28
Hydraulics and Pumping BOOK 10

Hydraulics and Pumping - Irrigation NZ

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hydraulics and Pumping - Irrigation NZ

i|HYDRAULICS AND PUMPING

Hydraulics and Pumping

BOOK 10

Page 2: Hydraulics and Pumping - Irrigation NZ

ContentsHydraulics 1

Volume 1

Flow 1

Headandpressure 2

Frictionloss 3

Commonproblems 6

Reducingairaccumulation 8

Pumps 10

Whyarepumpsrequiredforirrigation? 10

Basicpumpdesignfeatures 10

Centrifugalpumpcomponents 12

Pumpstypesandtheirapplications 13

Pumpperformance 15

IntroductiontoNPSH(NetPositiveSuctionHead) 18

Pumpsinseriesandparallel 19

Pumpsetup 21

ThisbookispartofaseriesprovidingacomprehensivetrainingresourceforirrigationindustryparticipantsinNewZealand.

Itprovidesanoverviewofhydraulicandpumpingconsiderationsforirrigation.

Compiledby:BirendraKC,S.McNally,I.McIndoeandA.Curtis.

©IrrigationNewZealand2015

SupportedbySustainableFarmingFund

Page 3: Hydraulics and Pumping - Irrigation NZ

1|HYDRAULICS AND PUMPING

Hydraulics

HYDRAULiCS

• Thetransportationofwaterthroughpipeshasanumberofcharacteristicsandpropertiesthatmustbeconsideredwhenbothdesigningandmanagingirrigation.

VolumeThestandardunitformeasuringavolumeofwaterusedforirrigationinNewZealandisacubicmetre(m3).Forsmallervolumeslitres(l)mayalsobeused.Whenconvertingbetweenunits1m3=1,000l.

• 1mmdepthofwaterspreadacrossanareaof1m2isavolumeof1litre(1l).

• 1mmdepthofwaterspreadacross1hectare(ha)is10,000lor10m3–thisisacommonlyusedterminirrigationapplication.

Flow

FLOW RATEFlowrateisameasureofthevolumeofwatertravellingpastagivenpointforagiventime.TherearethreemainmeasuresusedforirrigationinNewZealand:

1. litrespersecond l/s

2. cubicmetresperhour m3/hr

3. cubicmetrespersecond m3/sorcumecs(normallyusedforschemeflows)

Whenconvertingbetweenunits:

• 1l/s=3.6m3/hr

• 1,000l/s=1cumec

FLOW VELOCiTY Flowvelocityisthespeedatwhichwatertravelswithintheirrigationsystem.Forexample,themainlineflowvelocity.ThecommonunitusedforirrigationinNewZealandismetrespersecond(m/s).

Page 4: Hydraulics and Pumping - Irrigation NZ

2 | HYDRAULICS AND PUMPING

HYDRAULICS

Head and pressure Pressureisameasureoftheforceperunitarea.Influidspressureisgeneratedbycontainingaliquid,withinapipeforexample,andthenapplyingaforcethrougheithermechanicalmeans,byapumpforexample,orfromgravity.Headisameasureofpressureandisexpressedinmetres.Itisthepressureexertedbytheequivalentheightofacolumnofwater.

Figure 1.

1 m

0.1 bar g 0.3 bar g

3 m

1 bar g

10 m

Thestandardunitsofmeasureforpressureare:

1. kilopascals kPa

2. bar bar

3. poundspersquareinch psi(imperialmeasurement)

Whenconvertingbetweenunits:

• 10metresofhead=1barofpressureor100kPaor14.5psi

Onebarofpressureistheequivalenttotheatmosphericpressureatsealevel.

Forwater,headandpressureareeffectivelythesamething.Forexample,ifaverticalcolumnofwaterhasaheadof10m,apumphastoproduce100kPaofpressuretopushthatwatertothetopofthecolumn(equalisingtheforcebeingexertedbygravity).

Forliquidsotherthanwater,headcanbedifferenttothepressuredependingonwhethertheliquidisheavierorlighterthanwater.Withinanirrigationcontextthisisusuallynotsignificantunlessotherliquids,effluentforexample,areinjectedintotheirrigationsystem.

Temperaturealsohasanimpact.The‘weight’ofthecolumnofwaterathighertemperatures(e.g.25˚C)isfractionallylighterthanatlowerones(e.g.5˚C)becauseofthedifferentdensitiesofwateratdifferenttemperatures.Withinanirrigationcontextthisisnotsignificantacrossthelikelyrangeoftemperatures.

Page 5: Hydraulics and Pumping - Irrigation NZ

HYDRAULICS

3|HYDRAULICS AND PUMPING

FLOW CHARACTERiSTiCSWatereithermovesaslaminarorturbulentflow.Thereisalsoaphasecalledtransitionalflowwherethereisamixofthetwo.Laminarflowoccursatlowvelocity,andasthewatermovesfastertheflowchangesthroughtransitionaltoturbulentflow.Thepointatwhichtheflowtypechangesisvariable.Itisdeterminedbyanumberoffactorsincluding;pipediameterandroughness,suddenchangesindirectionorobstructionssuchasvalves.Turbulentflowshaveamuchhigherfrictionlossbecauseoftherandommovementofthewatermolecules.Velocityisthereforeanimportantfactorasithasadirectrelationshiptothefrictionlosseswithinapipe.

Figure 2. Turbulent and laminar flow of water.

TURBULENT

LAMINAR

Friction lossForwatertoflowthroughpipes,itneedstobepressurisedthroughapplyingenergy.Aswatermovesagainstthewallsofthepipe,frictionoccursandthewaterlosesenergy.ThislossresultsinalossofpressurewhichisbetterknownasFriction Loss.

Anythingthatmakesitharderforwatertoflowthroughapipeincreasesfrictionloss.Excessfrictionlosscaneitherreducesystemperformanceand/orwasteenergy.Thisbecomesmorecriticalwhenpayingforelectricityorfossilfuelstodriveapumptogeneratetheflow.

Thethreemainpipedesignfactorsthatinfluencefrictionlossinpipes:

• Diameter. Foragivenflowrate,thesmallerthepipediameter,thehigherthevelocityofthewaterthroughthepipe;themorefrictionlossoccurs.Thisisthemostsignificantfactortoconsiderwithinthepipedesignprocess.

• Surface roughness. Theroughertheinsidewallofthepipe,themorefrictionloss.Thisisacharacteristicofthepipeselectedsoisanimportantconsideration.

• Length. Thelongerthepipe,themorefrictionlossoccurs.Wherelongpiperunscannotbeavoided,thedesignprocessneedstoconsiderdiameterandroughnessaspartofthepipeselectionprocess.

Othercharacteristicsthataffectfrictionlossinpipesforirrigationsystems:

• Fluid viscosity. Thickerfluidsexperiencehigherfrictionandthismaybeafactorforpumpingeffluentbutisnotanissueforfreshwaterirrigation.

• Pipe material. Somematerialscreatemorefrictionlossesthanothersduetotheroughnessandthejointingmethods.

• Pipe age.Mostpipes,especiallymetalpipe,becomerougherwithage(theycorrode)andthisresultsinmorefrictionloss.

• Fittings. Allfittingssuchaselbows,tees,reducersandvalvescreatefrictionlosses.

Page 6: Hydraulics and Pumping - Irrigation NZ

4 | HYDRAULICS AND PUMPING

HYDRAULICS

Todeterminefrictionloss,allpipeandfittingsmanufacturersprovidefrictionlosschartsfortheirproductsmeasuredunderstandardconditions.

Tocalculatepipefrictionloss:

1. Determinethepipetype.

2. Determinetheflowrateorvelocity(somechartsuseboth).

3. Determinethelengthofpipe.

4. Findthefrictionvalueonthemanufacturers’chartsforthepipetypeandflow(usuallyexpressedaspressurelossper100m).

5. Multiplythefrictionvaluebythelengthofpipe.

Forexample,a32mm(OD)lowdensitypolyethylenepipewithaflowrateof1l/shasafrictionlossvalueof61kPa/100mlength.

Thereforea350msectionofpipewillhaveafrictionlossof61x3.5=213.5kPa.

FRiCTiON LOSS EQUATiONS Thefollowingequationsareusedtogeneratemanufacturers’frictionlosstables.Wheretablesarenotavailabletheycanbeusedtocalculatedfrictionlossfromfirstprinciples.

Figure 4. Friction in pipes Adapted from www.wermac.org/steam/steam_part9.html

h1 h2

Flow velocity (v)

Length (L)

Point 1 Point 2

Pipe diameter (D)

hf

Inapipewithinsidediameter(D),thefrictionloss(hƒ)betweenpoint1and2forafluidflowingwithvelocity(v)canbeestimatedusingtheDarcy-Weisbachequation:

hƒ=ƒ( LD )( v2

2g )Whereƒisthefrictionfactorofthepipeandgisaccelerationduetogravity.

Thisequationisrecommendedforfrictionlosscalculationsinlaminar,transitionalandturbulentflowconditions.

Page 7: Hydraulics and Pumping - Irrigation NZ

HYDRAULICS

5|HYDRAULICS AND PUMPING

Ifflowisfullyturbulent,theHazen-William’sequationisrecommendedinstead:

hƒ=Kx( 100C )1.852

x Q1.852

D4.866 x

L100

Wherehƒ=headloss, K=unitcoefficient(2.38×108forSIunit),C=coefficientofretardationanddependsonpipematerial,Q =flowrate,D=insidediameterandL=pipelength.

Howeverforturbulentflowinsmoothpipes(e.g.PVC,PE,ABS),theWatters-Kellerequationisbetter:

f=0.32×R-0.25

WherefistheDarcy-Weisbachfrictionfactor.

FRiCTiON LOSS THROUGH FiTTiNGSAllfittingsthatwaterpassesthroughhavefrictionlossesassociatedwiththem.Generallyfrictionlossinstandardfittings(corners,teesandreducers)isquitesmall,butformorespecialisedfittings(automaticvalves,pressurereducingvalves,backflowpreventersandfilters)itcanbequitelarge.

Thefrictionlossthroughpipefittingsneedstobedeterminedwhenworkingoutthetotalpressurerequirementsforasystem.

Frictionlossinfittingsandvalvesisbestdoneusingmanufacturer’stables.

Howeverwheretablesdon’texisttheycanbecalculatedbyusingthefollowingformula:

hƒ= k x v2

2xg

Wherekisresistancecoefficientforthefittings.

TOTAL DYNAMiC, STATiC AND DiSCHARGE PRESSUREPumpingsystemsconsistofthreemaincomponents;eachwithanumberofpartsmakingupthetotalpressurerequirements.

1. Suction or supply characteristicsa. Suctionpipefrictionlossb. Suctionliftc. Suctionentranceloss

2. Pump and delivery a. Pumpdischargepressureb. Frictionlossesthroughpipesandfittingsc. Elevationchanges

3. Discharge pressure requirements a. Multipleemitters.

Thesumofthepressurerequirements(alloftheabove)iscalledthetotaldynamicpressure(ortotaldynamichead).

Staticpressure(orhead)isthepressureneededtoovercomeallofthepressurestothepointofirrigatordischarge,includingtheelevationchanges,suctionanddistributionlosses.

Thepumpdischargepressureisthepressureneededatthepumpdischargepointtoovercomeelevationchanges,pressurelossesinthesystemanddelivertherequiredoperatingpressureoftheirrigationsystem.

Page 8: Hydraulics and Pumping - Irrigation NZ

6 | HYDRAULICS AND PUMPING

HYDRAULICS

Thefollowingdiagramdisplaysthedifferentcomponents–staticsuctionhead,totalstaticheadandstaticdischargehead.

Figure 5. Static suction head, total static head and static discharge head.

Totalstatichead

Staticsuction

head

Staticdischarge

head Staticsuction

lift

Staticdischarge

head

Totalstatichead

Theabovepressurecalculationsareusedinthedesignprocesstocalculatepumpsizesandspecifications,alongsidepipesizesandclassestobeused.Eachmodelofpumpandclassofpipehasamaximumandoptimumoperatingrangesoknowingthesystemhydraulicpressureandflowrequirementsiscrucialtoensurecorrectoperation.

Common problems

WATER HAMMERWaterhammeriscausedbyrapidchangesinwatervelocityinthepipeline.Forexample,thewatermovingalongapipecollidesagainsttheclosedend,creatinganexcesspressurespike(waterhammer)whichmovesbackalongthepipe.Thisoverpressurewaveisproportionaltothevelocitychangeofthewater;ifthechangeinflowvelocityisfastthepressurewavecanbeverylarge.

Waterhammertypicallyoccursinapipelinewhenavalveisrapidlyopenedorclosedorwhenthepumpsuddenlystops.Thiscancreatesignificantpressurespikesinexcessoftheratedpressurecapacityofapipeorfitting.Inthecaseofsteelorfibrereinforcedcementpipes,waterhammerpressuresaremoreseriousbecauseoftheinelasticnatureofthepipematerial.PVCandglassfibrehaveanadvantageoverotherpipetypesduetotheirelasticitywhichcanabsorbthepressurewaveasitmovesalongthepipe.

Page 9: Hydraulics and Pumping - Irrigation NZ

HYDRAULICS

7|HYDRAULICS AND PUMPING

Figure 6. Water hammer.

Valve closed,water still

Valve open,moving water

Valve closesWATER HAMMER

Reducingwaterhammercanbeachievedby:

• Controllingandslowingvalveandpumpoperationssothatchangesinvelocityaremadegradually.

• Minimisingvelocitiesbyusinglargediametermainlinepiping–1.5m/sisanacceptablemaximumvelocityinmostinstances.

• Well-designeddistributionsystems–includingpipes,valvesandairvalvesthatmanagechangeinflowsituationoraccommodatewaterhammertowithinthetolerancesofthesystem.

• Theuseofflowcontroland/orsurgeanticipationvalves.

• Carefuldesignofpumpingstation’scontrolvalves,particularlyforlargesystems.

AiR ACCUMULATiONAiraccumulationfrequentlyoccursinirrigationsystems.Commonexamplesofthisinclude:

• Whilstthepipelineisfilling,thewaterbeingaddeddoesnotdisplacealltheairinthepipeline.

• Whenthelevelofawatersourcedropsandthesuctionorvacuumactionofthepumppullsairintothepiping.

• Infaultyinstallationsorleaksinpumpsuctionhoses(thepumpsucksinair).

• Aircanbedissolvedintowaterandisthenreleasedwhenpressureand/ortemperatureconditionschange.Aswatercancontainmoreairathighpressure,anypressuredropwillallowittoescape.Thissituationoftenoccurswithundulatingpipelines,andespeciallyatthedownstreamsideofpressure-reducingvalves,partiallyclosedgatevalves,orsimilarobstructionsthatcauseapressuredrop.

Allofthesesituationscauseairpocketstoaccumulateinthetopofpipelines,especiallyathighpointsinanundulatingnetworkoratfittingswheretheycauseachangeindiameter.

Underchangingflowvelocitysituations,theseairpocketscanbemobilisedleadingtounwantedeffectsontheirrigationsystem.Airdischargefromemittersorevenairvalvescantriggerpressureinstabilityand/orwater-hammer.

Page 10: Hydraulics and Pumping - Irrigation NZ

8 | HYDRAULICS AND PUMPING

HYDRAULICS

Airpocketscanalsocreatemajorissuesin‘flat’pipingsystemswithlittleslope,orinlow-velocitysystemswheretheflowofwaterisnotcapableof‘clearing’theair.Thepresenceofaircansignificantlydecreasethecrosssectionoftheflowpathinthepipewhichincreasesthepump’senergyconsumption;thepumphavingtoworkhardertopushwaterpasttheairpocket.

Apipelineideallydesignedforairoutletmust:

• haveuniformascendingslopeintheflowdirection,and

• bewithoutanyformofobstruction.

Fewpipelinesofanylengthandnogravitylineofanykindcanmeettheseidealrequirements.Peaksandcontinuousslopechangesarenormallyunavoidable.

Reducing air accumulation

LOCATiON OF PiPELiNEDuringthepipelinedesignprocessitisadvisabletokeepthefollowingdesignprinciplesfrontofmindsothatairaccumulationsareminimised:

• Attempttopositionthepipelineatleastsixtoninemetresbelowthehydraulicgradient.

• Avoidlongdistances(>500m)ofhorizontalpipelines.

• Maintainslopesofatleast1:500.

• Avoidextremevelocities,bothhighandlow.

Conditionswhichnecessitatetheuseofspecialisedairreleaseequipmentshould,asfaraspracticable,beavoided.Ifspecialisedairreleaseequipmentisrequired,uncomplicatedorsimpleautomatedoptionsthateliminatetheneedforconstantsupervisionandmaintenanceshouldbechosen.

Airvalvessizedtoremoveslowlyaccumulatingair(i.e.fromleaksordissolvedair)arenotgenerallybigenoughtoremovetheairattheraterequiredforlinefilling.Theaircompressedtohighpressureswithinapipelineduringuncontrolledrapidlinefillingcanleadtocatastrophicanddangerouspipelinefailure.Airvalveselectionisaspecialistareaandmanufacturers’specificationsshouldbeconsultedtoaccommodatebothslowandrapidairremoval.

Cautionshouldbeusedwheretruesiphonconditionsarise.Whilesiphonsofuptoapproximately4.5metresabovethesteepesthydraulicgradientcanphysicallybeaccommodatedbysomepipematerials,thenegativepressurecreatedcancollapsepoorlyinstalledpipesand/orrendernormalautomaticairandanti-vacuumvalvesuseless.

PLACEMENT OF AiR VALVESAirvalvesshouldbeinstalledatthefollowingpositionsonapipeline:

• Peaks Multi-purposeairvalvesarerequiredatallpositionswherepeaksarise.Peaksarecreatedwhereverthepipelinehasareversalofslopewithrespecttothehydraulicgradient.Thesecreatelow-pressurezoneswhereaircanaccumulate.Airvalvesshould,attheveryleast,besitedattheendsofsuchapipesection,andpossibly,dependingonlength,inbetween.Itisimportanttonotethat,whileairaccumulationswilloccuratpeaks,theprecisepositionoftheairaccumulationisactuallysituatedatthepointwhereapeakwithregardtothehydraulicgradientcanbeidentified.

Page 11: Hydraulics and Pumping - Irrigation NZ

HYDRAULICS

9|HYDRAULICS AND PUMPING

Figure 7.

a + b + c + d

Pump Shut-off Head

Air Valves Closed

Pump

Hydraulic Gradient – Pipe Flowing Full

ReservoirH.W.L.

L.W.L.

Air Valves Closed

d

c b

a

aa + b

a + b + c

• Slope changes that do not create peaks Aircanaccumulateatanypointwhereadescendingslopesteepens.Whileapeakisnotalwaysformed,itisadvisabletoinstallatleastasmallorificeairvalveatthispoint.Similarly,itisgoodpracticetoinstallasmallorificeairvalveatanypointwhereanascendingslopelevelsoff.

• Long ascending pipe section

• Additionalvalvesmayberequiredtoaccommodatehighairflowratesduringfillingordraining,dependingonthelengthofthesection.Theseairvalveswillmostlybethelargeorificetypespacedatapproximately400to800m.

• Long, horizontal pipe sections (slope <1:500) Iflonghorizontalpipesectionsareunavoidable,multipurposeairvalvesmustbeprovidedattheendsofsections,aswellasat400to800mintervals.

• The pipeline as a whole Oncethesittingofairvalveshasbeenundertakenforallindividualpoints,itisthenadvisabletoinvestigatethepipelineasawholetoensurethatasufficientnumberofairvalveshavebeenprovidedforinthetotaldesign.

Generallymoreairvalvesshouldbeprovidedinthefirstsectionofapipelinethaninthelastsection.Aruleofthumbbeing,airvalvesshouldgenerallybeplacedascloseas150mapartatthebeginningofapipeline,andasfarapartas800to1000moverthelastsection.

Itisgenerallygoodpracticetoensurethatasmuchairaspossibleisremovedfromhighpressuresections.Thisminimisesthepotentialforairexpansioninlow-pressurezones.

Page 12: Hydraulics and Pumping - Irrigation NZ

10 | HYDRAULICS AND PUMPING

PumpsWhy are pumps required for irrigation?Watersourcesforirrigationcanbeatahigher,thesame,orlowerelevationthantheareatobeirrigated.Waterfromahigherelevation,whendistributedthroughaclosedconduit(apipe),possessespotentialenergy.Thismayenablewatertobesuppliedforirrigationattherequiredpressurewithoutaddingexternalpower.However,forsimilarorlowerelevationsthewaterwillhaveazeroornegativepotentialenergy.Thisentailstheadditionofenergysoitcanbesuppliedattherequiredpressure.Apumpisneededtodothis.Putsimply,apumpisamachinethattransfersmechanicalenergyintopressureandvelocityenergyinflowingwater.

Therequiredflowrateanddischargepressure,combinedwiththeverticaldistancebetweenthewaterlevelandthepump,formthebasicvariablestoselectthetypeandpowerrequirementsofapump.Flowrateisameasureofthevolumepassingapointperunittime.Dischargepressuredescribesthepressureofaliquidasitleavesapump.

Anothersignificantfactortoconsiderwhenselectingapumpforirrigationisthewatersource.Ifthewatersourceisshallow,surfacewater(river,lakes,canals,ponds,sumps,reservoirs,etc.,typically1–6mlift),asubmersiblepump,short-coupledverticalturbinepump,orendsuctioncentrifugalpumparetheavailablechoices.Ifthewatersourceisdeepgroundwater,orthepumpissignificantlyabovethewatersurface(6–300mlift),adeepwellormulti-stagesubmersibleturbinepumparenecessary.

Thequalityofwaterisalsoafactortoconsiderwhenselectingapump.Abrasivessuchassandorsilt,debris,andothersolids,alongwithanycorrosivecharacteristicsofthewatersourceneedtobecarefullyconsideredinordertoselectrightpump.

Basic pump design features

CENTRiFUGAL PUMPSThemajorityofpumpsusedintheirrigationindustryfallunderthegeneralcategoryofcentrifugalpumps.Thesubcategoriesofthecentrifugalpumpinclude;ClosedCoupledElectric,HorizontalFrameMounted,VerticalMountInducer,SpecialApplicationEngine(SAE)EngineMount,GearBoxPTO,VerticalTurbineandSubmersible.

Centrifugalpumpsrelyonacentrifugalforcetoaddenergytowater.Theyhaveanimpellermountedonashaftthatisrotatedbyamotororengine.Theimpellerismountedinthepumphousing–thevolutecasing.

Theliquidentersthecentre,oreye,oftheimpellerthroughthesuctionorpumpinlet(suctionside).Duringrotation,theimpellerdispersestheliquidradiallythroughcentrifugalforcetoitsouterperipheryatahighvelocity.Astheliquidleavestheimpeller,thishighvelocitydecelerateswithinthevolutecasingwhereitsenergyisconvertedintopressurebythediffuser(theinsideshapeofthepumphousing).Theliquidthenpassesthroughthevolutecasingintothedischargenozzle.Thefollowingfigureshowsthemaincomponentsofacentrifugalpump.

Page 13: Hydraulics and Pumping - Irrigation NZ

11|HYDRAULICS AND PUMPING

PUMPS

Figure 8. Main components of a centrifugal pump

Suction eyeImpeller

Volute casing

Vanes

Discharge

POSiTiVE DiSPLACEMENT PUMPS Pistontypereciprocatingpositivedisplacementpumpsarecommonlyusedforinjectingagri-chemicalsintoanirrigationsystem,butarerarelyusedforthemainirrigationpump.

Positivedisplacementpumpsuseareciprocatingmechanicalelementsuchasapistonorflexingdiaphragmtomovewater.Eachstrokeofthepiston(orflexofthediaphragm)pushesafixedamountoffluidafixeddistance.

Thespiralshapedrotarypumpissometimesusedfordeeperboreholes.

Themostimportantcharacteristicofpositivedisplacementpumpsistheydeliverlargepumpheads.However,thischaracteristicisalsoadisadvantage.Ifthesystemdeliveryrequirementsdecrease,thesystempressurewillincrease,whichcouldhaveseriousconsequencesincludingpipefailureorpumpdamage.Pressurereleasevalvescannegatethisrisk.

Page 14: Hydraulics and Pumping - Irrigation NZ

12 | HYDRAULICS AND PUMPING

PUMPS

Centrifugal pump componentsThediagrambelowoutlinestheimportantcomponentsofabasiccentrifugalpump.

Figure 9. Important components of a basic centrifugal pump.

Suctionnozzle

Impeller

Volute

Discharge nozzle

Casing

SealShaft Oil rings

Bearings

SUCTiON NOZZLEThisistheinlettothepumpvolutecasingonthesuctionside.Itsfunctionistoprovideaconnectionforsystempipingtothepumpinlet,allowingforsmoothtransitionoftheliquidintotheeyeoftheimpellerwithoutobstruction.

iMPELLERThisisthemaincomponentofthepump.Theimpeller,thebladedrotatingassembly,canbeopen,semi-openorenclosed.Theopenimpellerhasnoshroudoneitherside,semi-closedimpellerhasashroudononesideandtheenclosedimpellerhasshroudsonbothsides.Theshroudshelptodirectandguidetheliquidflow.Theenclosedimpellerismostcommonlyusedinirrigationpumpswhilethesemi-closedimpellerisusefulforeffluentapplications.

Theimpellor’spurposeistoimpartenergytotheliquidbymeansofacentrifugalforce.Theimpellerwidthinfluencescapacityandhead;theimpellerareainfluencestheNetPositiveSuctionHead(NPSH)requiredandhydraulicefficiency;thenumberofimpellervanesinfluencetheslopeofthehead-capacitycurve.

VOLUTE CASiNGThisisthecomponentofthecentrifugalpumpthathousestheimpeller.Itsfunctionistocollectthehighvelocityliquidexitingtheimpeller,convertittopressure,andchannelittothedischargeflange.

SHAFTThisisthesolidcylindricalcomponentonwhichtheimpeller,shaftsleeve,andbearingsaremounted.It’sthebackboneofthepump.Itspurposeistoprovideameansthroughwhichpoweristransmittedtotheimpellerfromthepumpdriver.

BACK PLATEThisisaremovablecomponentthatisattachedtothepumpvolutecasingoppositethesuctionside.Dependingonthemanufactureritmayalsohouseacasingwearring.

Page 15: Hydraulics and Pumping - Irrigation NZ

13|HYDRAULICS AND PUMPING

PUMPS

GLANDThisattachestothepumpbackplate.Itspurposeistofollowandcompressthepackinginastuffingbox,formingasealaroundtheshaftwhereitextendsthroughthestuffingbox.

BEARiNGSTheprimarypurposeofthebearingistoholdtheshaftinthebearingframeandabsorbtheradialandaxialforcesappliedtotheshaftasaresultofpumpoperation.

WEAR RiNGSThesecomponentsarereplaceablestationaryringsmadeofvariousmaterialsinavarietyofsizesandwidths.Theirpurposeistoprotectthevolutecasingfromwear,andmaintainapredeterminedrunningclearancewiththeimpellerforpressurebreakdown.Thewiderthewearring,themorethrottlingsurfaceavailabletomaintainefficiencyoverthelifeofthecomponent.Somepumpmanufacturersprovidereplaceablewearringscalledimpellerorrotatingwearringsontheimpelleraswellasthevolutecasing.Wearringsarereplaceable,sothepredeterminedrunningclearancescanbemaintainedoverthelifeofthepump,withouthavingtoreplaceexpensivemajorcomponentssuchasvoluteorimpeller.

Pumps types and their applications

SiNGLE STAGE END-SUCTiON PUMPSThispumpisthesimplestandmostcommonlyusedforirrigation.Itisthemostbasiccentrifugalpumpandalltheothertypeshavebeendevelopedfromittosatisfyspecificrequirements.

Parallelandseriesarrangementsarecommonlyfoundwiththesetypesofpumps.

ThemainreasonnottousethesetypesofpumpsisNetPositiveSuctionHead(NPSH)problems.

MULTiSTAGE PUMPSAmultistagepumpisacentrifugalpumpwithaseriesofimpellersarrangedinseriesononeshaft.Thewaterispumpedfromoneimpellertothenext,andjustasforpumpscoupledinseries,itismeantforlargerpumpheads.Eachsuccessivepumpactsasaboosterpumpaddingpressuretothewater.Asufficientnumberofstages(bowlassemblies)areconnectedtoproducethedesiredpressure.Byusingalargenumberofstages,veryhighpressurecanbeproduced.Themaximumflowrate(capacity)ofthepumpisdeterminedbythefirstimpeller.Eachsuccessiveimpelleronlyservestoincreasethepressureorhead.Atthetopofthepump,thewaterischannelledthroughadischargeheadintohorizontalpiping,whichsuppliestheirrigationsystems

SUBMERSiBLE SiNGLE STAGE END SUCTiON PUMPSAsubmersiblepumpiswherethewholepumpunitisinthewaterwiththeimpellers,bowls,andtheelectricmotorpoweringthepump,allinstalledbelowthewaterlevel.

ThesetypesofpumpshavebeenspeciallydevelopedforsituationswhereNPSHproblemsarebeingexperienced.

Thepumpisinstalledinsuchawaythattheimpelleritselfisbelowthewaterlevelandthepumpthushasapositivesuctionhead.Theyareusuallyappliedwherelargepumpdeliverieshavetobepumpedagainstsmallpumpheads.

Submersibletypesofpumps,however,alsoshowupasmultistagepumps.

Page 16: Hydraulics and Pumping - Irrigation NZ

14 | HYDRAULICS AND PUMPING

PUMPS

SUBMERSiBLE MULTiSTAGE PUMPSTherearetwocommontypesofsubmersiblemultistagepumps,namelythetypeswherethedriverisplacedabovegroundandthetypeswherethedriver–inthecaseofanelectricmotor–isbelowwaterlevel.Anexampleoftheformeristheverticalturbinethatwassopopularforboreholes,whichintheearlydayswasknownasa‘bucketpump’.Thedriverisplacedabovegroundandtheimpellers,whicharearrangedinseries,aredrivenbyashaft.

VERTiCAL TURBiNE PUMPSInthesepumpsadrivemotororengineislocatedabovetheground,butthepumpitselfisinstalledbelowtheground,belowthewaterlevel.Itistypicallyusedforirrigationapplicationswherethewaterlevelisbelowthepracticallimitsofacentrifugalpump.Theterm‘verticalpump’isusedbecausethegeneraldirectionofwatermovementisverticallyupwardthroughthevariousstages.

SUBMERSiBLE BORE HOLE PUMPSSubmersibleturbinepumpsusedinirrigationareanevolutionoftheverticalturbinepumpdesign.Verticalturbinepumpshaveamotorontopofthewell.Thesubmersiblepumphasthemotorattachedtothepumpinthewell.

Likeverticalturbinepumps,submersiblesareusedinirrigationapplicationwherethewaterlevelisbelowthepracticallimitsofacentrifugalpump.Asthenameimplies,theentireunitofthepumpissubmergedunderwaterandeverythingelectrical,fromthecabletomotorissealedfrommoisture.Thereareawiderangeofsizesanddesigns.

Asubmersiblepumpconsistsofaseriesofimpellersanddiffusersstackedtogether,withawater-proofelectricmotormountedbelowthepumpend.Thisallowstheinstallationofsubmersiblesatdepthsunreachablebycentrifugalorjetpumps.Theuseofmultiplestagesallowstheproductionofadequatehead(pressure)fortheirrigationsystemoperationtobedeliveredatthesurface.

PUMPiNG FROM BORES – PUMPiNG LEVEL CONSiDERATiONSAwellissimplyaholeinawater-bearinglayeroftheearth.Thelayeriscalledanaquifer.Thecreationofaholeintheaquifercreatesastoragespacethatallowsthecollectionofwaterwithinit.Theamountofwaterandtheratethatwaterflowsintothewellisdeterminedbytheaquifer.Aloose,porousgravel-typeaquiferwillproducemorewaterthananaquifercomposedofasolidormoretightlycompactedmaterialsuchasclayorgranite.

Insideawelltherearetwowaterlevelscalled‘standingwaterlevel’and‘pumpingwaterlevel’.Thestandingwaterlevelisastaticwaterlevelwhenthewellisnotbeingpumped.Pumpingthewellcausesthestandingwaterleveltodropdown.Thisdropiscalleddrawdown.Thepumpinglevelisthedepthatwhichthewellstopsdrawingdown.Figure10illustratesthis.Figure 10. Static and pumping level.

Depth to water

Land surface

Static water level

Cone ofdepression

Pumping level

Drawdown

Radius ofinfluence

Page 17: Hydraulics and Pumping - Irrigation NZ

15|HYDRAULICS AND PUMPING

PUMPS

Pump performance

PUMP CURVESForapumptoadequatelydothejobrequired,itmustbeabletodeliverthecorrectamountofwater,anditmustalsoproducethecorrecthead(pressure).Thepumpcurveforaparticularmakeandmodelwillhelpdeterminewhetherornotthatpumpwillperformcorrectlyintheirrigationsystem.

Theperformanceofapumpisindicatedonthepumpcurve.Atypicalpumpcurvewillindicatetotaldynamichead,energy(kW),efficiency,andNetPositiveSuctionHeadRequired(NPSHR),allplottedinrelationtothecapacityrangeofthepump.

Figure 11.

H (m)

50

40

70

Head

60

50

40

20

10

2

4

6

8

10

0

30

30

20

10

0

10

0 0

2

4

6

8

0 10 20 30 40 50 60 70 Q [m3/h]

P (kW)2NPSH(m)

h (%)

Efficiency

NPSH

Power consumption

Theyaxis(vertical)showstotalheadwhilethexaxis(horizontal)showsflowcapacity.Forexample,topumpagainstatotalheadof42myoucouldpumpatarateofabout70m3/hrwithaNPSHrequiredofthreemetresandatanefficiencyofabout78percent(seeFigure11above).Usingtheabovedata,theenergy(kW)wouldbe10kW.

Fromthis,itcanbeseenthatthepumphead(H)isamaximumwherethepumpdelivery(Q)equals0.However,HdropsasQincreasesandtheHQlineisacurvedlinecharacteristicofthatparticularpump.

WhereQ=O,Hisdirectlyequaltotheperipheralvelocityoftheimpeller,i.e.thefasterthepumpspeedand/orthelargerthediameteroftheimpeller,thelargertheperipheralvelocityoftheimpellerandthelargerthepumpheadthepumpcangenerateatnoflow.

Therelativevelocityattheoutletoftheimpelleris,however,alsoafunctionoftheangleofoutletofthevanesoftheimpeller.Thedesignoftheimpeller,andespeciallythatofthevanes,thusdeterminestheslopeoftheHQline.

Page 18: Hydraulics and Pumping - Irrigation NZ

16 | HYDRAULICS AND PUMPING

PUMPS

Theactualpumpheadatnoflow(pumpdelivery)iscalledthecut-offrange.Itisparticularlyimportantforthedeterminationofpipeclasses.Eachpumpthatisavailableinthetradehasitsowndistinctivepumpcurve.Thispumpcurveisdeterminedbytestingthepump,orinafewexceptionalcasesbydeterminingittheoretically.Apumpinoperationwillalwaysoperatesomewhereonitspumpcurve.Thispointonthepumpcurvewherethepumpoperatesiscalledthedutypoint.

PUMP AFFiNiTY LAWSTheremaybeinstancesinwhichthepumpoperatingspeedisdifferentfromthatshownonpumpcurve,ortheimpellerdiameterisdifferent.Thiswillimpactonthespeedoftherimoftheimpeller,whichinturnchangestheperformanceofapump.

Pumpaffinitylawsindicatetherelationshipsbetweenflowrates,pressure,power,pumpspeed,andimpellerdiametertopredictperformanceunderdifferentconditions.Aslongasthespeedanddiameterdonotdiffergreatlyfromthoseshownonthepumpcurve,thepredictedperformanceisrelativelyaccurate.Usingacomputerspreadsheet,itisfairlysimpletorepeatthepumpaffinitycalculationsforarangeofhead/flowcombinationsandderivesufficientdatatodrawanewpumpcurve.

Pumpaffinitylawsarefoundedontheassumptionthatpumpefficiencydoesnotchangeasthespeedanddiameterchangesaresmall(lessthan10%).Accordingtothepumpaffinitylawstheflowratevariesdirectlywithspeed,thehead(pressure)varieswiththesquareofthespeedandthepowerrequiredvarieswiththecubeofthespeed.

Q 1

Q2 =

N1

N2

H 1

H2 =

(N1)2

(N2)2

P1

P2 =

(N1)3

(N2)3

Likewise,accordingtothepumpaffinitylawstheflowratevariesdirectlywithdiameter,thehead(pressure)varieswiththesquareofthediameterandthepowerrequiredvarieswiththecubeofthediameter.

Q 1

Q2 =

D 1

D2

H 1

H2 =

(D 1)2

(D2)2

P1

P2 =

(D 1)3

(D2)3

Anexamplecanbeseenofthepumpcurveforanactualcentrifugalpump,aspublishedbythemanufacturer.Thefollowinginformationappearsonit:

• HQcurvesforthefullimpeller.

• Forpumpsthatcanhavealternativeimpellorsinstalled,thediagrammayalsoshowtheHQcurvesforanumberofselectedsmallerdiameters.

• Forpumpsthatcanbespeedcontrolled,thediagrammayshowtheHQcurvesatalternativespeeds.

• Pumpefficiency.

• NPSH.

• Power(kW)requiredforthedifferentimpellerdiameters.

Page 19: Hydraulics and Pumping - Irrigation NZ

17|HYDRAULICS AND PUMPING

PUMPS

Figure 12. Pump diagram showing performance curves for different impeller diameters.

Figure 13. Pump diagram showing performance curves for different impeller speeds.

Page 20: Hydraulics and Pumping - Irrigation NZ

18 | HYDRAULICS AND PUMPING

PUMPS

Introduction to NPSH (Net Positive Suction Head)Thepressureinsideapumpvariesfromtheinlet(thesuctionside)totheoutlet(thedischargeside).ThedifferencebetweeninletpressureandthelowestpressurelevelinsidethepumpiscalledNetPositiveSuctionHead(NPSH).NPSHisthereforeanexpressionofthepressurelossthattakesplaceinsidethefirstpartofthepumphousing.

Iftheinletpressureistoolow,NPSHwillcausethelowestpressureinsidethepumptodecreasebelowthevapourpressureofthepumpedliquid.Bubblesorcavitiesareformedinliquidwhichiscalledcavitation.Theimplodingorcollapsingofthesebubblestriggersintenseshockwavesinsidethepump,causingnoise,inefficiency,damagetothevoluteandultimatelyleadingtobreakdowns.

NetPositiveSuctionHeadRequired(NPSHR)istheabsolutepressurethatmustbepresentattheeyeoftheimpellerforanyparticularpumpinordertopreventcavitation.

NPSHRvariesaccordingtothedesignofeachpumpandtheheadandflowrate.NPSHRcanbereadfrompumpcurveforanyparticularpump.DifferentmanufacturersprovidethedataforNPSHRindifferentformswhichneedtobereadcarefullywhenselectingapump.

Figure15atleftshowsatmosphericpressure(P),thestaticsuctionhead(H)andthefrictionlossinthepipe(Hƒ).

NetPositiveSuctionHeadAvailable(NPSHA)attheeyeoftheimpellerisequaltotheatmosphericpressure(P)availableatthesourceofthewater,minusverticaldistancetotheeyeoftheimpeller,fromthewaterlevelcalledthestaticsuctionhead(H),thefrictionlossinthepipe(Hf),andthevapourpressure(Hvp)ofthewaterbeingpumpedatthetemperaturewhilepumpingasinthefollowingequation:

NPSHA=P–H–Hƒ–Hvp

Thedesignofthepumpsite,suctionpipingandtheverticalsuctionliftmustbesuchthatNPSHAexceedsNPSHRforalloperatingconditions.

Figure 14.

Fluid vapour pressure

Discharge pressure

A

C

D

B

Suction pressure

Bubbles form

Bubbles collapse

Pressure

A

C

D

B

Figure 15. Atmospheric pressure (P), the static suction head (H), the friction loss in the pipe (Hƒ).

HP Hƒ

Page 21: Hydraulics and Pumping - Irrigation NZ

19|HYDRAULICS AND PUMPING

PUMPS

SOLUTiONS TO REDUCiNG AND/OR AVOiDiNG CAViTATiONCavitationcanbeavoidedbyadoptingthefollowingmeasurestoincreasetheNPSHA:

• Lessenthedistancebetweenthepumpintakeandthewatersurface.

• Decreasethepumpcapacitytolowertheflowrateintheimpeller.Thismeasurewillincreasethepressureattheimpellereyeandlessentheamountofpressurelosttofrictionintheintakepipe.

• Increasethediameteroftheintakepipeandremoveanyvalves,elbows,andotherfixtures.

• ChooseapumpwithalowNPSHR.

Pumps in series and parallelFigure16belowillustratesthedifferencebetweenpumpsinparallelandpumpsseries.

Figure 16. Pump in parallel and series.

OUT

IN

OUT

IN

Series Operation Parallel Operation

PUMPS iN SERiESTwoormorepumpsareconnectedinseriesinordertoachievehigherpressures.Typicalapplicationforseriespumpsincludes:

• Iftotaldynamicheadrequirementisgreaterthanthecapabilitiesofreadilyavailablepumps.

• Afieldinwhichcertainirrigatedblocksareatahigherelevationoragreaterdistancefromthepumpthanotherblocks,andrequireahigherpumpinghead.

• Anirrigationdesignwhichcallsforhigherpressureatcertaintimes,suchasforgerminationorfrostcontrol.

Inthecaseofseriespumps,theresultantheadcapacitycurveisarrivedatbyverticaladditionoftheindividualhead-capacitycurve.

Figure 17. Two pumps in series.

Head, h

Flow rate, q

system curve

single pump

1

2

3

TWO PUMPS IN SERIES

Page 22: Hydraulics and Pumping - Irrigation NZ

20 | HYDRAULICS AND PUMPING

PUMPS

PUMPS iN PARALLELTwoormorepumpsareconnectedinparallelinordertoproducehigherflowrates.Typicalsituationwhereparallelpumpsareused:

• Twoormorewatersourcesaretobefedintoacommonsystem.

• Anirrigationsystemsupplyingdifferent-sizedblocksordifferentcrops,requiringwidelydifferentflowrates.

• Anirrigationsystemwhichisbeinginstalledinincrements,requiringhigherflowrateasnewstationsareinstalled.

Inthecaseofparallelpumps,theresultantheadcapacitycurveisarrivedatbyhorizontaladditionoftheindividualhead-capacitycurve.

Figure 18. Two pumps in parallel.

Head, h

Flow rate, q

system curve

single pump

TWO PUMPS IN PARALLEL

1 2

3

Energy sourcePumpsrequireenergytooperate.Dependingonlocation,someenergysourcesaremorereadilyavailablethanothers,andsomeenergysourceswillbemorecosteffectivetousethanothers.Consequently,theavailabilityofaparticularenergysourceisamajorfactortoconsiderwhenselectingapumpanditsdriverforanirrigationapplication.Theavailableenergysourcewilldictatewhetherthepumpwillbedrivenbyanelectricmotor,dieselengineoralternativeenergysource.

ELECTRiC MOTOR DRiVEThemostcommonly-useddriverforirrigationpumpsistheelectricmotor.Electricmotorefficienciesaregood,insomecasesexceeding95%.Electricmotorsgenerallyrequireverylittlemaintenance.Theyarequietandcompact,makingthemsuitableforawidevarietyofapplications.Withpropercareandmaintenance,electricmotorscanprovidemanyyearsoftrouble-freeservice.

SiNGLE- AND THREE-PHASE MOTORSSingle-phasemotorsarerarelyusedinapplicationsrequiringmorethan10kW.Single-phasemotorsarenotpracticalinlargersizes,buttherearesomespecialtymanufacturersthatproducehigherhorsepowermotorsforsingle-phasepoweroperation.Thesemotorsaregenerallyplacedinserviceinareaswhereitwouldbeexpensivetobringinthree-phasepowerwhensingle-phasepoweralreadyexistsatthesite.

Page 23: Hydraulics and Pumping - Irrigation NZ

21|HYDRAULICS AND PUMPING

PUMPS

Three-phaseinductionmotorsarepopularforavarietyofreasons;thereadyavailabilityofthree-phaseelectricpoweratstandardisedvoltages;theruggedconstructionofthesquirrelcagemotor;thesimplicityofoperationmaintenanceandservice;therelativelylostcost;theavailabilityofawidevarietyoffeaturessuchastypeofenclosures,speeds,mountings,andtorquecharacteristics.

ENGiNE DRiVEEnginesarealsooftenusedtopowerirrigationpumps.Althoughelectricmotorshavetheadvantageofbeingquiet,efficientandeconomicaltooperateandmaintain,enginesofferportabilityandlowinstallationcosts.

Enginescanbeinstalledvirtuallyanywhere.Theyareeasilymoved,havetheflexibilityofvaryingspeed,areavailableinavarietyofhorsepowerranges,wateroraircooledandtheydonotrequirecostlyinstallationofelectricpowerlinesoron-goinglinescharges.Enginesareavailableintwobasictypes:dieselandgasoline.Dieselenginesoperateefficientlybetween1600–2300rpmandgasolinebetween2000–3600rpm.Theselectionofthetypeofengineusedinanirrigationsystemismostlydeterminedbysourceandexpenseoffuelsupply.

Pump setup

PUMP EFFiCiENCiES AND CHOOSiNG A PUMP Theefficiencyofanymachineissimplyhowwellitcanconvertoneformofenergytoanother.Pumpefficiencyistheratioofliquidoutputhorsepowertotheinputhorsepower,measuredasapercentage.It’stheconversionofmechanicalenergytohydraulicenergy.

Efficiencyplaysasignificantroleinthepumpselectionprocess.Thepumpwiththehighestpumpefficiencyatthedesireddutypointshouldbeselected,wherethedesireddutypointmustbeasclosetothespecificpump’speakefficiencyaspossible.Thiswillmeanthatthepumpwillgivefewertechnicalproblems.Powerrequiredcanbereadfromthepumpcurve.Itisalsoimportanttodeterminethepowerratingofthedriver.

Thereisnoonerecipefortheselectionofthemostsuitablepump,buteconomicshastobethedecisivefactor.Importantlyanydecisionmustweigh-upcapital,operation,maintenanceandreplacementcosts.Thefollowinggeneralselectionguidelinesapplyforpumps:

• Normal installations: Generalsinglestageend-suctioncentrifugalpumps.

• Large suction heads: Submersiblepumps.

• Large pump deliveries:generalsinglestageend-suctioncentrifugalpumpscoupledinparallel.

• Large pump heads: Multi-stagecentrifugalpumps,generalend-suctionsingle-stagepumpscoupledinseries,positivedisplacementpumps.

• Large pump deliveries and small pump heads: Axial-flowpumps.

Foreachapplication,therewillbeanumberofsuitabletypes,makesandmodels,butoverthelongterm,themosteconomicalpumpmustbechosen.

Page 24: Hydraulics and Pumping - Irrigation NZ

22 | HYDRAULICS AND PUMPING

NOTES

Page 25: Hydraulics and Pumping - Irrigation NZ

23|HYDRAULICS AND PUMPING

NOTES

Page 26: Hydraulics and Pumping - Irrigation NZ

24 | HYDRAULICS AND PUMPING

NOTES

Page 27: Hydraulics and Pumping - Irrigation NZ

NOTES

REFERENCESAllphotos©andcourtesyofDanBloomer,PaulReese,AndrewCurtisandAnnetteScott.

DiSCLAiMER AND COPYRiGHTTheinformationprovidedinthispublicationisintendedasaguideandreferenceresourceonlyandshouldnotbeused,relieduponortreatedasasubstituteforspecificprofessionaladvice.WhileIrrigationNewZealandLimited(includingitsofficers,employees,contractorsandagents)(INZ)hastakenallduecareinthepreparationoftheinformationinthispublication,INZcannotguaranteethateverystatementisfactuallyaccurate.

INZmakesnowarranties,guarantiesorundertakingsastoresultsthatmaybeobtainedfrominformationinthispublication.Youaresolelyresponsiblefortheactionsyoutakeinrelianceonthecontentprovidedinthispublication.

INZshallnotbeliableforanyerrorsoromissionsintheinformationorforanyloss,injury,damagesofanytype(includingandwithoutlimitationdirect,indirect,specialorconsequentialdamages)orotherconsequencewhatsoeverthatyouoranypersonmightincurasaresultofyouruseoforrelianceupontheinformationwhichappearsinthispublication.

Theinformationcontainedinthispublicationmaychange,beaddedto,deletedorotherwiseupdatedoramendedwithoutnotice.

Exceptwhereexpresslystated,theinformationinthispublicationisprotectedbycopyright.Youmaynotcopy,reproduce,modifyordistributethepublicationorpartsthereofinanyway,otherthanasinglecopyforprivateuse.PermissionmustbesortfromINZpriortoreproductionofanymaterialcontainedinthispublication.

Anyinformationthatisreferencedorlinksthatareincludedinthispublicationareprovidedforyourassistanceandconvenience.INZprovidesnowarrantyorendorsementwhatsoeverandisnotliableorresponsibleforthecontentoraccuracyofanythirdpartywebsitesorpublications.

Eachpageofthispublicationmustbereadinconjunctionwiththisdisclaimerandanyotherdisclaimerthatformspartofit.

Page 28: Hydraulics and Pumping - Irrigation NZ

www.irrigationnz.co.nz

WWW.SMART IRRIGATION.CO.NZ