

Page 15: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

1

Chapter1.Introduction

Lab­on­a­chip:ATechnologythatminiaturizesandintegratesthecomplexchemical

andbiologicaltasksusedfordiagnostics,research,andmanufacturingonto

automated,portable,andinexpensivechips.

1.1Lab­on­a­Chip–Motivation

Amajorchallengeofthe21stcenturyistobetterdiagnoseandtreatinfectious

diseaseforthelargeportionoftheworld’spopulationthatiscurrentlyunderserved.

Diseases,suchasHIV/AIDS,Tuberculosis,andMalaria,forwhichthereexists

interventions,continuetokillmillionsandinfectmillionsmoreeachyeardue,in

part,toourinabilitytodiagnosediseaseseffectivelyinpoorcountries.(Urdeaetal.,

2006)TheBillandMelindaGatesFoundationandtheNationalInstituteofHealth

havedeclaredtheassessmentofdiseaseinpoorcountriesaGrandChallengefor

PublicHealth.Thesechallengesread:(Varmusetal.,2003)

1. Developtechnologiesthatpermitquantitativeassessmentofpopulationhealth

statistics.

2. Developtechnologiesthatpermitquantitativeassessmentofindividualsfor

multipleconditionsorpathogensatpointofcare.

Withthesegoalsinmind,researchersaroundtheworldaredevelopingtechnology

tomeasurebiologicalandchemicalmarkersforinfectiousdiseaseininfrastructure‐

poorpartsoftheworld.(Ahnetal.,2004,Chinetal.,2007,andMartinezetal.,2008)

Thelaboratoriesthatperformthechemicalandbiologicalteststodiagnosedisease

Page 16: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

2

intheworld’swealthiernationsrequireresourcesthatarenotreadilyfound

elsewhere,suchascentrallylocatedairconditionedbuildings,cleanwater,

electricity,accesstoexpensivereagents,andwell‐trainedtechnicians.(Chinetal.,

2007)Assuch,technologytoassessdiseaseinpoorcountriesfaceschallengesnot

ordinarilyfoundinamodernlaboratoryspace.

Lab‐on‐a‐chiptechnologyoffersapowerfultooltobringexistingmedicaland

environmentaltestsfromthelaboratoryintothefieldandtheclinic.(Figeysetal.,

2000,Petraetal.,2006,Chinetal.,2007)Attheforefrontofthistechnologyarethe

micro‐fabricatedpipes,valves,pumps,andmixersofmicrofluidicsthatareleading

tointegratedlab‐on‐a‐chipdevices.(Whitesidesetal.,2001andStoneetal.,2004)

Inadditiontothepotentialforlow‐costmedicine,theminiaturizationofthe

handlingofliquidandbiologicalsampleshasenabledadvancesinfieldssuchas

drugdiscovery,geneticsequencingandsynthesis,cellsorting,andsinglecellgene

expressionstudies.(Tabelingetal.,2005,Yageretal.,2006,andMartinezetal.,

2008)Theseintegratedmicrofluidicdevicesareleadingaparadigmshiftinfluid

handlingthatisanalogoustowhatintegratedcircuitsdidforelectronicshalfofa

centuryago.(Leeetal.,2007)However,alab‐on‐a‐chipthatcanperformthe

complex,multi‐stepexperimentsthatarecurrentlyperformedinlaboratories,akin

toamicroprocessorforfluids,remainsachallenge.(Leeetal.,2007)

Thepotentialimpactofalab‐on‐a‐chipmicroprocessorcouldbeenormous.Imagine

adevicethesizeofaniPodthatcostlessthan$100andcanperformnumerous

complexbiologicalandchemicaltestsonsmallsamplesofbodilyfluids,drinking

Page 17: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

3

water,orair.Suchadevicewouldmakemedicalandenvironmentaltesting

inexpensive,portableandautomated.Testingcouldbeperformedinthefield,at

home,orataclinicbyanon‐expert.Theresultsoftestswouldbequantitativeand

consistentsuchthatrelevantdatacouldbecollectedforbothpersonalandpublic

healthstatistics.(Chinetal.,2007)And,thedevicecouldeasilybeconnectedtothe

Internetsuchthatrelevantdatacouldbeshared.Suchadevicecouldfundamentally

changethewaythatpeopleinteractwiththechemicalandbiologicalinformationof

theirsurroundingsandoftheirownbodies.

Inadditiontoitsapplicationsinthedevelopingworld,lab‐on‐a‐chipdeviceshavea

bigroletoplayinthefutureofhealthcareinTheUnitedStates.Currently,15.2%of

theUnitedState’sGDPisspentonhealthcareandthatfractionisexpectedtogrow

to19.5%by2020.(U.S.DepartmentofHealthandHumanServices,2007)This

amountofspendingisbelievedtobeunsustainable,especiallyasthepopulation

growsandages.(Keehanetal.,2008)Lab‐on‐a‐chipdevicescanbeusedtolower

thepriceofmedicaldiagnosticsandmonitoring,enablingdiseasestobedetectedin

theirearlierstageswheretreatmentiseasierandfarlessexpensive.(Tudosetal.,

2001)

Inthisthesisalab‐on‐a‐chipplatformisdevelopedthatcancontrolsinglecellsand

verysmallvolumesoffluidtoperformsimultaneous,programmableexperimentson

achip.Incontrasttotechnologythatattemptstomakelab‐on‐a‐chipdevicesultra‐

lowcostbybeinglowtech,(Martinezetal.,2008)thechipsdescribedinthisthesis

Page 18: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

4

usecutting‐edgetechnology.Thechipsremaininexpensive,however,byusingthe

integratedcircuit(IC)technologyofthecommercialelectronicsindustry.

1.2HybridIC/MicrofluidicChips­Concept

Integratedcircuitsarecentraltomanyofthetechnologicalwondersofthe21st

century.Builtonaslabofcrystallinesiliconnobiggerthanasquarecentimeterin

area(roughlythesizeofaquarter)anICcontains100sofmillionsoftransistorsand

amazeofwiresthatconnectthetransistorsintocomplexcircuitstoperformbillions

ofoperationspersecond.ThetransistorsandwiresofICsarefabricatedwithnano‐

lithography(asopposedtooneatatime),whichallowICstobecomplex,small,fast,

andalso,inexpensive.(Lee,1998)Integratedcircuitsareubiquitousintoday’s

technology.Theyarethemicroprocessorsincomputers,theradiofrequency(RF)

circuitsincellphones,thefilmindigitalcameras,andthemicrocontrollersinheart

patients’pacemakers.Integratedcircuits,havingbeeninventedonly50yearsago,

haveprofoundlychangedthewayhumansuse,store,andcommunicateinformation.

InFig.1.1atheoriginalICisshown,builtbyJackKilbyin1958,itcontainsonlya

singletransistor.(Kilby,1976)InFig.1.1bamodernPentiumquad‐coreIC,thatcan

befoundintoday’slaptopsisshown,itcontains820milliontransistors.(Intel)

Inaspiritanalogoustotheminiaturizationofelectronicsthatleadtotoday’sICs,

modernresearchersareminiaturizingthefluid‐handlingtoolsofbiologyand

chemistrylaboratoriesintosmall,inexpensivechipstoperformautomated

experiments.Agrowinglibraryofmicrofluidicelementsforlab‐on‐a‐chipsystems

havebeendevelopedinrecentyearsfortaskssuchasthemixingofreagents,

Page 19: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

5

detectingandcountingcells,sortingcells,geneticanalysis,andproteindetection.

(Whitesidesetal.,2001,Stoneetal.,2004,Tabeling,2005,andYageretal.,2006)

InFig.1.1catypicaltwo‐channelglassmicrofluidicchipusedtocontrollablymix

twosubstancestogetherfromMicronitCorp.isshown.Figure1.1dshowsan

exampleofoneofthemorecomplexmicrofluidicchipsbuilttoday,fromtheQuake

GroupatStanford,thatconsistsofhundredsofpneumaticallycontrolledgatesand

valvesandisusedtoperformgeneticanalysisonmicrobesinthehumanmouth.

(Marcyetal.,2007)

Thecomplexity,smallfeaturesize,andlowcostofICscanbeappliedtobiological

andchemicalapplicationsbycombiningICswithmicrofluidicstoformhybridIC/

microfluidicchips.Complimentary‐metal‐oxide‐semiconductor(CMOS)optical

sensorshavebeencoupledwithmicrofluidicstomakea“microscopeonachip”that

achievesenhancedresolutionandsensitivitybybringingmicroscopicobjects

directlytotheopticalsensors.(Eltoukhy,etal.,2006andCuietal.,2008)Electrical

sensorarrayshavebeenbuiltonIC/microfluidicchipstostimulateandmeasure

largearraysofindividualneuralandcardiaccells.(DeBusscherreetal.,2001and

Eversmannetal.,2003)And,hybridIC/microfluidicchipshavebeenusedtotrap

andmovedielectric(Gascyoneetal.,2004andHuntetal.,2008)andmagnetic

objects(Leeetal.,2006)alongprogrammablepathsforchemistryandbiology

experimentsonachip.Figure1.1eshowsahybridIC/microfluidicchipthattraps

andmovesobjectsalongarbitrarypathswithDEPusingalargearrayofpixels.The

theoreticalframeworkforhowDEPisusedtotransportcellsandvesiclesonachip

isdetailedinChapter2ofthisthesis.

Page 20: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

6

Figure1.1(a)TheoriginalICbuiltbyJackKilbyatNationalInstrumentsin1958(Kilby,1976)(b)amicrographoftheIntelquad‐coreprocessor,whichhas820milliontransistos(IntelCorp.),(c)atwochannelglassmicrofluidicchip(MicronitCorp.),(d)anexampleofacomplexmicrofluidicdevicethatconsistsofhundredsofpneumaticallycontrolledgatesandvalvesandisusedtoperformgeneticanalysisonmicrobesinthehumanmouth,(Marcyetal.,2007)(e)aphotographofanIC/microfluidicchip,the‘DEPChip,’andamicrographofthearrayofpixelsthatareusedtotrapandmoveobjectswithdielectrophoresis(DEP).(Chapter3)

Page 21: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

7

1.3OverviewofThesis

Thisthesisdescribesthedevelopmentofaversatilelab‐on‐a‐chipplatformusing

hybridIC/microfluidicchips.Thechipsperformawiderangeoffunctionsonliving

cellsandpLbiomimeticcontainersforbiologyandchemistryexperimentsonachip.

Previousworkhasbeendonedevelopingprogrammablelab‐on‐a‐chipplatformsto

controlsmallvolumesoffluidandcells.Pneumaticcontrolhasbeenusedtocreate

reconfigurablemicrofluidiccomponentssuchasvalves,latches,pumps,and

multiplexers.(Ungeretal.,2000)Recently,similarstructureshavebeendeveloped

thatreplacethecumbersomepneumaticlineswithelectronicallyactivated

componentsthataremadeofshapememoryalloys(SMAs)andwhichcanbebuilt

ontopofcommercialprintedcircuitboards(PCBs).(Vyawahareetal.,2008)

Dropletshavebeentrapped,moved,mixed,andseparatedusingboth

electrowetting(Leeetal.,2002andPollacketal.,2002)anddielectrophoresis

(DEP)(Vykoukaletal.,2001andPeteretal.,2004)withelectronicsthatareexternal

tothefluidicsystem.Hybridintegratedcircuit(IC)/microfluidicchipshavebeen

developedthatharnessthematuretechnologyofICstomakegeneralpurpose,

programmablefluid‐handlingsystems.(Leeetal.,2007,Gascyoneetal.,2004,Hunt

etal.,2008)Thehighlylocalizedelectricandmagneticfieldsthatcanbecreatedby

ICshavebeenusedtotrapandmovesmallvolumesofwatersuspendedinoil(Hunt

etal.,2008),livingsinglecellssuspendedinwater(Gascyoneetal.,2004,Huntetal.,

2008),andmagneticallytaggedbiologicalobjectssuspendinwater(Leeetal.,2007)

alongprogrammablepaths.Figure1.2showsahybridIC/microfluidicchip

Page 22: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

8

simultaneouslypositionthousandsofyeastcellswithDEPtospell“LabonaChip”.

ThechipshowninFig.1.2isdescribedinfulldetailinChapter3ofthisthesis.

Page 23: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

9

Figure1.2ThecoverofLabonaChipfeaturingourhybridIC/microfluidicchipsimultaneouslypositioningthousandsofyeastcellswithDEPtospell“LabonaChip.”

Page 24: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

10

Thereareseveralkeyfunctionsthatarenecessarytoperformexperimentsonachip

thatareanalogoustotypicallaboratoryprocesses.Anyworkingmedicalor

researchlaboratoryhasbasicequipment:testtubestokeepssamplesseparate,

pipettestomovesamplesaroundthelaboratory,mixerstobringsamplesand

reagentstogether,andheaterstocontrolthetemperatureofexperiments.Inthis

thesisbasiclaboratoryfunctions,aswellasseveralfunctionsthatarenotpossiblein

amacro‐scalelaboratory,areperformedonIC/microfluidicchipsusingelectricand

magneticfieldscreatedabovetheIC’ssurface.InTable1.1thefunctionsperformed

onhybridIC/microfluidicchipsinthisthesisarelisted.

Reagentsandsamplesarekeptseparated,suchthattheycanbetransportedaround

the‘laboratory’andmixedatthepropertimeinanexperiment,bypackagingthem

inpLcontainersasisdemonstratedinChapter4.Inspirationistakenfromcellular

biologyandphospholipidbilayervesiclesareusedtopackagepLvolumesoffluidon

thechip.Vesiclesarecommonlyusedincellsforpackagingquantitiesofsubstances

forintercellulartransport,tostoreenzymes,andasareactionchamber.(Albertset

al.,2007)UnilamellarvesiclesmadewithelectroformationproviderobustpL

containersthatareimpermeableandstableforawiderangeofsalinity,pH,and

otherenvironmentalconditions.(Chiuetal.,1999)

Vesiclesandcellsaretransportedacrossthe‘laboratory’usingDEPwithelectric

fieldsatMHzfrequenciesabovethechip’ssurface,asisdemonstratedinChapters3,

4,and5.Thesmallfeature‐sizeofICsallowsmicrometer‐sizedvesiclesand

individuallivingcellstobeindependentlytransported.Thefastelectronicsand

Page 25: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

11

complexcircuitryofICsallowthousandsoflivingcellsandvesiclestobe

simultaneouslytrappedandmovedonthechip,allowingmanyparallel,well‐

controlledbiologicalandchemicaloperationstobeperformedinparallel.The

theoreticalframeworkforDEPisintroducedinChapter2.

Vesiclesandcellsarecontrollablypermeabilized,fused,andreleasedusingkHz

frequencyelectricfieldsabovethechip’ssurface,asisdemonstratedinChapter4.

Thevesiclescanbetriggeredtoreleasetheircontentslocallyintothesolutionand

mixtheircontentswithothervesiclesusingelectricfieldscreatedbythechip.

ElectricfieldsatkHzfrequenciesinducevoltagesacrossthevesicle’smembrane

inducingelectroporationorelectrofusion.Electroporationcanalsobeperformed

onlivingcells,inducingthecellstotake‐upsubstancesfromthesolution.The

complexcircuitryofthechipallowsspecificvesiclesorcellstobetargetedfor

electroporationorelectrofusionwithoutharmingsurroundingcellsorvesicles.The

chipcantime‐multiplexthekHzfrequencyelectricfieldswiththeMHzfrequency

electricfieldsusedforDEP,suchthatobjectsremaintrappedinplace,astheyare

electroporatedorelectrofused.Thetheoreticalframeworkforelectroporationand

electrofusionisexplainedinChapter2.

AhybridchipthatcansimultaneouslyperformDEPandmagnetophoresisis

demonstratedinChapter5.Magnetophoresis,usingmagneticfieldscreatedonthe

chip,providesacomplimentarymethodtoDEPfortransportingsubstancesacross

the‘laboratory.’Theabilitytotrapandmovemagneticobjectsalongprogrammed

Page 26: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

12

pathsisausefultooltocontrolthepositionofobjectsthatcannotbetrappedwith

DEP,butwhichcanbetaggedwithmagneticparticles.(Leeetal.,2007)

Themechanicalenvironmentofindividualcellsandvesiclescanbedefinedusing

thechip,afunctionalitythatisnotpossiblewithmacro‐scalelaboratorytools,asis

demonstratedinChapters4and5.In‐vitroexperimentsoftensufferfornot

controllingthemechanicalenvironmentofcells,anaspectthatplaysanimportant

rolein‐vivo.(Seifritz,1924,Curtisetal.,1964andWangetal.,1994)SeveralDEP

pixelscanbepatternedunderneathasinglevesicleorcelltocontrolitsmechanical

environmentbychangingtheshapeoftheDEPtrap,asisdemonstratedinChapter4

withunilamellarvesicles.Magneticfields,createdwithDCcurrent,areusedtotrap

andmovemagneticallypermeableobjectssuchasironoxidenanoparticles.These

particlescanbeimplantedintovesiclesorlivingcellstoapplylocalforces

selectivelytothelocationofthenanometersizedparticles.Thistechniqueis

demonstratedbycontrollablydeformingvesiclesimplantedwithironoxide

nanoparticleswithmagneticfieldscreatedbythechipinChapter5.

Thetemperatureofsmallcompartmentsoffluidcanbelocallyandrapidly

controlledusingdielectricheatingwithelectricfieldsatGHzfrequencies,asis

demonstratedinChapter6.Electricfieldswithafrequencyf=3GHzareusedto

heatthermallyisolatedpLdropswithdielectricheating.Changesintemperature

ΔT=0°–30°Careachievedinacharacteristictimeτs=15ms.

Page 27: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

13

Table1.1AlistofthefunctionalitiesdemonstratedonthehybridIC/microfluidicchipsinthisthesis.

Page 28: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

14

ThreedevicesaredescribedinthisthesisandareshowninFig.1.3.InChapter3a

customIC/microfluidicchipthatconsistsof128x256(32,768)11x11µm2pixels,

eachofwhichcanbeindividuallydrivenwith5Vpeak‐to‐peakradiofrequency(RF)

voltageswithfrequenciesfromDCto11MHz,(Hunt,etal.,2007)isdevelopedintoa

lab‐on‐a‐chipplatform.ThischipiscalledTheDEPChip(Fabutron1.0)anda

micrographofitisshowninFig.1.3a.

InChapter5asecondcustomIC/microfluidicchipispresentedthatcantrapand

moveobjectswithbothDEPandmagneticforces.Thechipsconsistsof

60x61(3,660)30x38µm2pixels,eachofwhichcanbedrivenwitha50Vpeak‐to‐

peakRFvoltagewithfrequenciesfromDCto10MHz.UnderneaththeDEPpixel

array,thereisamagneticgridthatconsistsof60horizontalwiresand60vertical

wiresrunningacrossthechip,eachofwhichcanbesourcedwith120mAtocreate

localmagneticfields.ThischipiscalledTheHV‐DEP/MagneticChip(Fabutron2.0)

andamicrographofitisshowninFig.1.3b.

InChapter6APDMSbasedmicrofluidicdevice,fabricatedwithsoft‐lithography,is

usedtodemonstraterapidandlocaldielectricheatingofdrops.Thedeviceconsists

ofanintegratedflow‐focusingdropmaker,dropsplitters,andmetallineelectrodes

tolocallydelivermicrowavepower.ThischipiscalledTheMicrowaveHeateranda

photographofitisshowninFig.1.3c.

Page 29: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

15

Figure1.2(a)AmicrographoftheDEPChip(Fabutron1.0),(b)amicrographoftheHV‐DEP/MagneticChip(Fabutron2.0),(c)aphotographofthePDMSmicrofluidicdevice(MicrowaveHeater)usedtodemonstratemicrowavedielectricheatingofdrops.

Page 30: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

16

Chapter2.Theory:DielectricandMagnetic

ControlofMicroscopicObjects

2.1Overview

Thischapterdescribeshowelectricandmagneticfieldsareusedtocontrol

microscopicobjectsonhybridintegratedcircuit(IC)/microfluidicchips.Electric

fieldsatkHzfrequenciesandbelowareusedtoinduceelectroporationand

electrofusion.ElectricfieldsatMHzfrequenciesareusedfor

dielectrophoresis(DEP).ElectricfieldsatGHzfrequenciesareusedfordielectric

heating.And,magneticfieldscreatedwithDCelectricalcurrentsareusedtotrap

andmoveobjectswithmagnetophoresis.

Thefrequencydependenceofthedielectricpropertiesofvesicles,cells,and

solutionsenablethedielectricphenomenonusedinthisthesistobeindependently

accessedwithelectricfieldsatdifferentfrequencies.Thefrequencydependenceof

DEP,electroporation,anddielectricheatingisshowninFig.2.1.Thestrengthof

eachoftheseeffectsisplottedinunitlessvaluesthataredescribedindetaillaterin

thischapter.AttheMHzfrequencieswhereDEPworksbest,bothheatingand

electroporationisminimal,enablingvesiclesandcellstobetrappedandmoved

withoutdamage.AttheGHzfrequencieswhereheatingworksbest,both

electroporationandDEPareminimal,enablingcellsandvesiclestobeheated

withoutinadvertenttrappingordamage.AtthekHzfrequencieswhere

electroporationandelectrofusionworkbest,heatingisminimalandtheDEPforceis

Page 31: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

17

negative,enablingvesiclesandcellstobepermeabilizedandfusedwithout

significantheatingorinadvertenttrapping.

Figure2.1.Asemi‐logplotoftheefficacyofheatingP/Pmax(red),dielectrophoresisCM(ω)(green),andelectroporation

VTM /VTMmax (blue)versusthefrequencyfofthe

appliedelectricfield.Thethreefrequencydomainsthatareusedforelectroporation,DEP,anddielectricheatingarelabeled.

Page 32: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

18

Inthischapterthevariousdielectricandmagneticphenomenonthatareusedto

controllivingcellsandvesiclesonourchipsareexplained.InSection2.1water’s

uniquedielectricproperties,whichplayanimportantroleinourabilitytocontrol

objectswithelectricfields,areintroduced.InSection2.2dielectrophoresis,the

forcethatisusedtotrapandmoveobjectswithelectricfields,isintroduced.In

Section2.3ageometriclumped‐circuitmodelisdevelopedtodescribethedielectric

propertiesofcellsandvesicles.InSection2.4thislumped‐circuitmodelisusedto

explaintheinducedvoltagethatformsacrossthemembranesofcellsandvesicles,

whichisutilizedinthisthesisforelectroporationandelectrofusion.InSection2.5

dielectricheatingwithmicrowavefrequencyelectricfieldsisintroduced.And

finally,inSection2.6magnetophoresisisintroducedasamethodtocompliment

DEPfortrappingandmovingobjects,utilizingmagneticdipolesinsteadofelectric

permittivity.

2.1TheDielectricPropertiesofWaterandSolutions

Tounderstandthedielectricpropertiesofcellsandvesiclesitisnecessarytofirst

understandthedielectricpropertiesoftheirmostimportantingredient,water.

Wateristheprimaryconstituentofcellsandisthemostcommonlyusedsolventin

chemicalandbiochemicalexperiments.TheDCdielectricconstantofwaterεs=78ε0

(atT=25°C)isverylargecomparedtothatofmostotherorganicandinorganic

solventsεs<10ε0,duetoitspermanentmoleculardipolemoment.Waterwill

typicallydominatethedielectricpropertiesofanyobjectthatismadeofit.(Murrell

etal.,1994)

Page 33: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

19

Thedielectricresponseofwatervarieswiththefrequencyoftheappliedelectric

field.(Grant,etal.,1978)Thepermittivityisdescribedbyboththemagnitudeand

thephaseofthepolarizationrelativetotheappliedfieldandcanberepresentedasa

complexfunctionε(ω) =ε’(ω)+jε’’(ω),witharealcomponentε’andanimaginary

componentε’’.Figure2.2ashowsaplotoftherealε’andimaginaryε’’components

ofthepermittivityofwaterplottedversusfrequency.Therealcomponentofthe

permittivityofwaterε’hasaconstantvalueofεs=78ε0untilacornerfrequency

definedbythedielectricrelaxationofwater1/(2π∗τW)≈18GHz,atwhichpointthe

permittivitymonotonicallydrops.Theimaginarycomponentε’’approacheszero

everywhere,exceptataresonantfrequencydefinedbythedielectricrelaxationtime

ofwaterτW.ThepermittivityofwatercanbedescribedbyanequationwithaDebye

form:(A.Stogryn,1971)

εW = ε∞ +εs −ε∞1− jωτW

2.1

whereεs=78.4ε0isthelowfrequencydielectricconstantofwater,ε∞=1.78ε0isthe

opticaldielectricconstant,andτw=9.55psisthedielectricrelaxationtimeat

T=25°C.Thedielectricrelaxationtimeτwcanbeunderstoodasthecharacteristic

timethatittakesforwatermoleculestorealignthemselvestoaninstantaneous

appliedelectricfield.

Thedielectricresponseofwaterdependsontheconcentrationofionsinthe

solution.Dissolvedionschangetheconductivityofthesolutionσ byactingasfree

Page 34: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

20

chargecarriers.Theeffectofionsinthesolutioncanbeincorporatedintothe

permittivityofthesolution:(A.Stogryn,1971)

εW = ε∞ +εs −ε∞1− jωτW

+ j σεoω

2.2

Figure2.2bshowsaplotoftheimaginarycomponentofthepermittivityε’’plotted

versusfrequencyonalog‐logscaleforsolutionswithseveraldifferent

conductivitiesσ.Forsolutionswithafiniteconductivity,theimaginarycomponent

ofthepermittivityε’’decreaseswithincreasingfrequencyuntilacharacteristic

frequency1/τI.Thecriticalfrequency1/τ1isdefinedbythedielectricrelaxation

timeτI=εs/σthatarisesfromconductivityofthesolutionσandthelowfrequency

dielectricconstantofthesystemεs.Astheconductivityofthesolutionσis

increased,thecharacteristicfrequency1/τIispushedtohighervalues,ascanbe

seeninFig.2.1b.Forlowfrequenciesω<1/τ1theimaginarycomponentofthe

permittivityε’’=σ/ωε0isafunctionofonlytheconductivityσ andnoothermaterial

propertiesofthesolution.Inthelimitofwaterhavingzeroconductivityσ=0the

imaginarycomponentofthepermittivityε’’increasesmonotonicallywithfrequency

untilthecharacteristicfrequencyofwaterτw.Therealpartofthedielectric

constantisslightlyreducedwiththeadditionofelectrolytes,aswaterboundtothe

ionshaveasmallerdielectricresponsethanfreewatermolecules.(A.Stogryn,

1971)

Page 35: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

21

Figure2.2.(a)Therealε’andimaginarypartsε’’ofthepermittivityofwaterεWplottedversusfrequency,(b)theimaginarycomponentε’’ofthepermittivityofsolutionsofwaterplottedversusfrequencyforvariousconductivitiesσ.Theconductivityσ increasesgoingfromlefttoright(asisshownwiththeblackarrow)withvaluesof0S/m,0.03S/m,0.06S/m,0.14S/m,0.3S/m,0.62S/m.

Page 36: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

22

2.2Dielectrophoresis

Dielectrophoresisistheinducedmotionofadielectricobjectinanon‐uniform

electricfield.Anyobjectwithapermittivitythatisdifferentthanthesurrounding

mediumcanbecontrolledwithDEP.TheDEPforceonasphericalobjectis:(Jones,

1995)

F DEP = 2πεma3CM(ω)∇

E RMS2 2.3

whereaistheradiusoftheparticle,εmisthedielectricconstantofthemedium,and

CM(ω)istheClausius‐Mosottifactor,arelationbetweenthefrequencydependent

complexpermittivityoftheparticleandthemedium.

2.4

whereεpisthecomplexdielectricconstantoftheparticle.WhenCM(ω)<0,the

mediumismorepolarizablethantheparticleandtheparticleispushedawayfrom

thelocalmaximumoftheelectricfieldandthisiscallednegativeDEP.PositiveDEP

occurswhentheparticleismorepolarizablethanthefluidCM(ω)>0andthe

particleispulledtowardthemaximumoftheelectricfield.TheClausius‐Mosotti

factorCM(ω)variesbetween‐0.5and1.

Themotionofmicroscopicobjectsisopposedbytheviscousdragofthesolutionon

theparticle.Atmicrometerlengthscalesinertiaisverysmallcomparedtoviscous

drag(theReynoldsnumberRe≈10‐3).Theviscousdragonaspherecanbe

describedwithaStokesDragForce

Fdrag = −6πηa v whereηisthedynamicviscosity

!

CM(") = Re#p $#m#p + 2#m

%

& '

(

) *

Page 37: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

23

ofthemedium,aistheradiusofthesphere,and

v isthevelocityofthesphere

relativetothemedium.ThecombinationoftheexpressionfortheDEPforceona

sphere,Eq.2.3,withtheStoke’sDragforcegivesthevelocityofaparticle

v DEPmoved

withDEP,

v DEP =εma2CM(ω)∇

E RMS2

3η . 2.5

ThelowReynoldsnumberofthesystemallowstheaccelerationoftheparticletobe

ignoredbecausethesystemissufficientlyover‐dampedthattheparticlereachesits

terminalvelocityataratethatiseffectivelyinstantaneous.

2.3DielectricModelsforCellsandVesicles

Thedielectricpropertiesofcellsandvesiclescanbedescribedwithsimplemodels.

Thepermittivityofcellsandvesiclesaresetbytheintrinsicpropertiesofthe

object’sconstituentmaterialsandalsotheobject’sgeometry.Bothvesiclesandcells

canbemodeledasspheresofwaterwrappedinathin,impermeablemembrane,as

isshowninthemodelinFig.2.3a.(Jones,1995)Thesolutioninsidethevesiclehasa

permittivitythatisdefinedbytherealpartofthepermittivityεcanda

conductivityσc.Thethinshellsurroundingthevesiclehasacapacitanceperunit

areacmemandasurfaceconductivitygm.

Fromthemodeldescribedabove,alumped‐elementcircuitmodelisdevelopedto

describevesiclesandcells.Thecapacitanceacrossthemembraneisdefined

C=2cmema,whereaistheradiusofthevesicle,andthesurfaceconductivityis

Page 38: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

24

assumedtobenegligible.(Jones,1995)Theinteriorofthevesicleisdefinedby

R=1/σcandC=εcinparallel.Bycombiningthelumpedcircuitelementsassuminga

sphericalvesicleandanelectricfieldinradialdirections,asisshowninFig.2.3a,an

effectivepermittivityfortheobjectisarrivedat

. 2.6

whereτm=cma/σcistherelaxationtimeofthechargesthatbuilduponthe

membraneandτc=εc/ σcisthedielectricrelaxationtimeofthesolutioninsidethe

object.Asimilarmodelcanbedevelopedtounderstandtheyeastcell,whereathin

dielectriclayerisaddedtothemodeltorepresentthecellwallthatisnotpresentin

mammaliancellsandvesicles.(Jones,1995andHunt,2007)

TheDEPforceonavesicleorcellsuspendedinasolutioncanbecalculatedusingthe

dielectricmodeldevelopedabove.Thesolutionhasarealpermittivityεsand

conductivityσs.TheeffectivepermittivityforthevesicleorcellεefffoundinEq.2.6

iscombinedwiththeexpressionfortheCMfactorinEq.2.4:

2.7

Therearenowtwomorecharacteristictimesinthesystem,thedielectricrelaxation

timeofthesolutionoutsideofthevesicleτs=εs/σsandtherelaxationtimeofthe

chargesontheoutsideofthevesiclebuildinguponthemembraneτm’=cma/σs.

!

"eff = cmaj#$ c +1

j#($m + $ c ) +1

%

& '

(

) *

!

CM(") = Re" 2(# s#m $ # c#m

') + j"(#m

' $ # s $ #m ) $1

" 2(# s#m

'+ 2# s#m ) $ j"(#m

'+ 2# s + #m ) $ 2

%

& '

(

) *

Page 39: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

25

AvesiclecanbetrappedandmovedwithpositiveDEPatRFfrequenciesifthe

internalconductivityσcislargerthantheexternalconductivityσs.InFig.2.3bthe

CMfactor,Eq.2.7,isplottedversustheinteriorconductivityσcofavesicleorcell

suspendedinasolutionwithσs=10‐3S/m,εs’=εc’,a=5µm,andf=1MHz.Ifthe

conductivityinsidethevesicleσc>10‐3S/mthentheCMfactorispositiveandthe

vesicleexperiencesapositiveDEPforce.TheCMfactor,andasaresulttheDEP

force,plateaustoitsmaximumvalueaboveaconductivityσc=1S/m.

TheDEPforceonvesiclesandcellsdependsonthefrequencyoftheappliedelectric

field.InFig.2.3ctheCMfactor,Eq.2.7,isplottedversusfrequencyforavesiclewith

aninteriorconductivitygreaterthanthatofthesolutionσc>σsTheDEPforceis

negativeatlowfrequencies,positiveatintermediatefrequencies,andnegativeat

highfrequencies.

ThefrequencyresponseofCM(ω)canbeunderstoodheuristicallybyanalyzingthe

lumpedcircuitmodelinFig.2.3a.Forfrequenciesslowerthantheinterfacial

chargingtimeofthemembraneτmem=acmem(1/σc+1/2σs),theDEPforceis

negative(CM<0).Attheselowfrequenciesthemembranehasahighimpedance

andcausesthevesicletoactlikeaninsulatingsphere,makingitlesspolarizable

thanthemedium.Atintermediatefrequencies,abovethechargingtimeofthe

membraneτmemandbelowtheinterfacialdielectricrelaxationtimeofthe

Page 40: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

26

vesicle τmw=(εp+2εm)/(σc+2σs),CM>0andtheDEPforceispositive.Atthese

intermediatefrequenciesthemembraneistransparenttotheelectricfieldandthe

solutioninsidethevesicleactslikeaconductor,makingthevesiclemorepolarizable

thanthemedium.Atfrequenciesabovetheinterfacialdielectricrelaxationtimeτmw

ofthevesicle,theDEPforceisnegative(CM<0).Atthesehighfrequenciesthe

vesicleistransparenttotheelectricfield,makingthevesiclelesspolarizablethan

themedium.

Page 41: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

27

Figure2.3(a)Alumpedcircuitmodelforavesicleoralivingcellwitharadiusa,thatconsistsofaninternalsolutionwithaconductivityσcandadielectricconstantεc,wrappedinathinshellwithaconductivitygmemandacapacitanceperunitareacmem,(b)theClausiusMosottifactorCMplottedversustheinternalconductivityofavesiclesuspendedinasolutionwithanexternalconductivityσs=10‐2S/minafieldwithafrequencyω=1MHz,(c)CMofavesiclewithaninternalconductivityσc=0.1S/msuspendedinasolutionwithaconductivityσs=10‐2S/mfactorplottedversusthefrequencyωoftheappliedelectricfield.

Page 42: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

28

2.4TransmembranePotentialDifferenceanditsApplications

InadditiontotheabilitytotrapandmoveobjectswithDEP,electricfieldscanbe

usedtoelectroporatevesiclestoreleasetheircontents,fusetwovesiclestogether,

orpermeabilizecellmembranes,asisdemonstratedinChapter4.Thesetasksare

accomplishedbyusinglowerfrequencyelectricfields(kHzfrequenciescomparedto

theMHzfrequenciesusedforDEP)toinducevoltagesacrossthemembranesof

vesiclesandcells.Alargetransmembranevoltagecancauseporestoformin

membranes(electroporation)orcausetwovesiclestofusetogether(electrofusion).

Theelectroporationofavesicleorcelloccurswhenthereisalargepotential

differenceacrossthemembraneofacellorvesicleVTM.Ingeneral,electroporation

andelectrofusionoccurwhenthemaximumtransmembranevoltage

VTMmax isgreater

than1V.(Sugaretal.,1987)Themaximumvoltage

VTMmax inducedacrossthe

membraneofasphericalvesicleinanexternalelectricfieldis:(Grosseetal.,1992)

VTMmax =

3 E a

2 1+ (ωτmem )2 2.8

whereτmem=acmem(1/σc+1/2σs)istheinterfacialchargingtimeofthemembrane,

asisdescribedintheprevioussection.Atypicalvesicleorcellhasacapacitanceper

unitareaCmem=10‐2F/m2.(Jones,1995)Foravesiclewitharadiusa=5μmwith

aninternalconductivityσc=0.1S/msuspendedinasolutionwithaconductivity

σs=10‐2S/m,thereisaninterfacialchargingtimeτmem=20μs.Thetransmembrane

voltageVTMisplottedversusfrequencyinFig.2.4foravesicleorcell,asisdescribed

insection2.3,inanelectricfield

E = 3 V /µm .Atthefrequenciesf≈1MHzusedfor

Page 43: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

29

DEPthevesicleorcellwillhaveaninducedtransmembranevoltageofVTM≈1mV.

Thissmalltransmembranevoltagedoesnothaveasignificanteffectonthe

membraneofavesicleorcell.(Olofssonetal.,2003)Atfrequenciesslowerthanthe

interfacialmembranechargingtimeτmem,atransmembranevoltageontheorderof

VTM≈1Vforms.ThismuchlargertransmembranevoltageVTMcantrigger

electroporationorelectrofusion.

Ithasbeenshownintheliteraturethatelectricfieldpulsescantriggerthefusion

(electrofusion)betweenadheringvesiclesorcells.(Sugaretal.,1987andTressetet

al.,2007)Themodelforelectrofusionisamulti‐stepprocessthatisillustratedin

Fig.2.4b.Figure2.4b(i)showstwovesiclesthataretrappedandmovedtogether

withDEP.Figure2.4b(ii)showsthevesiclesbroughtintotightcontact,partially

squeezingoutthewaterlayerbetweenthetwovesicleswithDEP.Electricfield

pulseswithadurationlessthanτmemarethenappliedtocreatepores

(electroporation)inthetransmembranecontactarea,asisshowninFig.2.4b(iii).If

theporedensityislargeenoughthenporescanthennucleateintoastableholein

thecontactareaasisshowninFig.2.4b(iv).(Tressetetal.,2007)Onourchip

electricfieldsatMHzfrequenciesareusedtoholdvesiclesincontactwithDEPwhile

time‐multiplexedelectricfieldpulseswithfrequencieslessthanthemembrane

chargingtimeω<1/τmemtriggerthefusion,asisdemonstratedinChapter4.

Inducedvoltagesacrossacell’smembraneVTMcanaffectthecell’sviabilityand

physiologicalstate.Inalivingcell,ionpumpsmaintainatransmembranevoltageof

VTM=70mVacrossthecellmembrane.Itisageneralruleofthumbthataslongas

Page 44: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

30

theinducedtransmembranevoltageismuchlessthanthenormalphysiological

transmembranevoltageVTM<<70mV,thenitwillhaveonlyasmalleffectoncell

physiology.(Olofssonetal.,2003)AcelltrappedinaDEPtrapwithanelectricfield

strength

E = 3V /µm andafrequencyf=1MHzwillhaveaninduced

transmembranevoltageVTM≈1mV.Therefore,acellinaDEPtrapshouldremain

healthyuntilthefrequencyoftheappliedelectricfieldispurposelyloweredto

induceelectroporationorelectrofusion.

Page 45: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

31

Figure2.4(a)Thetransmembranepotentialofamodelofavesicleorcellwithaninternalconductivityσc=0.1S/m,suspendedinasolutionwithaconductivityσs=10‐2S/m,witharadiusa=5µmandacapacitanceofCmem=10‐2F/m2isplottedversusthefrequencyfofanappliedelectricfield

E = 3 V /µm ,(b)astep‐by‐step

illustrationofthefusionoftwovesicles.

Page 46: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

32

2.5DielectricHeating

Dielectricobjectscanbeheatedwithtime‐varyingelectricfields.Inducedand

intrinsicdipolemomentswithinanobjectwillattempttoalignthemselveswitha

time‐varyingelectricfield.Theenergyassociatedwiththisalignmentisviscously

dissipatedasheatintothesurroundingsolution.ThepowerdensityPabsorbedby

adielectricmaterialisgivenbythefrequencyoftheappliedelectricfieldf,the

imaginarycomponentofthepermittivity(thelossfactor)ε’’ofthematerial,the

vacuumpermittivityε0,andtheelectricfieldstrength

E withthe

expression(Bengtssonetal.,1974):

P =ωεoε' ' E

2

2.9

Thelossfactorofthematerialdependsonthefrequencyoftheelectricfieldandthe

characteristictimeτWofthedielectricrelaxationofthematerial,withthe

expression:

ε' '= (εs −ε∞)1+ (ωτ )2

+σωεo 2.10

whereεs=78.4ε0isthelowfrequencydielectricconstantofwater,ε∞=1.78ε0isthe

opticaldielectricconstant,τW=9.55psisthecharacteristicrelaxationtimeofwater

atT=25°C(asisshowninFig.2.1),andσistheconductivityofthesolution.

(Murrelletal.,1994)

Thepowerthatamaterialabsorbsfromatime‐varyingelectricfielddependsonthe

frequencyofthefield.InFig.2.5thepowerdensityP[W/m3]absorbedbywaterin

Page 47: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

33

anelectricfieldwithamagnitude

E =105 V /m isplottedversusfrequencyfor

severalsolutionswithdifferentconductivitiesσ.Fordeionizedwaterthepower

densityincreasesmonotonicallyuntilitplateausatf=18GHz,thefrequency

associatedwiththecharacteristicrelaxationtimeofwaterτw.Forsolutionswitha

finiteconductivityσ,thepowerdensityhasaconstantvalue

P = εo

E

2σ at

frequenciesbelowacriticalfrequencysetbythedielectricrelaxationtimeofthe

solutionτs= εs/σs.Atfrequenciesabovethedielectricrelaxationtimeofthe

solutionτsthepowerincreasesmonotonicallyuntilitplateausatf=18GHz.For

biologicalsolutionsσ≈0.5S/m,thedielectricrelaxationtimeofthesolutionis

τs≈1.4ns.

Duetowater’slargedielectriclossatGHzfrequencies,microwavepoweris

absorbedmuchmorestronglybywaterthanpolymers,glass,silicon,andmost

objectsthatmicrofluidicdevicescouldbeconstructedwith.Thisallowsmicrowave

powertobedeliveredtosolutionswithoutsignificantlyheatingthesurrounding

microfluidicdevice.Effectiveheaterscanbebuiltthatworkatf=3.0GHz,a

frequencyveryclosetothatofcommercialmicrowaveovens(2.45GHz),thatis

belowthefrequencyassociatedwiththerelaxationtimeofwaterbutwherewater

stillreadilyabsorbspower(asisdemonstratedinChapter6).

Page 48: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

34

Figure2.5.ThepowerdensityP(W/m3)plottedversusthefrequencyfoftheappliedelectricfield.Severalsolutionswithdifferentconductivityσ areplotted,increasinggoingfromthebottomtothetopwithvaluesof0S/m,0.03S/m,0.06S/m,0.14S/m,0.3S/m,and0.62S/m.

2.6Magnetophoresis

Magnetophoresisprovideatechniquetotrapandmoveparticlesthatcompliments

DEP.Whereasalmostallmaterialshavesomedielectricresponse,mostobjectsare

completelytransparenttomagneticfields.Assuch,magnetophoresishasthe

benefitthatforcescanbeappliedspecificallytomagneticparticleswhilenot

affectingthesurroundingdielectricobjects.Thistechnique(asisdemonstratedin

Chapter5ofthisthesis)isusefulforapplyinglocalforcestomicroscopicobjects.

Aparticlewithamagneticmoment

m inamagneticfield

B experiencesaforce,

F MAG =

m • B . 2.11

Page 49: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

35

Foraparamagneticparticlewithamagneticsusceptibilityχ,themoment

m = Vχ B /µoisproportionaltotheexternalmagneticfieldstrength

B ,thevolumeof

theparticleV,andthevacuumpermeabilityµ0.Theforceonaparamagneticparticle

is:(Leeetal.,2004)

F MAG =

−Vχµo

∇ B 2. 2.12

Intheworkpresentedinthisthesis,superparamagneticparticlesareused.

Superparamagnetismisaformofmagnetismwhereverysmallferromagnetic

particlesbehavelikeparamagnets.Theparticlesaresmallenoughthatthermal

fluctuationscanceltheirnetmomentwhenthereisnofieldapplied,butanapplied

fieldwillcausetheparticlestoalign.Assuch,superparamagneticparticlesmaybe

describedwithahighmagneticsusceptibilityχatfieldslowerthantheirsaturation

value.(Beanetal.,1959andLeeetal.,2005)

Page 50: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

36

Chapter3.HybridIntegratedCircuit/

MicrofluidicChips

InthischapterhybridIC/microfluidicchipsandtheexperimentalapparatusthat

surroundthemarepresented.Twohybridchipsaredescribedinthisthesis.Inthis

chaptertheDielectrophoresis(DEP)Chip(TheFabutron1.0)isintroduced.(Huntet

al.,2008)TheHighVoltageDielectrophoresis/MagneticChip,(HV‐DEP/Magnetic

Chip,TheFabutron2.0)whichcombinesdielectricandmagnetictrappingontoa

singlechip,isdescribedinChapter5.Thedetailsoftheexperimentalapparatus

surroundingbothchipsarepresentedinthischapter,includingthefluidics,

electronics,optics,thermalmanagement,andcomputercontrol.

3.1Overview

HybridIC/microfluidicchipscombinetheinexpensivecomplexityandsmall

featuresizeofICswiththebiocompatibleenvironmentofmicrofluidicstoperform

programmablebiologicalandchemicalexperimentsonthemicrometerscale.(Leeet

al.,2007)Inthischapterachipisdescribedthattrapsandmovesindividual

microscopicobjectsalongprogrammablepathswithdielectrophoresis(DEP).The

DEPchipconsistofalargearrayofmicrometer‐scalepixelsthatcanbeindividually

addressedwithradiofrequency(RF)voltages,creatingelectricfieldsabovethe

chip’ssurface.Thechipcansimultaneouslyandindependentlycontrolthelocations

ofthousandsofdielectricobjectssuchaslivingcellsorpLdropsoffluid,allowing

thousandsofbiologicalandchemicalexperimentstobecontrolledinparallel.

Page 51: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

37

3.2DielectrophoresisChip(Fabutron1.0)

TheDEPChipconsistsofacustomICandafluidcellthatholdsliquiddirectlyonthe

chip’ssurface,asisshowninFig.1.1e.ElectroniccircuitsintegratedintotheICare

usedtocreatelocalelectricfieldsabovethechip’ssurface.Theseelectricfieldscan

beusedtopositionobjectswithDEPorrelease,permeabilize,andfuseobjectswith

electroporationandelectrofusion.Thecomplexcircuitryandfastelectronicsofthe

DEPchipallowmanylivingcellsandvesiclestobecontrolled,allowingmany

parallel,well‐controlledbiologicalandchemicaloperationstobeperformed.

TheDEPchipconsistsofanarrayofelectrodes,eachofwhichcanbeindividually

drivenwithavoltage,tocreateanelectricfieldabovethechip’ssurfaceasisshown

intheinsetinFig.1.1e.Specifically,theDEPchipconsistsof128x256(32,768)

11x11μm2pixels,eachofwhichcanbeindividuallydrivenwitha5Vpeak‐to‐peak

radiofrequency(RF)voltagewithfrequenciesfromDCto11MHz.Underneatheach

pixelisastaticrandomaccessmemory(SRAM)element.ThestateoftheSRAM

elementdetermineswhetherthepixelisdrivenbytheexternalRFvoltagesource

(thepixelturnedoff)orbythelogicalinverseoftheRFvoltage(thepixelturnedon).

TheRFvoltagebetweenthepixelscreatesanelectricfieldabovethechip’ssurface

thatisusedtotrapandmoveobjectswithDEP.Theentirearrayofpixelscanbe

updatedhundredsoftimesinasecond.TheICisdesignedusingCadencedesign

softwareandisfabricatedwithacommercial0.35μmprocesswith4metallayers

throughMOSIS(process:TSMC35_P2).ThedetailedspecificationsoftheDEPChip

areoutlinedintheappendixintheformatofadatasheet.(AppendixA)

Page 52: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

38

3.2.1OperatingPrincipals

TheDEPChipusespositiveDEPtotrapandmovedielectricobjects.Byshiftingthe

locationofthepixelsthatareturnedon,thelocationoflocalelectricfieldmaxima

aremovedaroundthearray.InFig.3.1aquasi‐staticfiniteelementsimulations

(Ansoft:Maxwell11)areshownoftheelectricfieldmagnitude

E 5μmabovethe

chip’ssurface.Twopixelsinthecenterofthearrayaresetto5Vandtherestofthe

pixelsaresetto0V.Adielectricobjectwitharadiusa=5µmisschematically

shownbeingpulledtowardsthemaximumofthefield.Thesimulationsshowthat

theobjectwillexperienceamaximumfieldof

E ≈ 5 V /µm .(Hunt,2007)

TheexpectedDEPforceonanobjectabovethechip’ssurfacecanbecalculatedby

combiningtheelectricfieldsimulationsshowninFig.3.1awiththedielectricmodels

presentedinChapter2.Theforceonadielectricobjectwitharadiusa=5µm,

describedbythemodelinsection2.3,suspendedinasolutionwithaconductivity

σs=10‐2S/m,inanelectricfieldwithafrequencyf=1MHzandanRMSmagnitude

showninFig.3.1a,isplottedinFig.3.1b.Thedielectricobjectistrappedatthe

interfaceoftwopixelsontheleftthatareturnedonandtwopixelsontherightthat

areturnedoff.ThemagnitudeofthetrappingforceisF~1nNandtheforceis

localizedwithintwopixellengthsofthetrap.Alineisfittotheforcecurveatthe

locationofthetrap,andtheeffectivespringconstantisfoundtobek=520pN/µm.

Page 53: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

39

3.2.2CharacteristicTimes

Theratethatthedevicecanperformoperationsislimitedbythetimethatittakes

formicroscopicobjectssuspendedinsolutionabovethechip’ssurfacetoreactto

theelectricormagneticfields,notthespeedoftheelectronics.Therearetwo

importantcharacteristictimesthatdescribethemicroscopicobjectssuspendedin

solutiononourchips:thetimethatittakesforaparticletodiffuseawayifatrapis

turnedoffτdiffandthetimethatittakesforaparticletomovebetweentrapswhen

onepixelisturnedoffandthenextisturnedonτmove.Aparticlesuspendedina

solutiontakesatimeτdiff=L2/16Dtodiffusethedistanceofhalfofapixel

lengthL/2.Theself‐diffusionconstantDisdefinedbytheStokes‐Einstein

EquationD=kBT/6πηa,wherekBTisthethermalenergy,ηistheviscosityofthe

solution,andaistheradiusoftheparticle.Thetimethatittakesforana=1µm

particlesuspendedinwatertodiffuseL/2=5µmisτdiff≈1sec.Thediffusion

timeτdiffislongerforbiggerparticles.

Thetimethatittakesforaparticletomovefromonepixeltothenextτmoveis

calculatedusingtherelationshipbetweentheDEPforceandvelocityinEq.2.5and

theplotoftheDEPforceversusdistanceinFig.3.1b.Thetimethatittakesforan

a=1µmparticleontheDEPchiptomovefromonepixeltothenextisτmove≈10ms.

Forlargerparticlesthetimethatittakestomoveparticlesbetweenpixelsτmove

increases.TheICoperatesatsub‐mstimescales(asisdescribedbelow)suchthat

theICcanchangeitsstatemanytimesinthetimethatittakesforaparticletoreact

tothechangeinfield.

Page 54: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

40

Figure3.1.(a)Afiniteelementsimulationoftheelectricfieldstrength5μmabovethechip’ssurface,(b)aplotoftheforceonadielectricobject(asmodeledinchapter2.3)attheinterfaceoftwopixelsontheleftthatareturnedon(inyellow)andtwopixelsontherightthatareturnedoff(inwhite).

Page 55: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

41

3.2.3IntegratedCircuitDesign

ThissectionoutlinesthedetaileddescriptionoftheDEPchipgiveninTomHunt’s

Thesis.(Hunt,2007andHuntetal.,2008)Thechip’s128x256(32,768)pixelsare

addressedwithlogicandmemorybuiltintotheIC,suchthatonly8datalines(not

includingthetwoclocksandfourcontrolsignals)arerequiredtoupdatetheentire

array.AschematicoftheSRAMarrayandthelogicandmemorythatsurrounditare

showninFig.3.2a.TheSRAMmemoryisorganizedas128wordsx256bits.The

bitsofeachwordarereadinandoutofthechipwithasequentiallyloadedtwo‐

phaseclockedshiftregister.Eachwordisaddressedtoaspecificrowinthearray

usinga7bitrowdecoder.Therowdecodertakes7binaryinputsandusesthemto

choose1of27(128)rowsoftheSRAMarray.Amicrographofthechip,showinga

sectionofthearrayofDEPpixelssurroundedbythecontrolelectronics,isshownin

Fig.3.2c.

AschematicofthecircuitunderneatheachDEPpixelisshowninFig.3.2b.The

SRAMmemoryelementsunderneatheachpixelareaddressedwithaword‐lineand

itsvaluesetwithabit‐line.TheSRAMelementcontrolsamultiplexer(MUX)that

routesoneoftwosignals,producedoffofthechip,tothe11x11µm2pixelabove.

GenerallythetwosignalsareRFvoltagesthatare180°outofphase,butcanbeset

arbitrarily.TheoutputoftheMUXgoesthroughavoltage‐amplifierbeforedriving

thepixel.Thevoltage‐amplifierisatwotransistorinverter,appropriatelysizedto

drivethecapacitiveloadofthepixel.Thevoltage‐amplifiershaveanon‐resistance

ofRon≈10kΩ,drivingapixelcapacitanceoflessthanCload≈50fF,whichyieldsa

Page 56: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

42

sub‐nsRCtime.Thevoltageonthepixelcanhaveapeak‐to‐peakvoltageof5Vand

abandwidthofDC–11MHz.Thebandwidthcouldhavebeenlarger(DC–GHz)if

greatercarewastakeninthedesignofthechiptobuffertheRFlinesthroughoutthe

circuit.

Thechip’saddressingarchitectureisaresultoftrade‐offsbetweenmaximizingthe

refreshrateoftheSRAMarray,minimizingthesizeoftheelectronicsneeded

underneatheachpixel,andminimizingthenumberofinputandoutputpinsonthe

chip.Therefreshrateofthechipisimprovedbyallowingregions‐of‐interest(ROI)

tobeupdatedwithoutupdatingtheentirearray.Onthechip,wordsthatare256

bitsinlengthareupdatedwithrandom‐access.Foreachpixeltobefullyrandom‐

accesswouldrequiretwoextratransistorsunderneatheachpixel,increasingthe

pixelsizeandcomplexityofthecircuit.Therefreshrateismaximizedbybreaking

thearrayintowordswiththesmallestnumberofbits.Inthelimitingcase,thechip

wouldbeasfastasitcouldbeifeachpixelhadawiretotheoutside‐world.

Conversely,thenumberofpinsisminimizedbyincreasingthesizeofeachword.In

thelimitingcase,thechipwouldhavetheminimumnumberofpinsiftheentire

arraywasupdatedinserialwithashiftregister.

Inourdesign,witha128wordx256bitarray,theshiftregisterisupdatedata

maximumrateof1bit/0.1µsmakingittake~26µstoupdateasinglewordonour

chipand~3.3mstoupdatetheentirearray.Thus,thechipcanrefreshitsentire

statefasterthanthetimeτmove>10msthatittakesfortheparticlesabovethe

chip’ssurfacetoreacttothefields.Theupdaterateofthechipiscurrentlylimited

Page 57: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

43

bytheelectronicssurroundingthechip.Withthecurrentelectronicstherefresh

rateofthechipis400mstoupdatetheentirearray.Thechipisinterfacedtoa

computerandtheinterfaceisslowerthanthechipitself,asisexplainedinmore

detailbelow.Anewgenerationofgraduatestudentsiscurrentlydesigninga

microcontrollerinterfacetothechipthatcanrefreshthechipatitsmaximumrate.

Thedesignofthechip,usingtheCadencesoftwarepackage,ishierarchicaland

incorporatesdigitalandanalogtestingsuchthat(ifdonecorrectly)thelayoutis

guaranteedtomeetdesignspecificationsandthedesignrulesofthefabrication

process.Thechipdesignbeginswithbreakingthechipintoseparablemodules:the

pixel,theshiftregister,therowdecoder,asingleSRAMelement,etc…Theindividual

modulesaredesignedintermsofothermodules,continuingdownwardsinthe

hierarchyuntilreachingthetransistor‐level.Eachtransistorcorrespondstothe

layoutofmasks(dopingandmetallayers,vias,etc…).Themodulesarecombinedat

themask‐layoutlevelbymanuallyplacingthemodulesandmanuallyconnecting

themwithmetallayers.Thedesignsoftwarechecksthatthecircuitsatthemask‐

levelmatchesthecircuitsatthemodule‐level.Theelectricaltestingbeginsatthe

bottomofthehierarchyatthemodule‐level,usingSPICEmodelsforeachelement,

totestthedigitalandanalog(bothtimedomainandfrequencydomain)responseof

thecircuits.Oncethelayoutforamoduleisdrawn,additionalunintended

capacitancesinthesystemareextractedfromthelayoutandincorporatedintothe

testing.Thenewlayoutcanbemodifiedbasedontheresultsofthetesting,andthis

cyclecanberepeatediniterationsuntilthedesignspecificationsofthemoduleare

met.Themodulesarecombinedandthesystemistestedworkingfromthebottom

Page 58: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

44

ofthehierarchytothetop,untiltheentirechipislaidoutandfullytested.Forthe

chipsdesignedinthisthesis,thedesignprocesstakesabouttwomonthsfromstart

tofinishandresultsinachipwithN≈300,000transistors.

Page 59: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

45

Figure3.2.(a)AschematicofthearchitectureoftheSRAMarrayandthelogicandmemorythatareusedtoreadandwritetoitontheDEPchip,(b)aschematicofthecircuitunderneatheachDEPpixel,showingtheSRAMmemoryelement,amultiplexer(MUX)thatdirectseithertheRFsignaloritslogicalinversetoavoltagedriverthatconnectstotheelectrode,(c)amicrographofa250x200µm2sectionshowingacornerofthechipwithaportionoftheDEParrayintheupperleftcorner,therowcontrolcircuitsonthebottom,andthebitcontrolcircuits,includingtheshiftregister,ontheright.

Page 60: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

46

3.2.4Capabilities

TheDEPchiphasbeenusedtotrapandmovedielectricobjectssuchasliving

cells,(Fig.3.1aandFig.3.1c)dropsoffluidimmersedinoil,(Fig.3.1b)andvesicles

usedasbiomimeticcontainers(Chapter6).Inadditiontotheabilitytotrapand

moveobjectswithDEP,electricfieldscanbeusedtoelectroporatevesiclesto

releasetheircontents,fusetwovesiclestogether,orallowcellstotakeup

substancesfromthesolution.(Chapter6)Thesetasksareaccomplishedbyusing

lowerfrequencyelectricfields(kHzfrequenciescomparedtotheMHzfrequencies

usedforDEP)toinducevoltagesacrossthemembranesofvesiclesandcells,asis

describedinChapter2.Inadditiontowhathasbeendemonstratedbyourgroup,

anyapplicationthatcouldbenefitfromaprogrammableelectricfieldcontrolledon

thelengthscaleofL=10µmwithanRFbandwidthcouldbeperformedontheDEP

chip,suchaselectro‐optics(Lopez,1970),electro‐wetting(Pollacketal,.2000),or

electro‐chemistry(Nyholm,2005).

Page 61: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

47

Figure3.3(a)AtimesequenceofyeastandratalveolarmacrophagesbeingtrappedandmovedwithDEP.Theblackarrowsindicatethedirectionthatthecellsaremovedbetweenframes.Thecellsmoveatarateof~50µm/sec,(b)atimeseriesofdropsofcoloredwaterbetweenalayeroffluorocarbonoilandhydrocarbonoiltrapped,moved,split,andmergedwiththechip,(c)amicrographoftheentirechipbeingusedtopositionthousandsofyeastcellstospell“Harvard.”(Huntetal.,2008)

Page 62: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

48

3.3ExperimentalApparatus

TheapparatusthatsurroundstheIC/microfluidicchipsisdescribedinthissection.

Theapparatusconsistsofaninterfacetocontrolthechipwithacomputerandan

opticalmicroscopewithavideocameratoobservewhathappensonthechip.A

blockdiagramoutliningtheorganizationoftheapparatussurroundingthechipsis

showninFig.3.4a.Fluidicsbringsamplesandreagentstothechip.Thechip

communicatestotheoutsideworldthroughelectricalconnectionsonacustom

printedcircuitboard.Theprintedcircuitboardconnectstoacomputerthrougha

digitalinput/output(I/O)card.Thecomputercanbothwriteandread‐outthe

stateofthechipthroughcustomcontrolsoftware.Afluorescencemicroscope

imagesthecontentsofthechip.Theimagesaresenttothecomputerthrougha

digitalcamera.Agraphicaluserinterface(GUI)providesanintuitiveplatformfor

theusertointeractwiththechip.Theoverallsystemisaimedatbeingrobust,easy,

andflexibleenoughtousethatnewexperimentscanbequicklyprototyped,with

minimumsetupandmaintenancetime.

3.3.1Fluidics

AfluidcellisbuiltdirectlyontopoftheICwithasiliconegasket(Invitrogen:p‐

24744)witha1.2mmholethatiscutwithaholepunch,asisshowninFig.3.4c.A

3x3mm2glasscoverslipisplacedontopofthefluidcelltosealit.Thefluidcell

canbefilledwithapipette.Directlypipettingfluidontothechip’ssurface,rather

thansettingupamicrofluidicnetwork,keepstheexperimentalapparatusflexible,

allowingmanyexperimentstobeattemptedinashorttime.

Page 63: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

49

TheIC/microfluidicchipcanbeintegratedasacomponentinalargerPDMSor

glassbasedmicrofluidicsystem.Passivemicrofluidicscancoupletheoutsideworld,

anditsmacroscopicfluidsamples,tothechipinarolethatisanalogoustotherole

printedcircuitboardsplayforICsincomputers.TheIC/microfluidicchipcould

behaveasaprogrammablecomponenttoperformtaskssuchassortingor

combiningsamplesandreagents.Insuchasetup,thefluidoutputofthechipcould

befedtooutputchannelsofthepassivemicrofluidicdeviceforfurtherprocessingor

collection.

3.3.2Electronics

InthissectiontheelectronicssurroundingtheDEPchiparedescribed.

Electronicallythechipiseffectivelya32kbitSRAM;Assuch,theelectronics

surroundingthechipareidenticaltotheread/writeelectronicssurroundingany

SRAMarray.TheIC/microfluidicchipismountedonastandard84pinchipcarrier

asisshowninFig.3.4c.TheICismountedwithsilverpainttobothelectrically

groundthesubstrateoftheICandtocreateathermallyconductiveconnectiontoa

thermalreservoir.WirebondsconnecttheICtothepinsofthechipcarrier.Inall

thechiprequires24wirebonds,includingredundantpowerlines.Allofthewire

bondsareonthesamesideoftheICtomakeiteasiertoprotectthemfromthefluid.

Thewirebondscanbecoveredwithepoxytoprotectthemfurtherfromthenearby

fluid.Howevermostoftenthebondsareleftunprotected,asthefluidcellisa

sufficientbarrierbetweenthefluidandthewirebonds.

Page 64: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

50

ThechipcarriersitsonacustomPCBwhichconnectstheICtothecomputer,

providespower,andconnectstheICtoanRFvoltagesource,asisshownin

Fig.3.4d.ThePCBhasRCfiltersoneachoftheinputsandoutputsofthechipwitha

cornerfrequencyf3dB=100MHztoprotectthechipfromvoltagespikes.Thedigital

linesconnectfromthePCBtothecomputerthroughaproprietaryNational

Instrumentscable(NI:SHC68‐68‐EPM)tothedigitalI/Ocard(NI:PCI‐6254).The

RFvoltageisproducedoffofthechipandisbroughtontotheboardwithaBNC

connector.TheDEPchiphasapowerconsumptionof0.5‐2W,dependingonhow

manypixelsareturnedonandthefrequencyoftheRFvoltage.

3.3.4Optics

TheIC/microfluidicchipsitsunderafluorescencemicroscope,asisshownin

Fig.3.4d.Fluorescencemicroscopyisapowerfulandwidelyusedtooltoimage

biologicalandchemicalsystems.(Pawley,2008)Couplingfluorescencemicroscopy

withthechipenablesaccesstoawelldevelopedtechniquetoimagethesamplesand

reagentsthatthechipcontrols.ThesiliconsubstrateoftheICisnotoptically

transparentandsothemicroscopeoperatesbymeasuringreflectedlight.TheICis

notfluorescentatopticalfrequenciesandsobehavesasablackbackground.The

microscopeviewsthesamplesthroughtheglasscoverslipofthefluidcell.

ThemicroscopeapparatusconsistsofapillarmountedOlympusBX‐52,hovering

abovetheIC/microfluidicchip,asisshowninFig.3.4d.Longworkingdistance

objectivesareusedtogiveenoughspaceforthefluidcell(Olympus:LMPLFLseries).

Thelightsourceisa100Wmercurylamp.Thedeviceismonitoredwithan

Page 65: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

51

HamamatsuORCA‐ERcooledCCDcamera.ImagesaretakenwithMicroSuiteBasic

Edition(Olympus)andStreamPixdigitalvideorecordingsoftware(Norpix).

FuturedevicesthatutilizeIC/microfluidicchipsandhopetobeportablesurelycan

notincludealaboratory‐sizedfluorescencemicroscope.Recentworkhasshown

thatfluorescencemicroscopycanbeperformedinmicrofluidicdevicesusingsmall

LEDlightsourcesandphotodiodes.(Psaltisetal.,2006)Moreforwardlooking,a

CCDarraycouldbeflippedandbondedontopoftheICformingafluidchannel

betweenthetwochips.(Cuietal.,2008andHengaetal.,2006)

3.3.5ThermalManagement

Temperaturecontrolisessentialforexperimentsonbiologicalsystems.The

temperatureofthechipiscontrolledusingheat‐sinks.TypicalICshaveoperational

temperaturesbetween65°Cand85°C.(Leeetal.,1998)Formanybiologicaland

chemicalexperimentsthatmightbeperformedonthechip65°Cisfartoohot.As

such,stepsaretakentocontrolthetemperatureofthechip.

Inthefirstiterationofthermalmanagement,theceramicchipcarriersitsontopofa

machinedcopperblockwithathinlayerofthermalgrease(ArcticSilverInc.:Arctic

Silver).Airisblownwithafanoverthelargesurfaceareaofthecopperblock’s

bottomside.ThetemperatureoftheDEPchip’stopsurfacewiththechipturnedon

is40°C‐50°Ccomparedto90°Cwhennoheatsinkisattached.Thechip

temperatureismeasuredwithaninfrarednon‐contacttemperaturesensor(Control

Company4477).

Page 66: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

52

TheseconditerationoftheheatsinkwasdesignedfortheHV‐DEP/Magnetic

Chip(Chapter5)andutilizesawatercooler.Withwatercoolingthetemperatureof

thechipcanbecontrolledbysettingtheflowrateandtemperatureofthewater

bath.Thewatercoolerisconstructedwithamachinedcopperpiecethatis

connectedwithathermallyconductiveepoxy(Loctite383and7387)toa

commercialCPUwatercooler(DangerDen,MC).Thetopofthecopperblockis

polishedandimmediatelycoveredwithathermallyevaporatedlayerof

8nmTi/100nmgoldtokeepcopperoxidefromgrowing.Thechipcarriersitson

topofthemachinedcopperblockwithathinlayerofthermalgrease(ArcticSilver).

Thewatercoolerisdrivenwithasubmersiblepump(BecketCorp,Versa)witha

flowrateof92gallons/hour.TheHV‐DEP/MagneticChip(Chapter5)has

temperaturesensorsintegratedintotheIC.Theanalogoutputofthesensorscanbe

placedintoafeedbackloopwiththewater‐coolertocreateacontrolsystemto

maintainthechiptemperature.

Page 67: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

53

Figure3.4.(a)AschematicoftheexperimentalapparatussurroundingtheIC/microfluidicchip.Thegreenboxesrepresentcomponentsthatareelectrical,bluerepresentfluidic,orangerepresentoptic,andyellowrepresentswherethecomponentscometogether,(b)anopticalmicrographoftheIC(b)84pinchipcarrierholdingtheIC,ontopoftheICisaredfluidcell,(c)aphotographoftheexperimentalsetupofthehybridIC/microfluidicsystem.

Page 68: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

54

3.3.6ComputerControl

ComputersoftwareisusedtoprogramandtointerfacetheIC/microfluidicchip

withauser.ThecomputercommunicateswiththechipthroughaNational

InstrumentsPCIboard(NI:PCI6254).ThePCIboardiscontrolledwithcustomLab

View(NI)software.MATLAB(TheMathWorks)codeisusedonthefront‐endto

interfacewiththeuserandtotranslateauser’sinputintothecommandsthatwillbe

senttothechip.AllMATLABandLabViewcodeisincludedinAppendixC.

TheGUIthatwedesignedisshowninFig.3.5.IntheGUIausercandrawobjects

ontoabit‐mapthatcorrespondstotheDEPpixelarrayofthechip.Objectscanbe

created,recognizedbythecomputer,andmovedaroundthescreenwithacursor.

Basicdefaultshapescanautomaticallybedrawnsuchashorizontal,vertical,and

diagonallinesandchecker‐boardpatterns.Inadditiontothestaticdrawingsthat

canbedrawnintheGUI,multi‐framemovies,whereeachframeisastateofthechip,

canbeimportedintoacompilerandplayedonthechip.(AppendixC)Tomaximize

therefreshrate,thecodecansendcommandstowriteonlyword‐linesintheSRAM

arraythathavechangedfromframetoframe.

Thedigitalcameraonthemicroscopeconnectstothecomputerandisdisplayed

withStreampix(Norpix).Currently,thecoordinatesystemonthevideo‐feedfrom

thedigitalcameraandtheGUIismanuallyalignedbytrappingandmovinganobject

andthenfindingitonthemicroscope.Thecombinationofimage‐recognition

softwareandautomatedcontrolofthemicroscopestagecouldbeusedtoremove

Page 69: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

55

thehumanfromthecontrolloop,andallowcomplexautomatedtaskssuchas

sortingtobedoneinaclosed‐loop.

Figure3.5.ScreenshotsoftheGUI,(a)ThemainscreenfortheGUIwhereobjectscanbedrawnonabitmapthatrepresentsthestateofthechip.Theblackandwhitestripesarethearbitrarypatternthatisbeingwrittentothechipinthescreen‐shot,(b)the“advancedmode”oftheGUIwhereobjectsthatarecreatedinthemainscreencanbemovedwithacursor.

Page 70: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

56

Chapter4.AHybridIntegratedCircuit/

MicrofluidicPlatformtoControlLivingCells

andpLBiomimeticContainers

4.1Overview

ThischapterdescribeshowthehybridDielectrophoresis(DEP)Chip,introducedin

Chapter3,canbeusedtoperformbiologyandchemistryexperiments.TheDEP

chipsimultaneouslycontrolsmanyindividuallivingcellsandsmallvolumesoffluid.

ThesmallvolumesoffluidarecontainedinpLsizedlipidvesicleswhichprovidea

stablecontainerforaqueoussolutionsthatcanbesuspendedinwater.Thevesicles

canbemovedaroundthechip,fusedtogether,andhavetheircontentsreleasedinto

thesolution.Livingcellscanalsobemovedaroundthechipandcanbe

electroporatedtoallowsubstancesfromthesolutiontoenterthecells.Inaddition,

thechipcancontrollablymechanicallydeformthecellsorvesicles.Thesebasic

functions,whicharedemonstratedinthischapter,canbestrungtogetherto

performcomplexbiologicalandchemicallaboratorytasks.

Previousworkhasbeendonetousehybridintegratedcircuit(IC)/microfluidic

chipsforbiologyandchemistryexperiments.TomHunt’sthesisdescribeshybrid

chipsbeingusedtotrapandmovedropsofwatersuspendedinoil.(Hunt,2007)

TheDEPChipcanpositionthedrops,splitsthedropsintwo,andmergestwodrops

together,demonstratingapotentialplatformforperformingprogrammable

chemistryexperiments.(Hunt,2007andHuntetal.,2008)Intheseemulsion‐based

Page 71: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

57

systems,dropsofwateraresuspendedinoilandarestabilizedusingasurfactant,as

isshowninFig.4.1.(Holtzeetal.,2008)Dropbasedmicrofluidicchipshavebeen

showntobeimportanttechnologyforperforminghigh‐throughputbiologicaland

chemicalexperiments.(Kosteretal.,2008)Achallengeforthesesystems,however,

isthatcellsmustalsobeencapsulatedindropsbecausetheoil‐basedcontinuous

phaseisnotbiocompatible.Inaddition,moleculeswithhydrophobictailscanleak

frominsidethevesiclesintotheoil,thuslimitingthechemistrythatcanbedonein

thesesystems.(Hunt,2007andHoltzeetal.,2008)

Inthischapteraversatileplatformisdevelopedforbiologyandchemistry

experimentsontheDEPchip.Thisplatformcansimultaneouslycontrolbothliving

cellsandsmallisolatedvolumesoffluidsuspendedinwater.InSection4.2.1the

functionalityandcapabilitiesoftheDEPChiparereviewed.Topackagesmall

volumesoffluid,suchthattheycanbesuspendedinwater,inspirationistakenfrom

cellularbiology.Thepreparationofthevesiclesusedinthischapterisdescribedin

Section4.2.2.Lipidvesicles,dropsofwatersurroundedbyathinphospholipid

bilayermembrane,arecommonlyusedincellstopackagesubstancesfor

intercellulartransport,tostoreenzymes,andtocreateisolatedchemicalreaction

chambers.(Albertsetal.,2007)Artificiallyproducedunilamellarvesiclesmimic

naturalvesiclesandproviderobustpLcontainersthatareimpermeableandstable

forawiderangeofsalinity,pH,andotherenvironmentalconditions.(Tressetetal.,

2007)AschematicofaphospholipidvesicleisshowninFig.4.1.Thischapter

demonstratestheuseofunilamellarvesiclesasarobustpLcontainerforfluidson

theDEPChip.

Page 72: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

58

Thefrequencydependenceofthedielectricpropertiesofvesiclesandcellsenable

thedielectricphenomenonusedinthischaptertobeindependentlyaccessedwith

electricfieldsatdifferentfrequencies.VoltagesatMHzfrequenciesareusedfor

DEP,totrap,position,anddeformcellsandvesiclesasisdescribedinSection4.2.3.

Voltagepulseswithmspulse‐widthsareusedforelectroporationandelectrofusion,

totriggerthereleaseofthecontentsofvesicles,fusetwovesiclestogether,and

permeablizethemembranesofcellsasisdescribedinSection4.2.4.

TheDEPChipisusedinthischapterdemonstratebasicfunctionsonlivingcellsand

unilamellarvesicles,whichcanbestrungtogethertoperformcomplexbiological

andchemicallaboratorytasks.InSection4.3.1theDEPChipisusedto

simultaneouslyandindependentlytrapandmovemanyindividualvesiclesand

livingcellswithdielectrophoresis(DEP).InSection4.3.2voltagespulsescreatedby

theDEPChipareusedtoselectivelyelectroporatevesiclestoreleasetheircontents,

fusetwovesiclestogether,andpermeabilizelivingcells.InSection4.3.3vesiclesare

deformedbychangingtheshapeoftheDEPtraps.Theplatformdemonstratedin

thischaptercanbeusedforawiderangeofchemicalandbiologicalapplicationsand

isastepforwardforthefieldofhybridIC/microfluidics.

Page 73: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

59

Figure4.1.Aschematicrepresentationofawaterdropinoilemulsionstabilizedwithsurfactantsisshownontheleft.Aschematicrepresentationofaunilamellarvesicleisshownontheright.Thephospholipidmoleculesthatformthesurfactantandthevesiclemembraneareshownwithredcirclesforthehydrophilicheadsandblacklinesforthehydrophobictails.

Page 74: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

60

4.2Methods

4.2.1TheHybridIntegratedCircuit/MicrofluidicPlatform

InthissectiontheDEPChip,whichisdescribedfullyinChapter3,isusedtocontrol

livingcellsandsmallvolumesoffluidusingspatiallypatternedelectricfields.Here,

theDEPchipanditscapabilitiesaresummarized.Thehybridchipconsistsofa

microfluidicchamberbuiltdirectlyontopofanIC.TheICconsistsofanarrayof

electrodes,eachofwhichcanbedrivenwithanRFvoltagetospatiallypatternthe

electricfieldmagnitudeabovethechip’ssurface.Underneatheachpixelisastatic

randomaccessmemory(SRAM)element.ThestateoftheSRAMelement

determineswhetherthepixelisdrivenbytheexternalRFvoltagesource(thepixel

turned‘off’)orbythelogicalinverseoftheRFvoltage(thepixelturned‘on’).The

arrayconsistsof128x256(32,568)11x11µm2pixels,eachofwhichcanbedriven

withanRFvoltagewithabandwidthfromDC–11MHz.Theentirearrayofpixels

canbeupdatedhundredsoftimesinasecond.AmicrographoftheIC/microfluidic

chipisshowninFig.1.1b.

4.2.2UnilamellarVesicles

Lipidvesiclesaredropsofwaterencapsulatedbyathinphospholipidbilayer

membrane.Aschematicofthecross‐sectionofaphosphlipidunilamellarvesicleis

showninFig.4.1.Thephospholipidmembraneconsistsofamphipathic

phospholipidsthatself‐assembleintobilayerssuchthattheirhydrophilicheadsface

theinsideandoutsideofthevesicle,providingarobustcontainerforaqueous

Page 75: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

61

solutions.(Albertsetal.,2007)Aunilamellarvesicleconsistsofasinglebilayer

membrane,asopposedtoseveralassomevesiclesdo.

ThevesiclesaremadethroughcollaborationwithThomasFrankeatUniversityof

AugsburginGermany.Thevesiclesarepreparedwithliposomeelectroformation

usingamodificationoftheAngelovaMethod.(Angelovaetal.,1986)Therecipe

usedtocreatethevesiclesisasfollows.Briefly,asmallamountoflipidin

chlorophorm(ca.20microliterofa5mg/mlsolution)isdepositedontotwoindium‐

tin‐oxidecoatedglassslides.Afterevaporationoftheorganicsolventforatleast

6hourstheslidesareassembledinparallelwithaseparating2mmteflonspacerto

formthepreparationcellandincubatedforonehourinasaturatedwatervaporat

roomtemperatureforprehydration.Subsequently,theelectroformationcellisfilled

with200mOsmaqueoussolution(50mMsodiumchlorideandsucrose)andalow

frequencyelectricfieldof500Hzandamplitude1V/mmisappliedtotheITO‐

slides.Afterapproximately8hourslipidvesiclesofdiameterslargerthe20µmare

harvested.Theexternalsaltysolventisremovedbyrepeatedlywashingwithaniso‐

osmoticaqueousglucosesolutionandgentlecentrifugationatlowrotation

frequencies.ThisprocedureprovidesthedielectriccontrastnecessaryforDEP

actuationandstillensurestheintegrityofthevesiclecontainers.

4.2.3Dielectrophoresis(DEP)ofVesiclesSuspendedinWater

ThehybridchipusespositiveDEPtotrapandmovecellsandvesiclessuspendedin

water.Anyobjectthathasacomplexpermittivitythatisdifferentthanthe

surroundingmediumcanbecontrolledusingDEP,(Jones,1995)asisdescribedin

Page 76: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

62

detailinChapter2.ByshiftingthelocationoftheDEPChip’spixelsthatareturned

on,thelocationoflocalelectricfieldmaximaaremovedaroundthearray.In

Fig.3.1aquasi‐staticfiniteelementsimulations(Ansoft:Maxwell3D)areshownof

theelectricfieldmagnitude

E 5µmabovethechip’ssurface.Twopixelsaresetto

5Vandtherestaresetto0V.Avesiclewitharadiusa=5µmisshownbeing

pulledtowardsthemaximumofthefield.Thesimulationsshowthatavesicle

experiencesamaximumelectricfieldstrength

E ≈ 0.5 V /µm .

Thedielectrophoreticresponseofvesiclescanbecontrolledbysettingthesalinityof

thesolutioninsidethevesicleσintrelativetotheconductivityofthesolutiononthe

outsideofthevesicleσsol,asisdescribedinfulldetailinChapter2.InFig.2.3ba

plotoftheClausius‐Mosotti(CM)factor,ameasureofthedifferenceinpermittivity

oftheobjectandthemedium,isshownversustheinteriorconductivityofan

a=5µmvesiclesuspendedinadeionizedsolutionwithaconductivityof

σsol=10‐3S/m.Iftheconductivityinsidethevesicleisgreaterthanσint>10‐2S/m

thentheCMfactorispositive,andthevesiclecanbetrappedandpositionedwith

positiveDEP.

Thedielectrophoreticresponseofcellsandvesiclesisafunctionofthefrequencyof

theappliedelectricfield.InFig.2.3caplotofCMversusfrequencyisshownfora

vesiclewithinteriorconductivityσint=50mS/m.Belowacut‐offfrequencyof

ωd=50MHzandaboveacut‐offfrequencyofωmem=2kHz,theCMfactorispositive

andinvariabletochangesinfrequency.Itisinthisfrequencybandthatpositive

DEPisusedinthischapter.Thehighfrequencycut‐offissetbythedielectric

Page 77: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

63

relaxationtimeτd=εp/σintofthesolutioninsidethevesicle.Thelowfrequencycut‐

offissetbythechargingtimeofthemembraneofthevesicle

τmem=aCmem(1/σint+1/σsol).

4.2.4ElectroporationandElectrofusion

Voltagepulsescreatedbythechipcanbeusedtoelectroporateandelectrofuse

vesiclesandcells,asisexplainedinfulldetailinChapter2.Electroporation

generallyoccurswhenthereisatransmembranevoltageVTM>1V.(Sugaretal.,

1987)ThemaximumvoltageinducedacrossamembraneVTMofasphericalvesicle

orcellinanexternalelectricfieldisgivenbyEq.2.8.Thecharacteristiccharging

timeofthemembraneisgivenbytheexpression:(Jones,1995)

τmem = aCmem (1σ int

+1

2σ sol

) 4.1

whereCmem=10‐2F/m2isthespecificmembranecapacitanceofaunilamellar

vesicle.(Jones,1995)Foravesiclewitharadiusa=5µmandinternalconductivity

σint=0.1S/minasolutionwithconductivityσsol=10‐2S/m,thereisamembrane

chargingtimeτmem=20ms.Electricfieldswithfrequencies1/ω<τmemareusedfor

DEP.Atthef=1MHzfrequenciesusedforDEPthetransmembranevoltage

VTM≈10mVandnodamageiscausedtothemembrane.(Albertsetal.,2007and

Grosseetal.,1992)Electricfieldscreatedwithvoltagepulseswithapulsewidth

τ>τmemcreatetransmembranevoltagesVTM~1Vandareusedtoelectroporateand

electrofusevesiclesandcells.

Page 78: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

64

Theabilitytoselectivelyelectroporatevesiclesenablesthechiptolocallyrelease

substancesintothesolution.Thislocalreleaseofsubstancescreatesagradientin

theconcentrationasafunctionofthedistancerfromthecenterofthevesicle.

Consideravesiclewitharadiusafilledwithaconcentrationn=nsofasubstance

suspendedinasolutionthathasnoneofthesubstancen=0.Thegradientinthe

concentrationiscalculatedbysolvingthediffusionequationinspherical

coordinatesaroundthevesiclewiththeboundaryconditionsthattheconcentration

n=nsadistancer=afromthecenterofthevesicleandn=0atadistancer=∞.

(DillandBromberg,2003)Thesolutiontothediffusionequationisplottedfora

vesiclewithradiusa=5µminFig.4.2aandisgivenbytheexpression:

n(r) =nSar . 4.2

Whenacellorvesicleiselectroporated,suchthatareactionoccursatthe

membrane’ssurface,aconcentrationgradientisalsocreated.Considera

reactionthatoccursatthemembranesurfacewithareagentinthesolutionthat

hasabulkconcentrationn∞.Inthiscase,theconcentrationatthesurface

disappearsbecauseitisconsumedbythereaction,andtheconcentrationatan

infinitedistanceawayisthatofthebulkconcentration.Theboundaryconditions

arethenthatn=n∞atadistancer=∞formthecenterofthevesiclesandn=0at

adistancer=a.Thesolutiontothediffusionequationisplottedforavesicle

withradiusa=5µminFig.4.2bandisgivenbytheexpression:

n(r) = n∞(1−ar) 4.3

Page 79: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

65

Theconcentrationgradientsdependonlyontheconcentrationofthesubstances,

theradiusofthevesicle,andthedistancefromthevesicle.Theabilitytocreate

well‐controlledconcentrationgradientsinthesolutionisatoolthatcanbeusedfor

deliveringreagentsandsamplestocellsortootherreagentsforchemistryand

biologyexperimentsonthechip.

Thevoltagepulsesusedforelectroporationcanbetime‐multiplexedwiththe

voltagesusedforDEP.Thisispossiblebecauseduringthedurationofthems

voltagepulses,duringwhichtheDEPforceisturnedoff,cellsorvesiclesdonot

diffuseasubstantialamount.Aparticlesuspendedinasolutiontakesτdiff=L2/16D

todiffusethedistanceofhalfofapixellengthL/2,asisexplainedinChapter3.The

timethatittakesforaparticlewitharadiusa=1μmsuspendedinwatertodiffuse

L/2=5μmisτdiff≈1sec,whichismuchlongerthanthetimethattheDEPtrapis

turnedoff.Thediffusiontimeτdiffisevenlargerforbiggerparticles.

Electricfieldpulsescanalsobeusedtriggerthefusionofvesicles,asisexplained

infulldetailinChapter2.Themodelforelectrofusionisamultistepprocess.

TwovesiclesarebroughtintotightcontactwithDEP.Electricfieldpulsesare

thenusedtoinduceatransmembranevoltageacrossthecontactareaofthetwo

vesicles.Thetransmembranevoltagecauseselectroporationonthecontact‐area,

andiftheporedensityislargeenoughthentheporesnucleateandthevesicles

fuse.(Sugaretal.,1987)Onthechip,voltagesatMHzfrequencyareusedtohold

thevesiclesincontactwithDEPwhiletime‐multiplexedelectricfieldpulsesare

usedtotriggerthefusion.

Page 80: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

66

Figure4.2(a)Aplotoftheconcentrationgradientcreatedaroundavesicle,shownastheorangecircle,thatisreleasingasubstanceatitssurface,(b)aplotoftheconcentrationgradientcreatedaroundavesicleorcell,shownasthepurplecircle,thatisreactingwithasubstanceinthesolutionatitssurface.

Page 81: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

67

4.3Demonstrations

4.3.1TrappingandMoving

InthissectionitisshownhowthehybridIC/microfluidicchipscantrapandmove

individualvesiclesandcells,bothsuspendedinwater,alongarbitrarypaths.

Figure4.3ashowshowindividualvesiclescanbeindependentlytrappedandmoved

alongindependentpaths.Figure4.3a(i)showsthreevesiclesthatare

independentlytrappedonthechipwithDEP.InFig.4.3a(i‐iii)thevesicleontheleft

isbroughtbetweenthetwoothervesiclesat70µm/sec.InFig4.3a(iv‐vi)the

vesicleonthebottomismovedupwards,positioningthevesiclesintoatriangle.

ThisdemonstrationshowsthattheDEPChipcanindependentlycontrolseveral

objectsatonce,enablingcomplexexperimentstobeperformedinparallelonthe

hybridchip.

Figure4.3bshowshowthehybridIC/microfluidicchipcansimultaneouslytrap

andmovemanyvesicles.InFig.4.3bhundredsofvesiclesaresimultaneously

positionedintoan‘H’,demonstratingthatthechipcancontrolthepositionofmany

vesiclesatonce.Toaccomplishthis,manyDEPpixelsareturned‘on’tospell‘H’and

thevesiclessedimentontotheinterfaceofthepixelsthatareturned‘on’andthose

thatareturned‘off’.ThisdemonstrationshowsthattheDEPChipiscapableof

simultaneouslycontrollingmanyindividualobjects.

Figure4.3cshowshowthehybridIC/microfluidicchipcansimultaneouslytrapand

movebothvesiclesandlivingcellsthataresuspendedinwater.Yeastcellsare

Page 82: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

68

culturedovernightinYPDbroth(BDInc.)at37°C,andthenresuspendedina

250mMglucosesolution.Figure4.3cshowsavesicleandabuddingyeastcell

trappedonthechip.Thefluorescenceimageoftherhodaminefilledvesicleis

superimposedontothebrightfieldimageoftheyeastcellsandiscoloredred.In

Fig.4.3c(ii)thevesicleismovedupwardswhilethecellistrappedinplace.In

Fig.4.3c(iii)theyeastcellismovedtotheleftwhilethevesicleisheldinplace.In

Fig.4.3c(iv)theyeastcellismoveddownwardsasthevesicleissimultaneously

movedtotheleft.ThisdemonstrationshowsthattheDEPChipcansimultaneously

controlcellsandsmallvolumesoffluidheldinvesicles,bothsuspendedinwater.

Thisenablesbiologicalandchemicalexperimentstobeperformedonthehybrid

chipthatusebothcellsandsmallcompartmentalizedvolumesoffluid.

Page 83: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

69

Figure4.3(a)TimesequenceofvesiclespositionedwithDEP.Pixelsareturnedoninsequencetotrapandmovethevesicles.Thegreenlineshowsthedirectionthatthechipmovesthevesicle.Themaximumspeedofavesicleis70μm/sec.Eachframeisseparatedby~1sec,(b)amicrographofhundredsofvesiclessimultaneouslypositionedtospellan‘H,’(c)timesequenceofvesiclesandcellssimultaneouslytrappedandmovedonthechip.Thefluorescenceimageofthevesiclesissuperimposedontothebrightfieldimageofthecellsandiscoloredred.Thegreenlineshowsthedirectionthatthechipismovingthevesiclesorcells.Eachframeisseparatedby~1sec.

Page 84: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

70

4.3.2TriggeredReleaseoftheContentsofVesicles

InthissectionitisdemonstratedthatthehybridIC/microfluidicchipscan

controllablyreleasethecontentsofvesicles.Figure4.4ashowshowthehybrid

IC/microfluidicchipcancontrollablyreleasethecontentsofavesicleintothe

surroundingsolutionwhileholdingitinplacewithaDEPtrap.Figure4.4ashowsa

vesiclefilledwith4mMNaClsolutionsuspendedinaconcentratedfluorescently

self‐quenchedfluorosceinsolution.A1mselectricfieldpulse,thatistime

multiplexedwiththeDEPfiel,andrepeatsevery5ms,isturnedonattimet=0sec.

Thevesicleiselectroporatedandtheconcentratedfluorosceinmixeswiththe

solutioninthevesiclecausingthevesicletofluoresce.AfterΔt=8secthepulse

sequenceisturnedoffandthevesicleisheldinaDEPtrapforΔt=2minutes.The

vesiclemaintainsitsfluorescence,demonstratingthatwhenthepulsesareturned

offthevesiclehealsitselfandstopsmixingwiththesolution.AfterΔt=2minutes

thepulsesequenceisturnedonuntiltheconcentrationoffluorosceininsidethe

vesiclematchesthatofthesolutionandthevesicleceasestofluoresce.This

demonstrationshowsthatthechipcanuseelectroporationtocontrollablymixthe

contentsofvesicleswiththesolution.Electroporationofvesiclescanbeusedto

formchemicalgradientsinthesolutionsurroundingthevesicleortoallow

substancesinthesolutiontomixwiththecontentsofthevesicle.

4.3.3ElectroporationofCells

InthissectionitisdemonstratedhowthehybridIC/microfluidicchipscan

permeabilizeacell’smembrane,allowingsubstancesinthesolutiontoenterthecell.

Page 85: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

71

Figure4.4bshowsanindividualyeastcellheldinplacewithDEPandselectively

electroporated,allowingsubstancesinthesolutiontoenterthecell.Yeastcellsare

culturedovernightinYPDbroth(BDInc.)at37°Candresuspendedin250mM

glucosesolution.A0.4%solutionoftheviabilitystain,TrypanBlue,isaddedtothe

suspendedcells.WhenTrypanBlueentersacellitstainsitblue.InFig.4.4bayeast

cellisheldinplacewithDEP.Becausethecellishealthy,TrypanBluedoesnot

enterthecellandthecelldoesnotturnblue.A1mspulsethatrepeatsevery5ms,

thatistimemultiplexedwiththeDEPfield,isturnedonatt=0.AfterΔt=40sec

thecellisobservedtoturndarkblue,asisshowninagrayscaleimageinFig.4.4b.

Theabilitytoelectroporatecellsonthechipenablessubstancesinthesolutiontobe

controllablyintroducedintoselectedcells.Thisfunctionalitycouldbeusedto

introducesubstancessuchasmolecularprobes,DNA,ordrugsintoselectcells.

4.3.4TriggeredFusionofVesicles

InthissectionitisshownhowthehybridIC/microfluidicchipcanfusetwovesicles

togetherandmixtheircontents.Figure4.4cshowstwovesiclesthatarebrought

intocontactwithDEPandthenfusedtogetherwithelectrofusion.InFig.4.4c(i)

twovesiclesarebroughtintocontactwithDEP.InFig.4.4c(ii)thevesiclesare

broughtintotightcontactwithDEP,creatingalargecontactareabetweenthetwo

vesicles.InFig.4.4c(iii)a1mspulsethatrepeatsitselfevery5ms,multiplexed

withtheDEPfield,isturnedonfor0.5seccausingthetwovesiclestofuseintoone.

ThevesicleisstretchedintotheshapeoftheDEPtrap.InFig.4.4c(iv)thetrapis

turnedoffandthefusedvesiclerelaxesintoasphericalshape.

Page 86: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

72

ThefusionoftwovesiclesallowspLvolumesofsamplestobecontrollablymixed.

Thevoltagepulsesusedtofusethevesiclesdonotleadtoanappreciablemixingof

thecontentsofthevesiclewiththesolution.Thevesiclesareobservedtofuseafter

0.5secofthepulsesequence.IntheexperimentshowninFig.4.4a,ittakes~4sec

forasimilarvesicletohaveappreciablemixingwiththeoutsidesolutionusingthe

samepulsesequence.Thereforeinthetimethatittakestofusethevesiclesthere

shouldnotbeappreciablemixingofthevesicleswiththesolution.Theabilityto

selectivelyfusetwovesiclestogetherenablessmallisolatedvolumesofsamplesto

bemixedonthechip,animportantfunctionforperformingchemistryandbiology

experiments.

Page 87: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

73

Figure.4.4(a)TimesequenceofavesicleheldinplacewithDEPfieldswhileitscontentsarereleasedintothesolutionwithelectroporation.Thevesicleissuspendedinaconcentratedfluorosceinsolution.Theelectroporationcausethevesicletomixitscontentswiththesolution,makingthevesicletofluoresce.Inthefirstthreeframes,eachseparatedby4seconds,thevesicleiselectroporated.ThevesicleisheldinaDEPtrapfor2minutes.Inthenextthreeframes,separatedby4seconds,thevesicleiselectroporateduntilthecontentsofthevesiclefullymixeswiththesolutionandthevesiclestopsfluorescing,(b)acellisheldinplacewithDEPandelectroplatedinasolutioncontainingTrypanBluestain.Theleftandrightframeshowthecellbeforeelectroporationandafter40sec.ofelectroporation,respectively,(c)twovesiclesarebroughtintocontactwithDEPandthenfusedtogetherwithelectrofusion.Theschematiconthebottomshowwhichpixelsareturnedon.AgreenpixelindicatesapixelthatisturnedonforDEPandaredpixelindicatesapixelthatisturnedonwithvoltagepulsesmultiplexedwiththeMHzfrequencyvoltage.

Page 88: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

74

4.3.5DeformingVesicleswithDielectrophoresis

InthissectionitisshownhowthehybridIC/microfluidicchipcancontrollably

deformobjects.Figure4.5showshowchangingtheshapeoftheDEPtrapscan

deformvesicles.SeveralDEPpixelsareturnedonunderneathavesicle,causingthe

vesicletobedeformedintotheshapeoftheDEPtrap.TheleftcolumnofFig.4.5

showsamapofwhichpixelsonthechipareturnedon.Themiddlecolumnshows

simulations(Ansoft:Maxwell)oftheelectricfieldgenerated5µmabovethechip’s

surface.TherightcolumnshowsmicrographsofvesiclesdeformedintheDEPtrap.

Thesamevesicleisusedforeachdemonstration.InFig.4.5athevesicleisheldina

simpletrapof4pixelsandthevesicle’scross‐sectioniscircular.InFig.4.5bthetrap

isspreadintotwodisplacedbars,andthevesicleispulledintoanoblongshape.

MorecomplicatedpixelpatternsleadtoshapessuchasdiamondsinFig.4.5c,

hexagonsinFig.4.5d,andsquaresinFig.4.5e.Theabilitytodeformvesiclesusing

DEPtrapsisanimportantproof‐of‐conceptforperformingrheologyandfor

controllingthemechanicalenvironmentofobjectsonthechip.(Riskeetal.,2006)

Thistechniquecouldbeespeciallyusefulinfuturechips,thathavesmallerpixel

sizes,forcontrollingthemechanicalenvironmentoflivingcells.(Wangetal.,1994)

Page 89: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

75

Figure4.5VesiclesaredeformedintoavarietyofshapesbychangingtheshapeoftheDEPtrap.Theschematicsontheleftshowwhichpixelsareturnedon.Redandwhitepixelsindicatepixelsthatareturnedonoroff,respectively.Thecentergraphicsareplotsofthesimulatedelectricfieldstrength

E 5µmabovethechip’s

surface.Ontherightaremicrographsofthedeformedvesicles.

Page 90: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

76

4.4Discussion

Theplatformthatispresentedinthischaptertakesadvantageofthecapabilitiesof

ICsandthepropertiesofunilamellarvesiclestomakeaversatileplatformfor

biologicalandchemicalexperimentsonachip.Thischapterhasdemonstrateda

platformthatcantrap,move,deform,fuse,andlocallyreleasethecontentsofpL

volumevesiclessuspendedinwater.Onthesamechip,atthesametimeandinthe

samesolution,theplatformcantrap,move,andpermeabilizelivingcellssuspended

inwater.Thisplatformprovidesanimportantstepforwardforperforming

biologicalandchemicalexperimentsonahybridIC/microfluidicchipby

demonstratingfunctionsthatareimportantbuildingblocksformorecomplextasks.

Tomovethislaboratory‐on‐a‐chipplatformfromthelaboratoryintoaportable,

inexpensivetoolforbiologicalandchemicaltesting,furtherfunctionalitymustbe

included.Forinstance,whiletheplatformcanperformcomplexoperationsonmany

vesiclesandcells,thesamplesthemselvesarepreparedonlaboratorybench

equipmentandthenpipettedontothechip.Integratingthehybridchipintoa

complexmicrofluidicnetwork,wheresamplepreparationcouldbeperformed,could

solvethisproblem.Anotherhurdleforthehybridchipisthatitisconnectedto

large,laboratorysizedequipment,suchasafluorescencemicroscopeandadesktop

computer.Furtherintegrationoftasksintothehybridchipssuchaslocal

temperaturecontrol,(Issadoreetal.,2009)NMRsensors,(Leeetal.,2008)

measurementofeletrogeniccells,(DeBusschereetal.,2001)andintegrated

Page 91: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

77

optics(Cuietal.,2008)wouldopenupmoreapplicationsandleadtoamore

versatileandself‐sufficientplatform.(Leeetal.,2007)

Page 92: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

78

Chapter5.HybridMagneticand

DielectrophoreticIC/MicrofluidicChip

5.1Overview

Thischapterdescribesthedevelopmentofahybridintegratedcircuit(IC)/

microfluidicchipthatusesbothdielectrophoresis(DEP)andmagneticforcesto

controllivingcellsandsmallvolumesoffluid.Thechipthatispresentediscalled

theHighVoltageDielectrophoresis/MagneticChip(HV‐DEPChip,Fabutron2.0).

ThehybridchipisfabricatedusingaspecialhighvoltageICprocessthatenables

DEPforcesthatareroughly100xasstrongasthosedemonstratedontheDEPChip

inChapter3.AmicrographoftheHV‐DEP/MagneticChipisshowninFig.5.1a.

ThecombinationofbothDEPandmagneticforcesonthesamechipexpandsthe

capabilitiesofhybridIC/microfluidictechnology,asisdemonstratedinthis

chapter.

TheHV‐DEP/MagneticChipissimilartotheDEPChipdescribedinChapter3,but

includesadditionalfunctionality.TheICincludesanarrayofpixelsthatcaneachbe

addressedwitharadiofrequency(RF)voltagetolocallyapplyDEPforces,amatrix

ofwiresthatrunsunderneaththeDEPpixelarraytoapplylocalmagneticforces,

andintegratedsensorstolocallyreportthetemperatureofthechip.Thelargearray

ofDEPpixels,magneticwires,andtemperaturesensorsarecontrolledusingstatic

randomaccessmemory(SRAM)andlogicthatarebuiltintotheIC.Figure5.1a

showsamicrographoftheIC.

Page 93: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

79

Previoushybridchipshavebeendevelopedtocontrollivingcellsanddropsoffluid

usingelectricormagneticfields.Chipshavebeendevelopedtosimultaneously

controlthepositionofindividualpLdropsoffluid(Huntetal.,2008)andlivingcells

(Manaresietal.,2003andHuntetal.,2008)usingdielectrophoresis(DEP)for

biologicalandchemicalexperimentsonachipasisshowninChapter4.Chipshave

alsobeendevelopedtocreatelocal,programmablemagneticfieldsusingmatrixesof

wires(Leeetal.,2004)andarraysofcoils(Leeetal.,2006)tocontrolcellsand

biologicalobjectsimplantedwithmagneticnanoparticles.Magneticactuationof

nanoparticleshasbeenusedtoapplyprecisemechanicalstressesoncell

membranes,(Berryetal.,2003)manipulateandactivateindividualmechanically

sensitiveionchannelsandsurfacereceptorsonspecificcells,(Dobsonetal.,2008)

andtotrapandsortcellsandothermagneticallytaggedobjects.(Berryetal.,2003)

ThischapterdemonstratestheHV‐DEP/MagneticChipuseitsDEPpixelarrayto

positionpLvolumesoffluidencapsulatedinlipidvesiclesinSection5.3.1,useits

magneticmatrixtopositionmagneticbeadsinSection5.3.2,anduseitsDEPpixel

arrayandmagneticmatrixtogethertodeformmicroscopicobjectsimplantedwith

magneticnanoparticlesinSection5.3.3.Unilamellarvesiclesareusedasbiologically

inspiredpLcontainersforfluidsthatareimpermeableandstableforawiderangeof

salinity,pH,andotherenvironmentalconditions,asisdescribedinChapter4.(Chiu

etal.,1999andTressetetal.,2007)

Page 94: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

80

5.2DescriptionoftheChip5.2.1FieldSimulations

Thechipcreateselectricfieldsaboveitssurfacewitha60x61pixelarrayof

30x38µm2electrodesthatcanbeindividuallyaddressedwith50Vpeak‐to‐peak

voltagesatfrequenciesfromDCto10MHz.Thepixelsareseparatedfromone

anotherby0.8µm.InFig.5.1btheresultsofquasi‐staticfiniteelementsimulations

(Maxwell3D,Ansoft)oftheelectricfieldareshown.Twopixelsareheldat50V

relativetothesurroundingpixels.Theelectricfieldisplotted5µmabovethechip’s

surface.Themaximummagnitudeoftheelectricfieldis

E = 3 V /µm .

Thechipuseselectricfieldstotrapandmovedielectricobjects,suchascellsorpL

volumesoffluid,withDEP.(Manaresietal.,2003andHuntetal.,2008)Aspherical

objectinanelectricfield

E willexperienceaforcegivenbyEq.2.3(Jonesetal.,

1995)Foranobjectwitharadiusa=5µmwiththedielectricpropertiesofaliving

cellorvesiclesuspendedindeionizedglucosesolution,a

F ≈1 nN forcepullsthe

objecttowardstheactivatedpixelsfromalocationonepixel‐lengthaway.Avesicle

filledwithsalinesolutionhasdielectricpropertiessimilartothatofalivingcellin

electricfieldsatMHzfrequencies,andthusbehavessimilarlyintheDEPfield.(Chiu

etal.,1999)

BeneaththeDEPpixelsisamagneticgridthatconsistsof60wiresthatrun

horizontallyand60wiresthatrunverticallyacrossthechip,whichareusedtoform

amagneticfieldabovetheIC’ssurface.Thewirescanbeindividuallysourcedwith

±120mAor0mA.Fig.5.1cshowstheresultsofquasi‐staticsimulations5µmabove

Page 95: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

81

thechip’ssurface.Twowiresthatruninperpendiculardirectionsacrossthechip

aredrivenwith120mAandallotherwiresarenotdrivenwithcurrent.The

maximummagnitudeofthemagneticfieldis

B =6mT.

Thechipusesmagneticfieldstotrapandmoveobjectswithmagneticsusceptibility

differentthanthesurroundingmedium.Asphericalobjectinamagneticfield

B

willexperienceaforcegivenbyEq.2.12.Onthechipanironoxidebeadwitha

radiusa=1µm(Bioclone:FF102)willexperiencea10pNtowardsthemaximumof

themagneticfield,whichexistswherethetwoactivatedwiresintersect.Objectscan

betrappedandmovedalongarbitrarypathsbychangingthelocationwherethe

activatedwirescross.Currentcanbedriventhroughseveralwiresinthearray

simultaneouslytocreatemorethanonefieldmaximum,allowingthechiptotrap

andmovemanymagneticobjectsindependently.(Leeetal.,2004)

Page 96: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

82

Figure5.1.(a)Amicrographoftheintegratedcircuit,(b)themagnitudeoftheelectricfield|

E |,fromaquasi‐staticelectricfieldsimulation,plotted5µmabove

thechipsurface.Thepixelsareshownasbluetilesthatcoverthesurfaceofthechip.Twopixelsareheldat50Vrelativetothesurroundingpixels,(c)themagnitudeofthemagneticfield|

B |,fromsimulation,plotted5µmabovethechip’ssurface.The

wiresareshownasbluestripesrunningacrossthesurfaceofthechip.Twowiresaresourcedwith120mAandallsurroundingwiressetto0mA.

Page 97: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

83

5.2.2ChipArchitectureThechip’slargearrayof60x61(3,660)DEPpixels,60horizontaland60

vertical(120)magneticwires,and16temperaturesensorsareaddressedwithlogic

andmemorybuiltintotheIC,suchthatonly6datalines(notincludingtwoclocks

andthe4controllines)arerequiredtoupdatetheentirechip.Figure5.2ashowsa

micrographofasectionofthechipthatshowstheDEPpixelarray,thecurrent

driversforthemagneticmatrix,andthedigitallogicthatisusedtoupdateandread

fromthearray.ThestateofthechipisstoredinanintegratedSRAMmemorythat

controlstheDEPpixels,magneticwires,andthetemperaturesensors.

TheSRAMmemoryisorganizedinto32wordsthathave128bits.ThereisanSRAM

memoryelementunderneatheachDEPpixel,temperaturesensor,andcurrent

driverforthemagneticwires.Thememoryarrayisupdatedbyselectingaword‐line

andthenloadingitsstateusinga128bitshiftregister.Theshiftregisterusesatwo‐

phaseclockingscheme.Wordselectionisdonewithastandard5bitrowdecoder.

TheentireSRAMarraycanbeupdatedatarateof~50Hzandindividualwordsin

theSRAMcanbeupdatedatarateof~1.5kHz.Thelogic,memory,andsurrounding

electronicsthatareusedtoupdatethechiparesimilartothatusedfortheDEPchip

describedinChapter3.

AschematicforthecircuitunderneatheachDEPpixelisshowninFig.5.2b.The

stateoftheSRAMmemoryelementcontrolsthe2:1multiplexer(MUX)thatdirects

eithertheRFsignaloritslogicalinversetothevoltagedrivingcircuitthatconnects

tothepixel.AschematicforeachmagneticlineisshowninFig.5.2c.Themagnetic

Page 98: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

84

lineshavedrivingcircuitryonbothends.Bysettingthememoryelementsoneither

sideofthewireacurrentof±120mAor0mAflowsthroughthewire.Interspersed

throughoutthearrayare16distributedtemperaturesensorsthatcanbe

individuallyaddressedtoberoutedtoananalogvoltageoutput.

ThehybridchipisconstructedbybuildingasimplefluidcelldirectlyontopoftheIC

withasiliconegasket.Thefluidcellispreparedbycuttinga1.2mmholeoutof

Press‐to‐SealTM0.5mmthicksiliconesheetsfromInvitrogen(Invitrogen:p‐24744)

withahole‐punch.ThesiliconegasketisplacedontotheICunderastereoscope

withtweezers.A3x3mm2glasscoverslipsealsthefluidcell.Theintegrated

circuitwasdesignedatHarvardusingCadenceDesignSoftware(Cadence)and

fabricatedinacommercialfoundryonahighvoltage0.6µmprocess(X‐Fab–XC06

MIDOX).

TheexperimentalsetupsurroundingthehybridIC/microfluidicchipissimilarto

thatoftheDEPChipdescribedinChapter3.Thedevicesitsonachipcarrierona

customprintedcircuitboard(PCB)connectedtoacomputerthroughaPCI

card(NationalInstruments:PCI‐6254).Thepatternssenttothechiparecreated

usingaGUIwritteninMATLAB(TheMathWorks)andsenttothePCIcardwitha

customLabview(NationalInstruments)program.Thedevicesitsunderan

OlympusfluorescencemicroscopewithanOrca‐ER(Hammamatsu)digitalcamera

thatconnectstothecomputer.

Page 99: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

85

Figure5.2.(a)AmicrographofapartoftheintegratedcircuitshowingtheDEParray,themagneticcurrentdrivers,andthelogicandmemoryusedtoupdatetheSRAMarray,(b)aschematicofthecircuitryunderneatheachDEPpixel,showingtheSRAMmemoryelement,amultiplexer(MUX)thatdirectseithertheRFsignaloritslogicalinversetoavoltagedriverthatconnectstotheelectrode,(c)aschematicofthecircuitryforeachmagneticwireinthematrix,showingtheSRAMmemoryelements,andtheMUXsthatconnecttothecurrentdriverstodrivethewireswitheither±120mAor0mA.

Page 100: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

86

5.3Demonstrations

ThissectiondemonstratestheHV‐DEP/MagneticchipusingDEPtotrapandmove

dielectricobjects,magneticforcestotrapandmovemagneticallytaggedobjects,and

magneticandDEPforcesusedtogethertodeformobjectsimplantedwithmagnetic

nanoparticles.Section5.3.1showshowthehybridchipcanbeusedtotrapand

moveobjectsalongprogrammablepathswithDEP.Section5.3.2showshowobjects

thataretaggedwithmagneticbeadscanbetrappedandmovedalong

programmablepathsusingthemagneticmatrix.Section5.3.3demonstratesthe

utilityofhavingbothelectricandmagneticforcesonthesamechipbyholdinga

unilamellarvesicleembeddedwithironoxidenanoparticleinplacewithDEPand

controllablypullingathintetherfromthevesicle’smembraneusingthemagnetic

matrix.

Thevesiclesarepreparedwithliposomeelectroformationusingamodificationof

theAngelovaMethod,asisdescribedindetailinChapter4.(Angelovaetal.,1986)

Theunilamellarvesiclesareloadedwith4mMNaClandsuspendedinaglucose

solutionwithmatchedosmolarity,whichprovidescontrastinthecomplexdielectric

responsetofacilitateDEPforces.(Huntetal.,2008)Thevesicles’membranesare

stainedwithrhodaminesuchthatthevesiclesareeasilyobservableundera

fluorescencemicroscope.

5.3.1Dielectrophoresis: Trapping and Positioning Vesicles

ThissectiondemonstrateshowtheHV‐DEP/MagneticChipsimultaneouslyand

independentlycontrolsthepositionofobjectswithDEP.Figure5.3shows

Page 101: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

87

unilamellarvesiclesthataretrappedandmovedalongprogrammedpathsusingthe

DEPpixelarray.Figure5.3ashowstwovesiclesthatareindependentlytrappedon

thechipwithtwosetsofDEPpixels.InFig.5.3(a‐d)thevesiclesaremovedat

speedsupto80μm/secbysequentiallychangingthepixelsthatareturnedon.In

Fig.5.3athevesicleontherightisindependentlymoveddownwardswhilethe

vesicleontheleftisheldinplace.InFig.5.3bboththeleftandrightvesicleare

moveddownwardssimultaneously.InFig.5.3cthevesicleontheleftis

simultaneouslymovedtotherightwhilethevesicletotherightismovedtotheleft.

Thechiphas3,660pixelsandtheentirearraycanberefreshedat~50Hz,enabling

manyindividualvesiclestobecontrolledsimultaneously.Theabilitytotrapand

moveobjectswithDEPisausefultooltocontrolthepositionofpLvolumesoffluid

andlivingcellsthatarenottaggedormodified.

Page 102: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

88

Figure5.3AtimesequenceoftheDEPpositioningofvesicles.Theframes(a‐d)arefluorescenceimagesoftherhodaminestainedmembranesofthevesicles.TheDEPpixelsareturnedoninsequencetopositionthevesicles.Thedashedgreenlineshowsthedirectionthatthechipismovingthevesicles,theyellowsquareshowstheDEPpixelthatisactivated.Themaximumspeedofavesicleis80μm/sec.Eachframeisseparatedbyroughly1sec.

Page 103: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

89

5.3.2Magnetophoresis: Trapping and Positioning Magnetic Beads

ThissectiondemonstrateshowtheHV‐DEP/MagneticChipcancontroltheposition

ofobjectswithmagnetophoresis.Theabilitytotrapandmovemagneticobjects

alongprogrammedpathsisausefultooltocontrolthepositionofsamplesthat

cannotbetrappedwithDEPforces,butwhichcanbetaggedwithmagnetic

particles.(Leeetal.,2007)Figure5.4showsthemagneticmatrixtrappingand

movinganironoxidebeadwitharadiusa=1µm(Bioclone:FF102)alongan

arbitrarypath.InFig.5.4atwoperpindicularwiresaredrivenwith120mA,such

thatthebeadistrappedatthefieldmaximumthatoccursatthewire’sintersection.

InFig.5.4(b‐d)differentintersectingwiresareturnedontomovethebeadalonga

programmedpathatspeedsof2µm/s.Themagneticforceisnotaslocalizedasthe

DEPforce.Alongthelengthofeachintersectingwire,particlesareattractedtothe

activatedwire.

Page 104: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

90

Figure5.4Timesequenceofmagnetictrappingandpositioningofamagneticbead.Magneticwiresinthematrixareturnedoninsequencetopositionthebead.Thepositionoftheparticleismarkedwithagreencircle.Thedirectionthatthebeadisbeingpulledismarkedwithagreenarrow.Theredlinesshowswhichmagneticwiresinthematrixhavebeenturnedon,theactualwiresareburiedundertheDEPpixelsandarenotvisible.Eachframe(a‐d)isseparatedbyroughly2sec.

Page 105: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

91

5.3.3DielectrophoresisandMagnetophoresis:DeformingVesicles

ThissectiondemonstrateshowtheHV‐DEP/MagneticChipcanusemagneticand

DEPforcestogether.Figure5.5showthechipholdingavesicle,thatisimplanted

withironoxidenanoparticles,inplacewithDEPbodyforceswhilepullingathin

tetherfromthevesicle’smembranebyapplyingpointforcesonthemagnetic

nanoparticleswithmagnetophoresis.ThisdemonsrationshowsthatDEPand

Magnetophoresiscanbeusedtogethertoapplypointforceswithnmresolutionto

micrometersizedobjects.(Waughetal.,1992)InFig.5.5aavesicleispositioned

withDEPpixels.TwomagneticwiresthatcrossneartheDEPpixelaresourcedwith

120mAandtheironoxidenanoparticlesinsidethevesiclearepulledtowardsthe

magneticfieldmaximum.Thevesicle’smembraneislocallydeformedintoathin

tether,asvesicleshavebeenshowntodointhepresenceofapointforce.(Waughet

al.,1992)IntheproceedingframesFig.5.5(b‐f)themagneticfieldisturnedoffand

tensioninthemembranepullsthetetherbackintothevesicle.(Waughetal.,1992)

TheabilitytolocallydeformmicroscopicobjectsusingDEPasabodyforceand

magnetophoresisasapointforceisausefultooltoapplyprecisemechanical

stressesonvesiclesandlivingcells.(Berryetal.,2003,Dobsonetal.,2008,and

Tressetetal.,2007)

Page 106: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

92

Figure5.5AvesicleisheldinplacewithaDEPpixelwhileatetherispulledusingthemagneticmatrix.TheyellowsquareshowstheDEPpixelthatisactivated,andtheredlinesshowthemagneticwiresthatareturnedon.Thevesicleisimplantedwithironoxidenanoparticles.Afterthefirstframe(a)themagneticfieldisturnedoffandthetetherispulledbackintothevesicle.Eachframe(a‐f)isseparatedby0.2seconds.

Page 107: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

93

5.4Discussion

HybridIC/microfluidicchipsprovideaversatileplatformtocontrolsmallvolumes

offluidandlivingcells.Thecombinationofbothmagnetic(Leeetal.,2004andLee

etal.,2007)andDEPforces(Manaresietal.,2003andHuntetal.,2008)ontoa

singlechipfurtherexpandsthecapabilitiesandgeneralityoftheplatform.

Dielectrophoresiscanbeusedtotrapandpositionuntaggedlivingcellsanddropsof

fluidandmagneticforcescanbeusedtotrapandpositionobjectstaggedwith

magneticnanoparticles.Dielectrophoresisandmagnetophoresiscanbeused

togethertoapplyprecisenm‐resolutionpointforcestomicrometer‐sizedobjects.

Magneticactuationofnanoparticlesembeddedincellsorvesicleshasmanyexciting

scientificapplications.Thetechniquedemonstratedinthischapter,pullingathin

tetherfromaunilamellarvesicleandobservingthevesiclepullthetetherbackinto

itself,canbeusedasatooltostudythecomplexmechanicalpropertiesoflipid

bilayers.(Waughetal.,1992)Anumberofexcitingapplicationsexistfor

magneticallyactuatingcellstaggedwithmagneticnanoparticles,suchasapplying

precisemechanicalstressesoncellmembranes(Berryetal.,2003)ormanipulating

andactivatingindividualionchannelsandsurfacereceptorsonspecificcells.

(Dobsonetal.,2008)

Thetechniquesdemonstratedinthischaptercanbecombinedwiththe‘laboratory‐

on‐a‐chip’functionsdemonstratedinChapter4,tocreateageneral‐purpose

platformforbiologyandchemistryexperimentsonindividuallivingcells.The

techniquesdemonstratedinChapter4canbeusedtomixsmallvolumesofreagents

Page 108: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

94

andsamplestogetherandtocontrolthechemicalenvironmentofindividualcells.

Themagneticactuationofnanoparticles,demonstratedinthischapter,canbeused

tocontrolcellsembeddedwithmagneticnanoparticlestoactivateordeactivate

specificsurfacereceptorsorionchannels.Thehybridchipscansimultaneously

performmanyoftheseexperimentsinparallel,allowingastatisticalnumberof

independentlycontrolledsingle‐cellexperimentstobecarriedout.

Page 109: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

95

Chapter6.MicrowaveDielectricHeatingof

DropsinMicrofluidicDevices

6.1Overview

Inthischapteratechniqueispresentedtolocallyandrapidlyheatdropsofwater

withmicrowavedielectricheating.Thistechniqueaddsakeyfunctionalitytothe

listoffunctionsthataredemonstratedinChapters3,4,and5,theabilitytocontrol

temperature.Waterabsorbsmicrowavepowermoreefficientlythanpolymers,

glass,silicon,oroils,duetoitspermanentmoleculardipolemomentthathasalarge

dielectriclossatGHzfrequencies.Thisselectiveabsorptionofmicrowavepowerby

waterallowsthermalenergytobedirectlyinsertedintosmallvolumesoffluidina

microfluidicdevicewithoutsignificantlyheatingthesurroundings.Therelevant

heatcapacityofsuchasystemisthatofasinglethermallyisolatedpicoliter‐scale

dropofwater,enablingveryfastthermalcycling.

Inthischaptermicrowavedielectricheatingisdemonstratedinamicrofluidic

devicethatintegratesaflow‐focusingdropmaker,dropsplitters,andmetal

electrodestolocallydelivermicrowavepowerfromaninexpensive,commercially

available3.0GHzsourceandamplifier.Thetemperaturechangeofthedropsis

measuredbyobservingthetemperaturedependentfluorescenceintensityof

cadmiumselenidenanocrystalssuspendedinthewaterdrops.Characteristic

heatingtimesaredemonstratedthatareasshortas15mstosteady‐state

temperaturechangesaslargeas30°Cabovethebasetemperatureofthe

Page 110: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

96

microfluidicdevice.Manycommonbiologicalandchemicalapplicationsrequire

rapidandlocalcontroloftemperatureandcanbenefitfromthisnewtechnique.

Microwavedielectricheatingiswellsuitedtobeintegratedwiththehybrid

integratedcircuit(IC)/microfluidicchipsdescribedinChapters3,4,and5.Using

modernICtechnologyanddesigningthecircuitswithappropriateradiofrequency

designprincipals,pixelscanbedrivenwithGHzfrequencyvoltages.Ahybrid

IC/microfluidicchipwithelectrodesthatcanbedrivenwithvoltagesatGHz

frequencies,couldindividuallycontrolthetemperatureofthermallyisolated,small

volumesoffluidusingthetechniqueoutlinedinthischapter.

Agrowinglibraryofelementsformicrofluidicchipshavebeendevelopedinrecent

yearsfortaskssuchasthemixingofreagents,detectingandcountingcells,sorting

cells,geneticanalysis,andproteindetection.(Whitesidesetal.,2001,Stoneetal.,

2004,Tabelingetal.,2005,Yageretal.,2006,Martinezetal.,2008,Leeetal.,2007,

Huntetal.,2008,Maltezosetal.,2005)Thereisonefunction,however,thatis

crucialtomanyapplicationsandwhichhasremainedachallenge:thelocalcontrol

oftemperature.Thelargesurfaceareatovolumeratiosfoundinmicrometer‐scale

channelsandthecloseproximityofmicrofluidicelementsmaketemperature

controlinsuchsystemsauniquechallenge.(Maltezosetal.,2005,Leeetal.,2005)

Muchworkhasbeendoneinthelastdecadetoimprovelocaltemperaturecontrolin

microfluidicsystems.ThemostcommontechniqueusesJouleheatedmetalwires

andthinfilmstoconductheatintofluidchannels.(Nakanoetal.,1994,Lagallyetal.,

2000,Liuetal.,2002,Khandurinaetal.,2000)Thethermalconductivityof

Page 111: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

97

microfluidicdevicescontrolthelocalizationofthetemperaturechangeandtendsto

beontheorderofcentimeters.(Nakanoetal.,1994andKhandurinaetal.,2000)

Temporalcontrolislimitedbytheheatcapacityandthermalcouplingofthe

microfluidicdevicetotheenvironmentandthermalrelaxationtimestendtobeon

theorderofseconds.(Nakanoetal.,1994andKhandurinaetal.,2000)Alternative

techniquestoimprovethelocalizationandresponsetimehavebeendeveloped,

suchasthosethatusenon‐contactinfraredheatingofwateringlassmicrofluidic

systems(Odaetal.,1998)andintegratedmicrometersizePeltierJunctionsto

transferheatbetweentwochannelscontainingfluidatdifferenttemperatures.

(Maltezosetal.,2005)Fluidshavealsobeencooledonmillisecondtimescaleswith

evaporativecoolingbypumpinggassesintothefluidchannels.(Maltezosetal.,

2006)

Thefocusoftheresearchdescribedinthisthesisistointegrateelectronicswith

microfluidicstobringnewcapabilitiestolab‐on‐a‐chipsystems.Thischapter

presentsatechniquetolocallyandrapidlyheatwaterindropbasedmicrofluidic

systemswithmicrowavedielectricheating.Thedevicesarefabricatedusingsoft

lithographyandareconnectedtoinexpensivecommerciallyavailablemicrowave

electronics.Thisworkbuildsonpreviousworkinwhichmicrowaveshavebeen

usedtoheatliquidinmicrofluidicdevices(Shahetal.,2007,Sundaresanetal.,2005,

Sklavounosetal.,2006,andGeistetal.,2007)byachievingsignificantlyfaster

thermalresponsetimesandagreatertemperaturerange.Inourdevice,dropsof

waterarethermallyisolatedfromthebulkofthedeviceandthisallows

exceptionallyfastheatingandcoolingtimesτs=15mstobeattainedandthedrops’

Page 112: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

98

temperaturetobeincreasedby30°C.Thecouplingofmicrowaveelectronicswith

microfluidicstechnologyoffersaninexpensiveandeasilyintegratedtechniqueto

locallyandrapidlycontroltemperature.

6.2ModelofDielectricHeatingofDrops

Duetowater’slargedielectriclossatGHzfrequencies,microwavepoweris

absorbedmuchmorestronglybywaterratherthanPDMSorglass.Thedevice

describedinthischapteroperatesat3.0GHz,afrequencyveryclosetothatof

commercialmicrowaveovens(2.45GHz),thatisbelowthefrequencyassociated

withtherelaxationtimeofwaterbutwherewaterstillreadilyabsorbspower.Itis

inexpensivetoengineerelectronicstoproduceanddeliver3.0GHzfrequencies

becauseitisnearthewell‐developedfrequenciesofthetelecommunications

industry.

Twoindependentfiguresofmeritdescribetheheater,thesteady‐statechangein

temperatureΔTssthatthedropsattainandthecharacteristictimeτsthatittakesto

changethetemperature.Thesteady‐statetemperatureoccurswhenthemicrowave

powerenteringthedropequalstheratethatheatleavesthedropintothethermal

bath.Thethermalrelaxationtimedependsonlyonthegeometryandthethermal

propertiesofthedropsandthechannelandisindependentofthemicrowave

power.

Todescribetheheaterasimplifiedmodelisusedinwhichthetemperatureofthe

channelwallsdonotchange.ThethermalconductivityoftheglassandPDMS

channelwallsismuchlargerthanthatofthefluorocarbon(FC)oilinwhichthe

Page 113: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

99

dropsaresuspended,whichallowtheglassandPDMSmoldtoactasalargethermal

reservoirthatkeepthechannelwallspinnedtothebasetemperature.

Thedropismodeledashavingaheatcapacitythatconnectstothethermalreservoir

throughathermalresistance.ThedrophasaheatcapacityC=VCwthatconnectsto

thethermalreservoirwithathermalresistanceR=LD/Akoil,whereVisthevolume

andAisthesurfaceareaofthedrop,Cwistheheatcapacitypervolumeofwater,LD

isthecharacteristiclengthbetweenthedropandthechannelwall,andkoilisthe

thermalconductivityoftheoilsurroundingthedrop.Asteady‐statetemperature

ΔTssisreachedwhenthemicrowavepowerPVenteringthedropisequaltothe

powerleavingthedropΔTsskoilA/LD.Thesteady‐statetemperatureΔTss=PVRis:

ΔTSS =VALDkoil

P. 6.1

Thesystemhasacharacteristictimescaleτs=RCthatdescribesthethermal

responsetimeofthesystem,

τ S =VALDkoil

CW. 6.2

Thecharacteristictimescaleτsdescribesthethermalrelaxationtime,thetimeit

takesforthedroptoreachanequilibriumtemperaturewhenthemicrowavepower

isturnedonandthetimethatittakesforthedroptoreturntothebasetemperature

ofthedevicewhenthemicrowavesareturnedoff.

Page 114: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

100

Thissimplifiedmodeldescribesseveralkeyfeaturesofthemicrowaveheater.The

steady‐statetemperatureislinearlyproportionaltothemicrowavepower,whereas

thecharacteristicthermalrelaxationtimeisindependentofthemicrowavepower.

Thecharacteristictimeandthesteady‐statetemperaturearebothproportionalto

thevolumetosurfaceratioofthedrops.Atrade‐offrelationexistsbetweentherate

ofheating1/τsandthesteady‐statetemperature,wherebyalargervolumeto

surfaceratioreducesthethermalrelaxationtimeoftheheaterbutdecreasesits

steady‐statetemperatureforagivenmicrowavepower,andviceversa.Similarlyan

increaseintheratioofthecharacteristiclengthbetweenthedropandthechannel

wallandthethermalconductivityoftheoilLD/koilincreasesthethermalrelaxation

timeandincreasesthesteady‐statetemperature.

6.3TheMicrofluidicDevice

Thedevicesarefabricatedusingpoly(dimethylsiloxane)(PDMS)‐on‐glassdrop‐

basedmicrofluidics.Microwavepowerislocallydeliveredviametalelectrodesthat

aredirectlyintegratedintothemicrofluidicdeviceandthatrunparalleltothefluid

channel,asisshowninFig.6.1a.Thedropsarethermallyinsulatedfromthebulkby

beingsuspendedinlowthermalconductivityoil.Aschematicofthedeviceisshown

inFig.6.2a.Syringepumpsprovidetheoilandwateratconstantflowratestothe

microfluidicdevice.Adropmakerandtwodropsplittersinseriescreatedropsthat

areproperlysizedforthemicrowaveheater.Themicrowavepoweriscreatedoff

chipusinginexpensivecommercialcomponents.

Page 115: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

101

Dropsarecreatedusingaflow‐focusinggeometry(Annaetal.,2003)asisshownin

Fig.6.2b.Afluorocarbonoil(FluorinertFC‐40,3M)isusedasthecontinuousphase

andtheresultingdropscontain0.1μMofcarboxylcoatedCdSenanocrystal

(Invitrogen)suspendedinaphosphatebufferedsaline(PBS)solution.Asurfactant

comprisedofapolyethyleneglycol(PEG)headgroupandafluorocarbontail

(RainDanceTechnologies)isusedtostabilizethedrops.(Holtzeetal.,2008)The

wallsofthemicrofluidicchannelsarecoatedwithAquapel®(PPGIndustries)to

ensurethattheyarepreferentiallywetbythefluorocarbonoil.Fluidflowis

controlledviasyringepumps.

Page 116: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

102

Figure6.1(a)Aschematicofthemicrowaveheater.Theblacklinesrepresentthemetallineswhichareconnectedtothemicrowavesource,thecenterfluidchannelcarriesdropsofwaterimmersedinfluorocarbon(FC)oil,(b)acrosssectionofthemicrowaveheaterwithaquasi‐staticelectricfieldsimulationsuperimposedisshown,theelectricfieldisplottedinlogscale,(c)thecalibrationcurveoftheCdSenanoparticleswhichareusedastemperaturesensors,wherethecirclesaredatapointsandtheredlineisthefit.

Page 117: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

103

Tomakedropssmallerthanthechannelheight,andthusseparatedfromthewalls

ofthechanneltoensureadequatethermalisolation,dropsplittersareused(Linket

al.,2004)asisshowninFig.6.2c.Thedropsplittersaredesignedtobreakeach

dropintotwodropsofequalvolume.Passingasphericaldropthroughtwodrop

splittersinseriesdecreasestheradiusofadropbyafactorof(½)⅔=0.63.Drop

splittersallowthedevicetobemadeinasinglefabricationstep,becausethey

removethenecessityofmakingthedropmakerwithachannelheightsmallerthan

therestofthedevice.(Annaetal.,2003)

ThemetalelectrodesaredirectlyintegratedintothePDMSdeviceusingalow‐melt

solderfilltechnique.(Siegeletal.,2006)Themasksforthesoftlithographyprocess

aredesignedtoincludechannelsforfluidflowandasettobefilledwithmetalto

formelectrodes.AfterinletholeshavebeenpunchedintothePDMSandthePDMSis

bondedtoaglassslide,themicrofluidicdeviceisplacedonahotplatesetto80°C.A

0.02inchdiameterindiumalloywire(Indalloy19;52%Indium,32.5%Bismuth,

16.5%TinfromIndiumCorporation)isinsertedintotheelectrodechannelinlet

holesand,asthewiremelts,theelectrodechannelsfillwithmetalviacapillary

action.Theresultingelectrodechannelsrunalongeithersideofthefluidasis

showninFig.6.2d.Tokeepthedropsfromheatingfromthefringeelectricfields

beforethedropenterstheheaterthefluidchannelisconstrictedtopressthedrops

againstthePDMSwall,whichkeepsthedropsatthesametemperatureasthebase

temperatureofthemicrofluidicdevice.

Page 118: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

104

Theelectronicsthatcreatethemicrowavepowerareassembledusinginexpensive

modules.Themicrowavesaregeneratedwithavoltagecontrolledoscillator(ZX95‐

3146‐S+,Mini‐Circuits)andamplifiedtoamaximumof11.7Vpeak‐to‐peakwitha

maximumpowerof26dBmwithapoweramplifier(ZRL‐3500+,Mini‐Circuits).The

microwaveamplifierconnectswithacabletoasubminiatureassembly(SMA)

connectormountednexttothemicrowavedeviceasisshowninFig.6.2e.Copper

wiresapproximately2mminlengthconnecttheSMAconnectortothemetal

electrodesinthePDMSdevice.Ourelectronicsoperateat3.0GHzwherewater’s

microwavepowerabsorptionisroughly1/3asefficientasatthefrequency

associatedwithwater’srelaxationtime(~18GHz)butwhereelectronicsare

inexpensiveandcommerciallyavailable.Theelectronicsusedinoursystemcosts

lessthan$US200andareeasytosetup.

Finiteelementsimulationsareperformedtodeterminetheelectricfieldstrengthin

themicrowaveheaterwhichisusedtocalculatethemicrowavepowerabsorbedby

thedrops.Figure6.1bshowsaschematiccross‐sectionofthemicrofluidicdevice

wherethedropspassbetweenthemetalelectrodes.Thechannelcross‐sectionhas

dimensions50x50μm2.Paralleltoand20μmawayfromeachsideofthefluid

channelaremetallinesthatare100μmwideand50μmhigh.Superimposedonthe

schematicinFig.6.1bisaquasi‐staticelectricfieldsimulationoftheelectricfield

(Maxwell,Ansoft).Fora12Vpeak‐to‐peaksignalacrossthemetallines,theRMS

electricfieldwithinadropwitha15μmradiussuspendedinfluorocarbonoilis

|E|~8×103V/m.Theelectricfieldlinearlyscaleswiththevoltageacrossthemetal

lineswhichallowsustocalculatethefieldwithinthedropforanyvoltage.The

Page 119: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

105

simulatedelectricfieldiscombinedwithEq.2.1andEq.2.2tocalculatethe

microwavepowerthatentersthedropswhichmaybecombinedwithEq.6.1to

predictsteady‐statetemperaturechanges.

Thetemperaturechangeofthedropsismeasuredremotelybyobservingthe

temperature‐dependentfluorescenceofCdSenanocrystalssuspendedinthe

drops.(Maoetal.,2002)Tocalibratethisthermometer,themicrowavepoweris

turnedoffandahotplateisusedtosetthetemperatureofthemicrofluidicdevice.

ThefluidchannelisfilledwithCdSenanocrystalssuspendedinwaterandthe

temperatureofthehotplateisslowlyincreasedfrom25°Cto58°Cwhilethe

fluorescenceintensityoftheCdSequantumdotsismeasured.Themeasured

fluorescenceintensityisplottedasafunctionoftemperatureinFig.6.1c.Alineisfit

withaslope0.69%/°C±0.03%/°Ctothedataandthisslopeisusedtoconvert

fluorescencemeasurementsintomeasurementsofthechangeintemperature.A

lineisfittothedatausingaleast‐squarestechniqueandtheerroristheuncertainty

inthecoefficientofthefit.Acalibrationcurveistakenimmediatelybeforean

experiment.ThereisnoevidencethattheCdSenanoparticlesleakfromthedrops

intotheoilorprecipitateontothemicrofluidicchannel.Themicrofluidicchannel

andtheoilinthewastelinearecheckedaftertheexperimentsandthereisno

measuredfluorescencesignal.ThedeviceismonitoredwithanHamamatsuORCA‐

ERcooledCCDcameraattachedtoaBX‐52Olympusmicroscope.Imagesaretaken

withMicroSuiteBasicEditionbyOlympusandanalyzedinMATLAB(The

MathWorks,Inc.).ThemicrofluidicdeviceisconnectedwithanSMAtothe

Page 120: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

106

microwaveamplifierandsitsontopofahotplateunderneaththemicroscopeasis

showninFig.6.2d.

Thedevicesaretestedbymeasuringthetemperaturechangeofwaterdropsasthey

travelthroughthemicrowaveheater.Along‐exposurefluorescenceimageofmany

dropstravelingthroughthemicrowaveheatershowstheensembleaverageofthe

temperaturechangeofdropsateachpointinthechannel.Aplotofthedropheating

intimemaybeextractedfromthisimageusingthemeasuredflowrateofthedrops

throughthemicrofluidicsystem.Anexperimentisperformedwiththeconstant

volumetricflowrateofthewaterat15μL/hrandtheoilat165μL/hr.Abright

field,shortshutterspeedimageistakenofthedropstravelingthroughthe

microwaveheaterandthedrops’averagediameterismeasuredtobe35μm.The

microwaveheateristurnedonwithafrequencyof3.0GHzandapeaktopeak

voltageof11V.Alongexposure(2seconds)fluorescenceimageistakenofthe

microwaveheaterthatisnormalizedagainstimagestakenwiththemicrowaves

turnedofftoremoveartifactsthatarisefromirregularitiesinthegeometryofthe

channel,thelightsource,andthecamera.

Page 121: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

107

Figure6.2(a)Aschematicofthemicrowaveheatingdevice,showingtheoilinorange,thewaterinblue,andtheelectronicconnectionsinred,(b)amicrographoftheflow‐focusingdropmaker,(c)thetwosetsofdropsplittersinseries,(d)amicrographofthemicrowaveheater,thedarkregionsthatrunparalleltothefluidchannelarethemetallines,(e)aphotographofthemicrofluidicdevice,connectedtothemicrowaveamplifierwithacablewithanSMAconnector,ontopofahotplate,underneaththefluorescencemicroscope.

Page 122: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

108

6.4Demonstration

Thedropsareheatedtoasteady‐statetemperaturechangeΔTssastheypass

throughthemicrowaveheater.Figure6.3ashowsthenormalizedfluorescence

intensityofthedropsastheyenterthemicrowaveheatersuperimposedontoa

bright‐fieldimageofthedevice.Itcanbeseenthatasthedropsenterthechannel

theiraveragefluorescenceintensitydropswhichshowsthattheyarebeingheated.

Alineaverageofthenormalizedimageistakeninthedirectionperpendiculartothe

fluidflowandisplottedagainstthelengthofthechannel,asinFig.6.3b.Asthe

dropsareheatedtheaveragefluorescenceintensityofthedropsfallsexponentially

withdistanceto85%ofitsinitialintensityafterapathlengthof300μm.The

fluorescenceintensitymeasuresthetemperaturechangeofthedrops,andsothe

dropsareheatedinacharacteristiclengthof300μm.

Thedropsareheatedtosteady‐statetemperaturechangesΔTssaslargeas30°C

abovethebasetemperatureofthemicrofluidicdeviceinonlyτs=15ms.The

averagetemperaturechangeofthedropsasafunctionoftimeanddistancetraveled

isplottedinFig.6.3c.Forthisheatingpower,thetemperaturerisestoasteady‐

statevalueof26°Cabovethebasetemperatureof21°Cin15ms.Thecurvein

Fig.6.3cisarrivedatbyusingthecalibrationcurveoftheCdSenanocrystals,

Fig.6.1c,toconvertthefluorescenceintensityinFig.6.3bintoachangein

temperatureΔT.Thesumoftheflowratesoftheoilandwaterareusedtocalculate

thespeedofthedropsthroughthechannel,whichmaybeusedtotransformthe

Page 123: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

109

lengthinFig.6.3aintothetimethatthedropshavespentintheheater.Eachdata

pointconsistsoftheaverageof20independentlytaken2secexposures.

Page 124: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

110

Figure6.3(a)A2secondexposureofthefluorescencesignalnormalizedtoanimagetakenwiththemicrowavesourceturnedoffsuperimposedontoabrightfieldimageofthedevice,(b)thelineaverageofthenormalizedintensityplottedversusdistancedownthechannel,(c)thetemperaturechangeΔTplottedversustimeandversusthedistancethedropshavetraveleddownthechannel.

Page 125: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

111

Thecombinedstatisticalerrorofthemeasurementoftheheatingisalsoplottedin

Fig.6.3c.Theaverageerroris~1.4°C.Thestatisticalerrorinthesteady‐state

temperatureisfoundtocomeprimarilyfromvariationsinthesizeofthedrops.The

steady‐statetemperaturechangeofeachdropislinearlyrelatedtothevolume‐to‐

arearatioofthedropandtothedistanceofthedroptothechannelwalls,asis

describedinEq.6.1.Byobservingthedropsexitthemicrowaveheatingregionof

thechip,thedropsarefoundtocoolwithacharacteristictimesimilartotheheating

time.Inaddition,bynarrowingthechannelattheexitofthemicrowaveheater,the

dropsarebroughtclosertothechannelwallandthedropsreturntothebase

temperatureoftheoilinlessthan1ms.

Thesteady‐statetemperaturechangeΔTssofthedropsmaybesetfrom0°Cto30°C

byvaryingtheappliedmicrowavepowerasisdescribedinEq.6.1.Themicrowave

poweriscontrolledbyexperimentallyvaryingthepeak‐to‐peakvoltageofthe

appliedmicrowavevoltagewhichvariesthestrengthoftheelectricfieldinsidethe

dropsasisdescribedbyoursimulations.Aseriesofplotsofthechangein

temperatureversustimefordifferentappliedpowersisshownintheinsetof

Fig.6.4a,andshowssteady‐statetemperaturechangesrangingfrom2.8°Cto30.1°C,

withanaverageerrorof1.5°C.Itisnoteworthythatalloftheheatingcurveshave

anexponentialformandhavethesamecharacteristicrisetimeτs=15ms.

Goodagreementisfoundbetweenthesteady‐statetemperaturechangesobserved

inFig.6.4afordifferentappliedmicrowavepowersandthemodelofmicrowave

heatingoutlinedinthebeginningofthischapter.Thesteady‐statetemperature

Page 126: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

112

changeisplottedversusthemicrowavepowerdensityinFig.6.4aandisfitwitha

line.AsisexpectedfromEq.6.1thesteady‐statetemperaturechangeriseslinearly

withappliedmicrowavepower.Themicrowavepowerdensityiscalculatedusing

theelectricfieldvaluesdeterminedfromsimulations(Fig.6.1b).Theonlyvariable

inEq.6.1thatisnotmeasuredorthatisnotamaterialpropertyisthecharacteristic

lengthscalebetweenthedropandthechannelwallLD.Thischaracteristiclength

LD=28μmisestimatedusingthemeasuredsteady‐statetemperaturechange

(Fig.6.4a)andtheknownmaterialproperties,usingEq.6.1.

Goodagreementisfoundbetweentheobservationthatthetemperaturechange

approachessteady‐stateexponentiallyintimeinFig.6.4bandthemodelfor

microwaveheatingoutlinedinthebeginningofthischapter.Tocomparethe

model’spredictionthatthedropsapproachequilibriumexponentiallyintimewitha

singlerelaxationtimeconstant(Eq.6.2)withourobservations,thechangein

temperatureΔTsubtractedfromthesteady‐statechangeintemperatureΔTssis

plottedversustimeonasemi‐logplotandfitwithaline.Asispredictedbythe

modelthedropsapproachequilibriumexponentiallywithasingletimeconstant.

Thethermalrelaxationtimeconstantismeasuredtobeτs=14.7±0.6ms.Theonly

variableinEq.6.2thatisnotmeasuredisthecharacteristiclengthLDbetweenthe

dropandthechannelwall.ThischaracteristiclengthLD=35μmisestimatedusing

themeasuredcharacteristictimeconstantandtheknownmaterialproperties,using

Eq.6.2.Theindependentmeasurementsofthethermalrelaxationtimeandthe

steady‐statetemperaturechangeversuspowergivetwoindependentmeasuresof

thelengthLDthatarewithin20%ofeachother.Thedifferenceinthetwo

Page 127: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

113

predictionsofLDcanbeatleastpartiallyexplainedbynotingthattheheatcapacity

inEq.6.2islargerthaniscalculated,duetothefactthatthechannelwallsarenota

perfectheatsinkasthemodelassumes.Theagreementbetweenthetwo

independentmeasurementssupportsthesimplemodelformicrowaveheatingof

dropsoutlinedinthebeginningofthischapter.

Page 128: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

114

Figure6.4(a)Thesteady‐statetemperaturechangeofthedropsiscontrolledbyvaryingtheamplitudeofthemicrowavevoltage.Intheinsetthegreencurveshowsthedropheatingversustimeformicrowaveswithanamplitudeof11.7V,thered11.0V,theyellow10.3V,thelightblue9.3V,thepurple8.5V,thegrey7.5V,andtheblue4.5V.Thesteady‐statetemperaturechangeisplottedversusthepowerdensity,ascalculatedbyEq.2.1,inthemainplot,(b)themagnitudeofthechangeintemperatureΔTsubtractedfromthemaximumchangeintemperatureΔTSSversustimeisplottedonalog‐linearscale.Thetemperaturerisesasasingleexponentialwithacharacteristictime,τs=14.7±0.56ms.Theinsetshowsthetemperatureversustimeplotfromwhichthelog‐linearplotistaken.

Page 129: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

115

6.5Discussion

Inthischapteranintegratedmicrofluidicmicrowavedielectricheateris

demonstratedthatlocallyandrapidlyincreasesthetemperatureofdropsofwater

suspendedinoil.Thelargeabsorptionofmicrowavepowerbywaterrelativetooil,

glass,andPDMSallowslocalandrapidheatinginmicrofluidicdeviceswithout

difficultfabrication.Bothimprovingtheinsulationofdropsfromthechannelwalls

andincreasingthevolumetosurfacearearatioofthedropswouldallowforlarger

temperaturechanges.Thestatisticalerrorinthesteady‐statetemperatureofthe

dropscanbeimprovedbyreducingvariationsinthedropsizethatarisefrom

fluctuationsintheflowfromthesyringepumps.

Microwavedielectricheatingofdropsiswellsuitedforintegrationwiththehybrid

integratedcircuit(IC)/microfluidicchipsdescribedinChapters3,4,and5.(Leeet

al.,2007)IfelectrodesonthechiparedrivenwithvoltagesatGHzfrequencies,then

onecanusethechiptolocallyheatsmallvolumesoffluidusingdielectricheating.

Theadditionoflocallyaddressabletemperaturecontroltothelab‐on‐a‐chip

functionsdemonstratedinChapters3,4,and5wouldfurtherexpandthe

capabilitiesofthehybridchipplatformandwouldbeavaluabletoolforanumberof

applications,includingDNAanalysis.(Leeetal.,2007)

Microwavedielectricheatinghasmanyexcitingscientificandtechnological

applications.Onenoteworthypotentialapplicationforrapid,localizedheatingin

microfluidicdevicesisPCR.(Lagallyetal.,2000,Liuetal.,2002,Khandurinaetal.,

2000,Odaetal.,1998,Maltezosetal.,2005,Maltezosetal.,2006)Themicrowave

Page 130: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

116

microfluidicheatercanraisethetemperatureofdropsupto30°Cabovethebase

temperatureoftheoilinwhichthedropsaresuspended.Bysettingthebase

temperatureoftheoilinourdeviceto65°Candappropriatelysettingthe

microwavepower,a30°Cchangeintemperaturecouldcyclethetemperaturefrom

65°Cto95°CasrequiredforPCR.Drop‐basedPCR,whichwouldbeespeciallywell

suitedforthistechnique,allowsfortherapidanalysisoflargepopulationsofgenes

andenzymes.Themicrowaveheatingtechniquemightalsobeusedtoset

temperaturesrapidlyandcontrollablyinbiologicalandchemicalassays,suchasfor

proteindenaturingstudies(Arataetal.,2008)andenzymeoptimizationassays

(Robertsonetal.,2004),whereobservationsofthermalresponsesaremadeonthe

millisecondtimescale.

Page 131: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

117

Chapter7.Conclusions

7.1Summary

Thisthesisdescribesthedevelopmentofaversatileplatformforperformingbiology

andchemistryexperimentsonachip,usingtheintegratedcircuit(IC)technologyof

thecommercialelectronicsindustry.Thisworkisanimportantsteptowards

developingautomated,portable,andinexpensivedevicestoperformcomplex

chemicalandbiologicaltasks.Suchadevicewouldrevolutionizethewaythat

biologicalandchemicalinformationiscollectedforapplicationssuchasmedical

diagnostics,environmentaltesting,andscientificresearch.(Ahnetal.,2004,Chinet

al.,2007,andMartinezetal.,2008)

ThehybridIC/microfluidicchipsdevelopedinthisthesiscontrollivingcellsand

smallvolumesoffluid.Takinginspirationfromcellularbiology,phospholipid

bilayervesiclesareusedtopackagepLvolumesoffluidonthesechips.Table7.1

summarizesthebasiclab‐on‐a‐chipfunctionsthatthehybridchipscanperformon

thelivingcellsandvesicles.Thechipscanbeprogrammedtotrapandposition,

deform,setthetemperatureof,electroporate,andelectrofuselivingcellsand

vesicles.Thesebasicfunctionscanbestrungtogethertoperformcomplexchemical

andbiologicaltasks.ThefastelectronicsandcomplexcircuitryofICsenable

thousandsoflivingcellsandvesiclestobesimultaneouslycontrolled,allowingmany

parallel,well‐controlledbiologicalandchemicaloperationstobeperformedin

parallel.

Page 132: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

118

Table7.1Alistofthelab‐on‐a‐chipfunctionsperformedinthisthesisusinghybridIC/microfluidicchips.

Page 133: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

119

7.1FutureDirections

ThisthesisdevelopshybridIC/microfluidicchipsanddemonstratesthattheycan

performbasicfunctionsthatarenecessarybuildingblocksforbiologicaland

chemicalexperimentsonachip.However,thegoalofaportabledevicethatcan

performbiologicalandchemicaltasksremainsachallenge.Forthisgoaltobefully

realized,amoreself‐sufficientplatformmustbedeveloped.Althoughahybrid

IC/microfluidicchipcanbepackagedintoaportabledevice,thecurrentchip

requiresalaboratory‐sizedfluorescencemicroscope,lightsource,andcomputerto

fullyfunction.TocompletelyrealizethepotentialofhybridIC/microfluidicchips,

additionalfunctionsmustbeaddedtothechipssuchthatthelarge,external

componentsarenotrequired.

Thehybridchipsdescribedinthisthesiscouldbemademoreself‐sufficientby

integratingsensorsontotheICs.AhybridIC/microfluidicchipthatincludedboth

sensorsandthefunctionalitydemonstratedinthisthesiscouldperformcomplex

biologicalandchemicalexperimentsandmeasuretheresults.Theseexperiments

couldincludemultiplestepssuchas:mixingalibraryofcellswithalibraryof

chemicals,measuringtheoutcomeoftheexperimentswithsensorsbuiltintothe

chip,analyzingtheresultsoftheexperiment,anddesigningthenextsetof

experimentsbasedontheresultsofthefirst,andrepeat,untilfinallyreportingthe

results.Thissortofautomatedlab‐on‐a‐chipplatformcouldperformthecomplex,

multi‐stepexperimentsthatarecurrentlyperformedinlaboratoriesbytrainedstaff

usinglargeandexpensiveequipment.

Page 134: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

120

SeveralsensorshavepreviouslybeendevelopedusinghybridIC/microfluidic

chips.SomeexamplesofthesesensorsareNMRsensorsforchemicaldetection,(Lee

etal.,2008)capacitivesensorsformeasuringeletrogeniccells,(DeBusschereetal.,

2001)electricalsensorsforDNAdetection,(Thewesetal.,2002)andcharge

coupleddevices(CCD)foropticalimaging.(Cuietal.,2008)Thesesensorsarebuilt

usingstandardcommercialICprocesses,similartotheprocessesusedtocreatethe

chipsdescribedinthisthesis.AsingleICcouldbebuilt,usingacommercialfoundry,

thatincludesthefunctionalitydemonstratedinthisthesisandthatofthesensors

describedabove.SensorsthatrequirespecializedICprocessesorthataremade

withe‐beamlithographycanalsobeincludedusingflip‐chipbonding.(Leeetal.,

2007)

AhybridIC/microfluidicchipthatcontrols,performsexperimentson,and

measuresmanylivingcellsandsmallvolumesoffluidwouldhaveabigimpact.

Taskssuchasthedetectionandcountingofcells,sortingcells,geneticanalysis,

proteindetection,andcombinatorialchemistrycouldbeperformedontheselow‐

cost,automateddevices.(Whitesidesetal.,2001,Stoneetal.,2004,Tabelingetal.,

2005,Yageretal.,2006,Martinezetal.,2008,Leeetal.,2007,Huntetal.,2008,

Maltezosetal.,2005)Thechipscouldbeprogrammedtoperformcomplex,multi‐

steptasks,andreacttotheresultsofexperimentsinreal‐time.Thedevicescouldbe

usedforapplicationssuchaspoint‐of‐carediseasedetectionordetectingtoxic

substancesorparasitesindrinkingwater.Suchadevicewouldrealizetheinitial

goalofmicrofluidics,tobringcomplexbiologicalandchemicaltestsfrom

laboratoriesoutintotheclinicandthefield.(Whitesides,2001)

Page 135: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

121

WorksCited

AhnC.H.,ChoiJ.W.,BeaucageG.,NevinJ.,LeeB.J.,PuntambekarA.,andLeeJ.Y.(2004)Proceedings–IEEE,92,154.

AlbertsB.,JohnsonA.,LewisJ.,RaffM.,WalterP.,andRobertsK.(2007)MolecularBiologyofTheCell,Taylor&FrancisGroup.

AnnaS.L.,BontouxN.,andStoneH.A.(2003)Appl.PhysLett.,82,364.

AngelovaM.I.andDimitrovD.S.(1986)FaradayDiscuss.Chem.Soc.,81,303.

ArataH.F.,GillotF.,NojimaT.,FujiiT.,andFujitaH.(2008)LabChip,8,1436.

BeanC.P.andLivingstonJ.D.(1959),J.Appl.Phys.,30,S120.

BengtssonN.E.,OhlssonT.(1974)Proc.IEEE,62,44.

BerryC.andCurtisA.S.G.(2003)J.Phys.D,2003,36,198.

ChinC.D.,LinderV.,andSiaS.K.(2007)LabChip,7,41.

ChiuD.T.,WilsonC.F.,RyttsénF.,StrömbergA.,FarreC.,KarlssonA.,NordholmS.,GaggarA.,ModiB.P.,MoschoA.,Garza‐LópezR.A.,OrwarO.,andZareR.N.(1999)Science,283,5409.

CuiX.,LeeL.M.,HengX.,ZhongW.,SternbergP.W.,PsaltisD.,YangC.(2008)ProcNatlAcadSci,105,10670.

CurtisA.S.G.andVardeM.(1964)J.NatlCancerRes.Int.,33,15.

DeBusschereB.D.,andKovacsG.T.A.(2001)Biosensors&Bioelectronics,16,543.

DillK.A.andBrombergS.(2003)MolecularDrivingForces,TaylorandFrancis.

DittrichP.S.andManzA.(2006)Naturereviews.Drugdiscovery,5,210.

DobsonJ.(2008)NatureNanotechnology,3,139.

EltoukhyH.,SalamaK.,GamalA.E.(2006)Solid­StateCircuits,IEEE,41,3.

EricksonD.andLiD.(2004)AnalyticaChimicaActa,507,11.

EversmannB.,JenknerM.,HofmannF.,PaulusC.,BrederlowR.,HolzapflB.,FromherzP.,MerzM.,BrennerM.,SchreiterM.,GablR.,PlehnertK.,SteinhauserM.,EcksteinG.,Schmitt‐LandsiedelD.,andThewesR.(2003)J.Solid­StateCircuits,38,2306.

FigeysD.andPintoD.(2000)Anal.Chem.,72,330.

Page 136: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

122

GascoyneP.R.C.,VykoukalJ.V.,SchwartzJ.A.,AndersonT.J.,VykoukalD.M.,CurrentK.W.,McConaghyC.,BeckerJ.A.,andAndrewsC.(2004)LabChip,4,299.

GeistJ.,ShahJ.J.,RaoM.V.,andGaitanM.(2007)J.Res.Natl.Inst.Stand.Technol.,112,177.

GrantE.H.,ShephardR.J.,andSouthG.P.(1978)DielectricBehaviorofBiologicalMoleculesinSolution,OxfordUniv.Press,Oxford.

GrosseC.andSchwanH.(1992)BiophysicalJ.,63,1632.

HengX.,EricksonD.,BaughL.R.,YaqoobZ.,SternbergP.W.,PsaltisD.,andYangC.(2006)LabChip,6,1274.

HoltzeC.,RowatA.C.,AgrestiJ.J.,HutchisonJ.B.,AngileF.E.,Schmitz,S.Koester,DuanH.,HumphryK.J.,ScangaR.A.,JohnsonJ.S.,PisiganoD.,andWeitzD.A.(2008)LabChip,8,1632.

HuntT.(2007)IntegratedCircuit/MicrofluidicChipsforDielectricManipulation,PhDDissertation,HarvardUniversity.

HuntT.,IssadoreD.,WesterveltR.M.(2008)LabChip,81,7.

IsambertH.(1998)Phys.Rev.Lett.,80,15.

IssadoreD.,HumphryK.J.,BrownK.A.,SandbergL.,WeitzD.A.,WesterveltR.M.,LabChip,2009,DOI:10.1039/B822357B.

JonesT.B.(1995)ElectromechanicsofParticles,CambridgeUniversityPress,Cambridge.

Keehan,S.,SiskoA.,TrufferC.,SmithS.,CowanC.,PoisalJ.,ClemensM.K.andTheNationalHealthExpenditureAccountsProjectionsTeam(2008)HealthAffairs,doi:10.1377.

KhandurinaJ.,McKnightT.E.,JacobsonS.C.,WatersL.C.,FooteR.S.,andRamseyJ.M.(2000),Anal.Chem.,72,2995.

KilbyJ.S.(1976),ElectronDevices,IEEETrans.,23,7.

KosterS.,AngilèF.E.,DuanH.,AgrestiJ.J.,WintnerA.,SchmitzC.,RowatA.C.,MertenC.A.,PisignanoD.,GriffithsA.D.,andWeitzD.A.(2008)LabChip,8,1110.

LagallyE.T.,SimpsonP.C.,MathiesR.A.(2000)Sens.Actuators,B63,138.

LeeH.(2005)Microelectronic/MicrodluidicHybridSystemfortheManipulationofBiologicalCells,PhDdissertation,HarvardUniversity.

Page 137: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

123

LeeH.,HamD.andWesterveltR.M.eds.(2007)CMOSBiotechnology,Springer,NewYork.

LeeH.,LiuY.,AlsbergE.,IngberD.E.,WesterveltR.M.,HamD.(2005)ISSCC,580‐586.

LeeH.,LiuY.,WesterveltR.M.,andHamD.(2006)IEEEJ.Solid­StateCircuits,41,1471.

LeeH.,PurdonA.M.,andWesterveltR.M.(2004)Appl.Phys.Lett.,85,1063.

LeeH.,SunE.,HamD.,andWeisslederR.(2008)NatureMedicine,14,869.

LeeJ.,MoonH.,FowlerJ.,SchoellhammerT.,andKimC.J.(2002),Sens.ActuatorsA,95,259.

LeeJ.andMudawarI.(2005)Int.J.HeatMassTransfer,48,928.

LeeT.(1998)TheDesignofCMOSRadio­FrequencyIntegratedCircuits,SecondEdition,CambridgeUniversityPress,Cambridge.

LeeW.G.,DemirciU.,andKhademhosseiniA.(2009),Integr.Biol.,1,242.

LinkD.R.,AnnaS.L.,WeitzD.A.,andStoneH.A.(2004),Phys.Rev.Lett.,92,54503.

LiuJ.,EnzelbergerM.,andQuakeS.R.(2002)Electrophoresis,23,1531.

LopezM.,CabreraA.,Agullo‐RuedaM.(1970)Electrooptics:Phenomena,MaterialsandApplications,AcademicPress.

MaltezosG.,JohnstonM.,andSchererA.(2005)Appl.Phys.Lett.,87,154105.

MaltezosG.,RajagopalA.,andSchererA.(2006)Appl.Phys.Lett.,89,074107.

ManaresiN.,RomaniA.,MedoroG.,AltomareL.,LeonardiA.,TartagniM.,andGuerrieriR.(2003),IEEEJ.Solid­StateCircuits,38,2297.

MaoH.,YangT.,andCremerP.S.(2002)J.Am.Chem.Soc.,124,4432.

MartinezA.W.,PhillipsS.T.,WileyB.J.,GuptaM.,andWhitesidesG.M.(2008)LabChip,8,2146.

MurrellJ.N.andJenkinsA.D.(1994),PropertiesofLiquidsandSolutions,2ndEd.JohnWiley&Sons,Chichester,England.

NakanoH.,MatsudaK.,YohdaM.,NagmuneT.,EndoI.,andYamaneT.(1994),Biosci.Biotechnol.Biochem.,58,349.

NyholmL.(2005)Analyst,130,599.

Page 138: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

124

OdaR.P.,StrausbauchM.A.,HuhmerA.F.R.,BorsonN.,JurrensS.R.,CraigheadJ.,WettsteinP.J.,EckloffB.,KlineB.,andLandersJ.P.(1998),Anal.Chem.,70,4361.

OlofssonJ.,NolkrantzK.,RyttsénF.,LambieB.,WeberS.G.,andOrwarO.(2003)Curr.Opin.Biotechnol.,14,29.

PawleyJ.B.(2008)J.Biomed.Opt.,13,029902.

PollackM.G.,FairR.B.,andShenderovA.D.(2000),Appl.Phys.Lett.,77,11.

PollackM.G.,ShendorovA.D.,andFairR.B.(2002),LabChip,2,96.

PsaltisD.,QuakeS.R.,andYangC.(2006)Nature,442,381.

RiskeK.A.andDimovaR.(2006),BiophysicalJ.,91,1778.

RobertsonD.E.andSteerB.A.(2004),CurrentOpinioninChemicalBiology,8,141.

Seifritz.W.(1924)Brit.J.Exper.Biol.,2,1.

ShahJ.J.,SundaresanS.G.,GeistJ.,ReyesD.R.,BoothJ.C.,RaoM.V.,andGaitanM.(2007)J.Micromech.Microeng.,17,2224.

SiegelA.C.,ShevkoplyasS.S.,WeibelD.B.,BruzewiczD.A.,MartinezA.W.,andWhitesidesG.M.(2006)Angew.Chem.,45,6877.

SklavounosA.,MarchiarulloD.J.,BarkerS.L.R.,LandersJ.P.,andBarkerN.S.(2006)Proc.MicroTotalAnal.Syst.,2,1238.

StoneH.A.,StroockA.D.,andAjdariA.(2004)AnnualReviewsofFluidMechanics,36,381,andreferencestherein.

SugarP.,ForsterW.,andNeumannE.(1987)BiophysicalChem.,26,321.

SundaresanS.G.,PolkB.J.,ReyesD.R.,RaoM.V.,andGaitanM.(2005)Proc.MicroTotalAnal.Syst.,1,657.

TabelingP.(2005)IntroductiontoMicrofluidics,OxfordUniversityPress.

Thewes R., Hofmann F., Frey A., Holzapfl B., Schienle M., Paulus C., Schindler P.,EcksteinG.,KasselC.,StanzelM.,HintscheR.,NeblingE.,Albers J.,HassmanJ.,Schulein J., GoemannW., andGumbrechtW. (2002) IEEE Int. Conf. Solid­StateCircuits:DigestofTechnicalPapers,1,350.

TressetG.andIliescuC.(2007)Appl.Phys.Lett.,90,173901.

Tudos A.J.,G.A.J.Besselink,andR.B.M.Schasfoort(2001)LabChip,1,83.

UngerM.A.,ChouH.P.,ThorsenT.,SchererA.,QuakeS.R.(2000)Science,288,113.

Page 139: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

125

UnitedStatesDepartmentofHealthandHumanServices(2007)NationalHealthExpenditureFactSheet.<http://www.cms.hhs.gov/>.

UrdeaM.,PennyL.A.,OlmstedS.S.,GiovanniM.Y.,KasparP.,ShepherdA.,WilsonP.,DahlC.A.,BuchsbaumS.,MoellerG.,andBurgessD.C.H(2006)Nature,444,73.

VarmusH.,KlausnerR.,ZerhouniE.,AcharyaT.,DaarA.S.,andSingerP.A.(2003)Science,302,398.

VykoukalJ.,SchwartzA.,F.F.Becker,andGascoyneP.R.C.(2001)MicroTotalAnalysisSystems,1,72.

VyawahareS.,SitaulaS.,MartinS.,AdalianD.,andSchererA.(2008)LabChip,8,1530.

WangN.andIngberD.(1994)BiophysicalJournal,66,2181.

WaughR.E.,SongJ.,SvetinaS.andZeksB.(1992)BiophysicalJournal,61,974.

WheelerA.R.,ThrondsetW.R.,WhelanR.J.,LeachA.M.,ZareR.N,LiaoY.H.,FarrellK.,MangerI.D.,andDaridonA.(2003)AnalChem.,14,3581.

WhitesidesG.M.,OstuniE.,TakayamaS.,JiangX.,andIngberD.(2001)AnnualReviewofBiomedicalEngineering,3,335.

YagerP.,EdwardsT.,FuE.,HeltonK.,NelsonK.,TamM.R.,WeigB.H.(2006)Nature,442,412.

Page 140: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

126

AppendixA.DataSheetfortheDielectrophoresisChip(DEPChip)

WedocumentthespecificationsfortheFabutron1.0,showthepinlayoutanddetail

theread/writeprotocolsuchthatanyuserwhoreadsthisdocumentshouldhave

alloftheinformationnecessarytomaketheFabutron1.0workintheirexperiment.

SummaryoftheFabutron1.0

TheFabutron1.0isacustomintegratedcircuitdesignedintheWesterveltlab.The

chipconsistsofanarrayof128x256pixels,11x11μm2insize,controlledbybuilt‐in

SRAMmemory;eachpixelcanbeindividuallyaddressedwitharadio

frequency(RF)voltageupto5Vpp,withfrequenciesfromDC‐11MHz.TheICwas

builtinacommercialfoundryandthemicrofluidicchamberwasfabricatedonits

topsurfaceatHarvard.

TableA1SpecificationsfortheDEPchip

Feature DescriptionBandwidth DC‐11MHzProcess 0.35µm,CMOSMOSISTSMCPixels 128x256(32,768)

11x11µm2ChipSize 2.32x3.27mm2Addressing 8‐bitwordlinedecoder

128bitshiftregister,twophaseclocked

DataLineBandwidth DC‐20MHzPixelVoltage Vp‐p=3‐5VPixelBandwidth DC–5MHzOperatingVoltage 5VOperatingCurrent 30mA–300mA

Page 141: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

127

TableA2.AlistofthepinsfortheDEPChip

Pin DescriptionGND GroundVDD OperatingVoltage(5V)W(0:7)** WordAddressDecoderLinesφ1 PixelVoltage1φ2 PixelVoltage2c2 (0)decouplesSRAMelementsfromthebitline,(1)connects

SRAMelementsonactivatedrowtothebitlinec1 (0)Prechargethebitlines,(1)disconnectprechargeWR ControlLine:(1)enablestheshiftregistertowriteitsvalueto

thebitlines,(0)disablesshiftregisterfromwritingtobitlinesPASS Controlline:(1)Shiftregisterelementslookstoprevious

registerforinput,(0)registerslooktobitlineforinputDATA DatainputlineforshiftregistersCLK2 ClockforshiftregisterCLK1 ClockforshiftregisterOUT Dataoutputforshiftregister

FigureA1PinlayoutfortheDEPchip

Page 142: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

128

Protocols

FigureA2.LoadDataIntoShiftRegisterandWritetoArray.

Page 143: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

129

FigureA3.ReadDatafromSRAMArrayintoShiftRegisterandReadOutArray.

**WordAddressDecoderLinesareincorrectlylabeledonthechip.Notethatgoing

fromMSBtoLSBthecorrectorderingis:w3,w2,w1,w0,w7,w6,w5**

***Alsonotethattherewasanerrorinthedesignoftheshiftregisteranditactually

functionsasa64bitshiftregister,withneighboringregisterstiedtogether.Thefull

128bitsareaccessiblebyloadingin64bitsofdataatatime,anduseclock1toshift

thedataintotheproperposition.***

Page 144: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

130

AppendixB.DataSheetfortheHighVoltageDielectrophoresis/MagneticChip(HV­DEP/MagneticChip)

WedocumentthespecificationsfortheFabutron2.0,showthepinlayout,anddetail

theread/writeprotocolsuchthatanyuserwhoreadsthisdocumentshouldhave

alloftheinformationnecessarytomaketheFabutron2.0workintheirexperiment.

SummaryoftheFabutron2.0

TheFabutron2.0isacustomintegratedcircuitdesignedintheWesterveltlab.The

chipconsistsofanarrayof60x61pixels,30x38μm2insize,controlledbybuilt‐in

SRAMmemory;eachpixelcanbeindividuallyaddressedwitharadio

frequency(RF)voltageupto50Vpp,withfrequenciesfromDC‐10MHz.Interlaced

withtheDEPpixelsareamatrixof60x61wiresthatmaybeaddressablysourced

with100mAtoapplyforcesonmagneticallypolarizableobjects.TheICwasbuilt

inacommercialfoundryandthemicrofluidicchamberwasfabricatedonitstop

surfaceatHarvard.Thechipsuffersfromlocalheatingproblemsduetothe

magneticwires.Animprovedversionwouldswitchtopulsedcurrentstominimize

heating.Thechipalsohasissueswiththemagneticpowerlinesandthedigital

powerlinesbeingcoupled,whichleadstopowerlineissuesonthechip.Anupdated

versionwouldtakeextracaretomakesurethatpowerlinesaredecoupled.

TableB1.SpecificationsfortheDEPchip

Feature DescriptionBandwidth DC‐10MHzProcess 0.6µm,CMOSXFABXC06Pixels 60x61(3,660)

Page 145: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

131

30x38µm2ChipSize 3.4x3.7mm2Addressing 5‐bitwordlinedecoder

128bitshiftregister,twophaseclocked

DataLineBandwidth DC‐20MHzPixelVoltage Vp‐p=20‐50VPixelBandwidth DC–1MHzOperatingVoltage(Logic)

5V

OperatingCurrent(logic)

20mA

OperatingMagneticWireVoltage

5V

OperatingMagneticWireCurrent

0–800mA*

OperatingHighVoltage

50V

OperatingHighVoltageCurrent

20‐60mA**

TableB2.AlistofthepinsfortheDEPChip

Pin DescriptionGND GroundVDD OperatingVoltage(5V)HV HighVoltage(50V)HVg HighVoltageGate(45‐50V),controlstheactiveimpedanceintheRF

voltagedrivingcircuitunderneatheachcircuitVmag PowerSupplyfortheMagneticLines(5V)W(0:5) WordAddressDecoderLinesTHERM AnalogOutputfortheThermometer(0‐5V)φ1 PixelVoltage1φ2 PixelVoltage2c2 (0)decouplesSRAMelementsfromthebitline,(1)connectsSRAM

elementsonactivatedrowtothebitlinec1 (0)Prechargethebitlines,(1)disconnectprechargeWR ControlLine:(1)enablestheshiftregistertowriteitsvaluetothe

bitlines,(0)disablesshiftregisterfromwritingtobitlinesPASS Controlline:(1)Shiftregisterelementslookstopreviousregisterfor

input,(0)registerslooktobitlineforinputDATA DatainputlineforshiftregistersCLK2 ClockforshiftregisterCLK1 ClockforshiftregisterOUT Dataoutputforshiftregister

Page 146: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

132

FigureB1PinlayoutfortheDEPchip

Protocols

TheprotocoltoupdatetheSRAMarrayisidenticalasfortheFabutron1.0

TheSRAMaddressesoftheDEPpixels,magneticwires,andthermometersareas

follows:

TableB3.Amapofthefeaturesofthe50V/magneticchipontheSRAMarray

Array SRAMAddress(word,bit)DEPArray(1:60,1:161) SRAM(3:32,5:126)***MagneticMatrixXdirection(1:2,1:122) SRAM(1:2,5:126)***MagneticMatrixYdirection(1:2,1:122) SRAM(1:30,1:4)***Thermometers(1:16) SRAM(1:8,127:128)***

*Notethatspecialcaremustbetakenwhenthechipisfirstturnedon.TheSRAM

willbesettoarandomstateandmorethanafewmagneticlineswillbeturnedon.

ItisadvantageoustoleavetheVmagturnedoffuntilthestatesofthewirescanbeset

suchthatnoneorfewofthewiresareturnedon.

Page 147: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

133

**Notethataspecialfuseandvoltageconditioning/currentlimitingcircuitrymust

bebuiltintothePCBthathousestheIC.SpikesintheHVlinecandestroythechip.

***FormoredetailonhowtheSRAMarraymapsontotheDEPandMagneticarray

pleaseseelinetheattachedMATLABcodewherethedetailedmappingislaidout.

Page 148: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

134

AppendixC.FabutronControlSoftware

LabviewProgramsusedtoCommunicatewiththeChips

FigureC1.Labviewcodeusedtoreaddatacomingfromthechips.

Page 149: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

135

FigureC2.Labviewcodeusedtowritedatatothechips

FigureC3.BlockdiagramofLabviewcodeusedtoreaddatafromthechips

Page 150: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

136

FigureC4.BlockdiagramofLabviewcodeusedtowritetothechip

Page 151: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

137

MatlabCodeusedtoGenerateandReadPatternstotheChip

ProgramtowritedatafromamatrixcreatedintheGUIandpackageitintoalineofcommandssenttothechipwiththeLabviewprogram

functionfabwrite(image,protocol)

%functionfabwrite(image,protocol)

%

%1.30.2008

%

%CreateaTextfilethatLabViewcanreadwhichdirectsittowriteafile

%totheFabutronandreadfromitatthesametime.theoutputfilez.txt

%WrittenbyDavidIssadoreandKeithBrown

%

%Changedon2.4.2008toalsoworkwith5and50voltfabutrons

%Changedon2.24.2008toaccomidatemultiplelayerimages

%changedon8­15­08toswitchclock1andclock2online90

%

%%%

%%addedbydavetorearrangethedataforthe50Vchip.fornowwewill

%%justconcernourselveswiththeDEParrayandnotmagneticlinesor

%%thermometers

ifprotocol==50

%image=arrange50V(image);

end

%%SetupVariables

frames=size(image,3);

bits_per_row=size(image,2);

rows=size(image,1);

Page 152: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

138

ecorr=10;

bcorr=10;

icorr=10;

command_lines=13+bcorr+ecorr+icorr;

cycles_per_bit=4;

commands_per_row=command_lines+bits_per_row*cycles_per_bit;

%%DefineRowWriteCommand

%Loadsdatafromdataportormemoryintoshiftregister

clock1=zeros(1,commands_per_row);

clock1(linspace(2,commands_per_row­command_lines­2,bits_per_row))=ones(1,bits_per_row);

%clock1(bits_per_row*cycles_per_bit+12)=1;

%Advancestheshiftregister

clock2=zeros(1,commands_per_row);

clock2(linspace(4,commands_per_row­command_lines,bits_per_row))=ones(1,bits_per_row);

clock2(bits_per_row*cycles_per_bit+10+bcorr+icorr)=1;

%Modulatesthedataimagesothatithastherightform

data=zeros(commands_per_row,bits_per_row);

fori=0:bits_per_row­1

data(i*cycles_per_bit+1:(i+1)*cycles_per_bit,i+1)=[1;1;1;1];

Page 153: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

139

end

%Writeenablesdatatobewrittenintomemoryfromtheshiftregister

write=zeros(1,commands_per_row);

write(bits_per_row*cycles_per_bit+2+bcorr:bits_per_row*cycles_per_bit+5+bcorr)=ones(1,4);

%Passtellsitwhentolookatthepreviosregister/data(1)andwhento

%lookatmemory(0)

pass=ones(1,commands_per_row);

pass(bits_per_row*cycles_per_bit+8+bcorr+icorr:bits_per_row*cycles_per_bit+11+bcorr+icorr)=zeros(1,4);

%Tellswhenthewordlinesshouldbeenegaged

%words=zeros(1,commands_per_row);

%words(bits_per_row*cycles_per_bit­10:commands_per_row­1)=ones(1,command_lines+10);

words=ones(1,commands_per_row);

%Clock_C1Loadsdatato/frommemoryto/fromthebitline

clock_c1=zeros(1,commands_per_row);

clock_c1(bits_per_row*cycles_per_bit+3+bcorr:bits_per_row*cycles_per_bit+4+bcorr)=ones(1,2);

clock_c1(bits_per_row*cycles_per_bit+7+bcorr+icorr:bits_per_row*cycles_per_bit+11+bcorr+icorr)=ones(1,5);

%clock_c1(bits_per_row*cycles_per_bit+3:bits_per_row*cycles_per_bit+11)=ones(1,9);

%Clock_C2Turnsoffpre­chargingofpull­upcircuitry

clock_c2=zeros(1,commands_per_row);

clock_c2(bits_per_row*cycles_per_bit+bcorr:bits_per_row*cycles_per_bit+6+bcorr)=ones(1,7);

clock_c2(bits_per_row*cycles_per_bit+6+bcorr+icorr:bits_per_row*cycles_per_bit+12+bcorr+icorr)=ones(1,7);

Page 154: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

140

%outputtriggertellsthecodewhentostartrecording

output_trigger=zeros(1,commands_per_row);

output_trigger(bits_per_row*cycles_per_bit­10)=1;

%output_trigger(1)=1;

%%

temp=clock1;

clock1=clock2;

clock2=temp;

%%

%plotthecontrolsingalstomakesuretheylookok

%Testcodetoberemoved

%

%figure

%plot(clock_c1­1.5,'b­')

%holdon

%plot(clock_c2+0,'r­')

%plot(words+1.5,'g­')

%plot(write+3,'k')

%plot(pass+4.5,'y')

%plot(clock1+6,'b­o','MarkerSize',3)

%plot(clock2+7.5,'r­o','MarkerSize',3)

%plot(data*ones(bits_per_row,1)+9,'k­o','MarkerSize',3);

%plot(output_trigger+10.5,'g­o','MarkerSize',3);

%legend('clockc1','clockc2','wordlines','write','pass','clock1','clock2','data','outputtrigger');

%%BuildCommand

Page 155: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

141

temp=[];

forcf=1:frames

ifprotocol==5

k=linspace(0,255,256);

k=dec2bin(k,8);

%Thisistheorderthatweoriginallysuspected

%changed6­27­08,foundinTom'sbinder.

w0=str2num(k(:,4));

w1=str2num(k(:,3));

w2=str2num(k(:,2));

w3=str2num(k(:,1));

w4=str2num(k(:,8));

w5=str2num(k(:,7));

w6=str2num(k(:,6));

w7=str2num(k(:,5));

%Thisistheorderthatistheoppositeoftheonethatwe

%origniallysuspected.pshaw.

%w0=str2num(k(:,1));

%w1=str2num(k(:,2));

%w2=str2num(k(:,3));

%w3=str2num(k(:,4));

%w4=str2num(k(:,5));

%w5=str2num(k(:,6));

%w6=str2num(k(:,7));

%w7=str2num(k(:,8));

%%buildbitmap

bit_map=zeros(32,(rows+1).*commands_per_row);

Page 156: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

142

fori=0:rows­1

%0.1­0.8notset

%0.9<­>CLK1

bit_map(9,i*commands_per_row+1:(i+1)*commands_per_row)=clock1;

%0.10­0.13notset

%0.14<­>CLK2

bit_map(14,i*commands_per_row+1:(i+1)*commands_per_row)=clock2;

%0.15<­>OUT_TRIGGER­notsetinthisloop

%0.16<­>DATA

%bit_map(16,i*commands_per_row+1:(i+1)*commands_per_row)=0;

bit_map(16,i*commands_per_row+1:(i+1)*commands_per_row)=(data*image(i+1,:,cf)')';

%0.17<­>PASS

bit_map(17,i*commands_per_row+1:(i+1)*commands_per_row)=pass;

%0.18notset

%0.19<­>W0

bit_map(19,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w0(i+1);

%0.20<­>W1

bit_map(20,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w1(i+1);

%0.21<­>WR

bit_map(21,i*commands_per_row+1:(i+1)*commands_per_row)=write;

%0.22<­>C1

bit_map(22,i*commands_per_row+1:(i+1)*commands_per_row)=clock_c1;

%0.23<­>W4

bit_map(23,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w4(i+1);

%0.24<­>W5

bit_map(24,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w5(i+1);

%0.25<­>C2

bit_map(25,i*commands_per_row+1:(i+1)*commands_per_row)=clock_c2;

Page 157: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

143

%0.26­0.27notset

%0.28<­>W6

bit_map(28,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w6(i+1);

%0.29<­>W2

bit_map(29,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w2(i+1);

%0.30<­>W7

bit_map(30,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w7(i+1);

%0.31<­>W3

bit_map(31,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w3(i+1);

%0.32notset

end

%Settheoutputtriggertogooffonlyonce

bit_map(15,1:commands_per_row)=output_trigger;

%Setclock1,clock2andpassforthefinaldataout

bit_map(9,rows*commands_per_row+1:(rows+1)*commands_per_row)=clock1;

bit_map(14,rows*commands_per_row+1:(rows+1)*commands_per_row)=clock2;

bit_map(17,rows*commands_per_row+1:(rows+1)*commands_per_row)=pass;

elseifprotocol==50

%%preparewordlines

%preparewordlines

k=1:32;

k=dec2bin(k,5);

w0=str2num(k(:,5));

w1=str2num(k(:,4));

w2=str2num(k(:,3));

Page 158: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

144

w3=str2num(k(:,2));

w4=str2num(k(:,1));

%%buildbitmap

bit_map=zeros(32,(rows+1).*commands_per_row);

fori=0:rows­1

%0.1­0.16notset

%0.17<­>PASS

bit_map(17,i*commands_per_row+1:(i+1)*commands_per_row)=pass;

%0.18<­>C1

bit_map(18,i*commands_per_row+1:(i+1)*commands_per_row)=clock_c1;

%0.19<­>C2

bit_map(19,i*commands_per_row+1:(i+1)*commands_per_row)=clock_c2;

%0.20<­>W4

bit_map(20,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w4(i+1);

%0.21<­>DATA

bit_map(21,i*commands_per_row+1:(i+1)*commands_per_row)=(data*image(i+1,:)')';

%0.22<­>OUT

%0.23<­>W1

bit_map(23,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w1(i+1);

%0.24<­>W0

bit_map(24,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w0(i+1);

%0.25<­>WR

bit_map(25,i*commands_per_row+1:(i+1)*commands_per_row)=write;

%0.26and0.27notset

%0.28<­>CLK1

bit_map(28,i*commands_per_row+1:(i+1)*commands_per_row)=clock1;

%0.29<­>W3

Page 159: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

145

bit_map(29,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w3(i+1);

%0.30<­>CLK2

bit_map(30,i*commands_per_row+1:(i+1)*commands_per_row)=clock2;

%0.31<­>W2

bit_map(31,i*commands_per_row+1:(i+1)*commands_per_row)=words.*w2(i+1);

end

%Settheoutputtriggertogooffonlyonce

bit_map(15,1:commands_per_row)=output_trigger;

%Setclock1,clock2andpassforthefinaldataout

bit_map(28,rows*commands_per_row+1:(rows+1)*commands_per_row)=clock1;

bit_map(30,rows*commands_per_row+1:(rows+1)*commands_per_row)=clock2;

bit_map(17,rows*commands_per_row+1:(rows+1)*commands_per_row)=pass;

end

%convertto32­bitnumber

exponent=(1:32)'*ones(1,size(bit_map,2));

temp=[temp,sum(bit_map.*2.^exponent,1)];

end

globalcommand;

command=temp;

%tellittowrite

globalstatus;

status=1;

Programtoreaddatafromthechipandrepackageitasamatrix

Function[pixel_array]=fabload(sizes,protocol)

%function[pixel_array]=fabload(sizes)

%CreatedbyKeithBrown1.30.2008toreadfilescreatedbytheLabView

%scriptthatreadsthefabutron

%2.12.2008Workswith5Vchip

Page 160: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

146

%commentedoutbydavidissadoretoletlabviewpassthedatawithout

%savingtotheharddrive

%[headerdata]=hdrload('out.txt');

%%

globalouts

data=outs;

size(data)

%%

ifprotocol==5

%fabwrite

icorr=10;

bcorr=10;

ecorr=10;

overhead_per_row=13+icorr+bcorr+ecorr;

offset=26+icorr+bcorr+ecorr;

%%fabverify

%icorr=0;

%bcorr=0;

%ecorr=0;

%overhead_per_row=13+icorr+bcorr+ecorr;

%offset=21+icorr+bcorr+ecorr;

pixel_array=zeros(sizes(1),sizes(2));

bits_per_row=4.*sizes(2)+overhead_per_row;

temp=zeros(sizes(1),sizes(2)*4);

forj=1:sizes(1);

temp(j,:)=data(offset+bits_per_row*(j­1):offset+bits_per_row*(j­1)+sizes(2)*4­1);

end

pixel_array=temp(:,4*(1:sizes(2))­1);elseifprotocol==50

Page 161: Hybrid Integrated Circuit/Microfluidic Chips for the Control of Living Cells and UltraSmall

147

icorr=20;

bcorr=20;

ecorr=20;

overhead_per_row=(15+icorr+bcorr+ecorr).*1;

pixel_array=zeros(sizes(1),sizes(2));

bits_per_row=8.*sizes(2)+overhead_per_row;

%bits_per_row=4.*sizes(2)+overhead_per_row;

%offset=45

offset=­11+icorr+bcorr+ecorr;

temp=zeros(sizes(1)./2,sizes(2)*8)';

%temp=zeros(sizes(1),sizes(2)*4);

size(temp)

forj=1:sizes(1)./2;

%forj=1:sizes(1);

temp(:,j)=data(offset+bits_per_row*(j­1):offset+bits_per_row*(j­1)+sizes(2)*8­1);

%temp(j,:)=data(offset+bits_per_row*(j­1):offset+bits_per_row*(j­1)+sizes(2)*4­1);

end

%pixels(1:60,1:30)=DEP_array(1:60,1:30)

%pixels(61:120,1:30)=DEP_array(1:60,31:60);

pixel_array(1:60,1:30)=temp(4*(1:60)­3,1:30);

pixel_array(1:60,31:60)=temp(4*(61:120)­3,1:30);

%pixel_array=temp(:,4*(1:sizes(2))­1);

size(pixel_array)

end