Hydro-geophysical techniques for environmental ... · PDF fileHydro-geophysical techniques for environmental applications: monitoring, modeling and future ... Hydrocarbon exploration

Embed Size (px)

Citation preview

  • G. Cassiani et al.

    Hydro-geophysical techniques for environmental applications: monitoring, modeling and future challenges.

    Giorgio Cassiani

    Dipartimento di Geoscienze Universit di Padova

    with (in Random Order):Markus Wehrer,, Rita Deiana, Klaus Haaken, Jacopo Boaga, Claudio Paniconi, Giulio Vignoli, Matteo Rossi, Maria Teresa Perri, Damiano Pasetto, Mario Putti, Marco Marani, Alberto Bellin, Bruno Majone, Nicoletta Fusi, Sebastiano Piccolroaz, Franco Palmieri, Andy Binley, Andreas Kemna, Enzo Rizzo, Giuseppe Fadda, Simona Consoli, Daniela Vanella, Adrian Flores Orozco, Gabriele Manoli, Peter Dietrich, Ulrike Werban, Gian Piero Deidda, Nadia Ursino, Andrea DAlpaos, Matteo Camporese, Oscar Cainelli, Alberto Villa, Paolo Frattini, Giovanni Crosta, Bruno Della Vedova, Paolo Salandin, Isabella Gervasio, Enrico Dezzan, and others that I may have forgotten.

  • G. Cassiani et al.

    Geophysical Imaging

  • G. Cassiani et al.

    What is the role of applied geophysics ?

    SITE CONCEPTUALMODEL

    SITE CHARACTERIZATION

    DESIGN OF SITE CHARACTERIZATION

  • G. Cassiani et al.

    Geophysical measurements

    instrument

    domain of investigation

    G = measured (geo)physical quantity

    P= (geo)physical parameter spatially distributed in the subsoil, influencing response G

    G = G(P, F = forcing conditions)

  • G. Cassiani et al.

    PROCESSINGINVERSION

    distributionof P(x,y,z)

    (estimated)ANALYSIS

    informationfor end users(site conceptual model)

    Physicsphysical

    parameter P(x,y,z)

    signal G(x,y)

    MEASUREMENT

  • G. Cassiani et al.

    GEOPHYSICALMETHODS APPLICATIONS

    Geo-electrics Seismics GPR EM methods Gravimetry Magnetism ...

    Hydrocarbon exploration Mineral exploration Engineering studies Hydrogeological studies Contaminant identification Geological investigations Forensic studies Archaelogical studies ...

    ?

  • G. Cassiani et al.

    The choice should be made according to the following criteria:

    the goal of the application must be compatible with the measured physical quantity

    the method must have sufficient spatial (and temporal) resolution and sufficient penetration

    cost

    logistics

    environmental impact

    GEOPHYSICALMETHODS APPLICATIONS

  • G. Cassiani et al.

    SUMMARY

    Hydro-geophysics: a problem-driven discipline

    A Glimpse to a number of applications

    Conclusions and outlook

  • G. Cassiani et al.

    HydrologyFloodsMountain slope stabilitySoil/groundwater contamination

    Environmental fluid-dynamics (hydrology)

    Shallow geophysics (hydro-geophysics)

    Water in the shallow subsurfacecarries energymodifies the state of stresscarries contaminants

  • G. Cassiani et al.

    Applicable methods and measured physical quantities

    Self Potential

    Gravimetry

    MagneticsGround Penetrating Radar

    Gamma ray spectrometry

    DC resistivity methodsElectro-magnetic methods

    METHODSeismics

    (Spectral) Induced Polarization

    Nuclear Magnetic Resonance free water content and decay time

    elastic properties and density

    density

    dielectric constant (electrical conductivity)

    natural gamma radiation

    electrical conductivity /resistivity

    electrical conductivity /resistivity

    magnetic susceptibility / permanent magnetization

    complex electrical conductivity

    DC sources

    PHYSICAL PROPERTY

  • G. Cassiani et al.

    What geophysical methods can help define

  • G. Cassiani et al.

    water table

    aquifer confining layer

    impermeablebedrock

    small scalelarge scale

    What geophysical methods can help define

    structure / texture

  • G. Cassiani et al.

    water table

    springevapo-transpiration

    water table

    aquifer confining layer

    impermeablebedrock

    small scalelarge scale

    structure / texture

    fluid-dynamics: e.g. time-lapse evolution of moisture content

    What geophysical methods can help define

  • G. Cassiani et al.

    water table

    springevapo-transpiration

    water table

    aquifer confining layer

    impermeablebedrock

    small scalelarge scale

    structure / texture

    fluid-dynamics: e.g. time-lapse evolution of moisture content

    contamination

    What geophysical methods can help define

  • G. Cassiani et al.

    Applicable methods and subsurface characteristics

    Self Potential

    +GravimetryMagnetics+

    Ground Penetrating Radar

    Gamma ray spectrometry

    +DC resistivity methods+Electro-magnetic methods

    CONTAMINATIONSTRUCTUREMETHODSeismics

    (Spectral) Induced Polarization

    +

    ++++++++++

    Nuclear Magnetic Resonance

    +++

    ++

    ++

    ++

    ++++

    DYNAMICS

    +++

    +

  • G. Cassiani et al.

    Geophysicalmeasurements

    Physicalmodel

    (e.g hydrologic)

    physicalparameters(e.g. hydraulicconductivity)

    dynamics(fluids,

    temperature)

    structure(geometry,geology)

    Integrate measurements and physical models that explain the space-time evolution of state variables such as moisture content, solute concentration and temperature that affect the space-time changes of geophysical response.

    GOAL

  • G. Cassiani et al.

    Vintage approach:direct link between physical properties of

    models and geophysical quantities

    Mazac et al., 1985

    Cassiani et al., JH, 1998

    Cassiani and Medina, GW, 1995

  • G. Cassiani et al.

    Time lapse geophysics

    static aspects (geology)

    dynamic aspects (hydrology)

    Applicable methods

    Ground-Penetrating Radar (GPR)

    Electrical Resistivity Tomography (ERT)

    etc

    Acquisition geometry(resolution-sensitivity issues)

    cross-holesurface-to-hole

    surface-to-surface

    Hydrology Geophysicsconstitutive relationships

    dielectric properties (GPR) DC resistivity (ERT)

    complex resistivity (SIP)

    measuredor

    simulatedgeophysical

    quantity(saturation,

    concentration)

    measured or

    simulatedgeophysical

    data

  • G. Cassiani et al.

    A glimpse to applications

    Hyporheic zone

    Vadose zone

    Hillslope

    Catchment

    Contamination

    Critical zone

    Conclusions

    Aquifers

    Acknowledgments

  • G. Cassiani et al.

  • G. Cassiani et al.

    SUMMARY

    Hydro-geophysics: a problem-driven discipline

    A Glimpse to a number of applications

    Vadose zone characterization

    Conclusions and outlook

  • G. Cassiani et al.

    Borehole AERT & GPR

    Borehole CERT & GPR

    Borehole BERT &GPR

    Borehole D(cored)

    trench

    Characterisation of the vadose zoneof the Po river plain sediments:the Gorgonzola (Milan) test site

    7.95

    m

    6.65 m

    7.20 m

    Water injection experiment in trench

    22 m3 of water in 10 hours

    Deiana et al., VZJ, 2008

  • G. Cassiani et al.

    ZOPGPR

    ERT

    3 hr 11 hr 22 hr 45 hr 117 hr 141 hr

    0 2 4 6m

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    m

    0 2 4 6m

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    m

    0 2 4 6m

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    m

    0 2 4 6m

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    m

    0 2 4 6m

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    m

    0 2 4 6m

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    m

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    Dq

    0.000.020.040.06

    -20.00

    -16.00

    -12.00

    -8.00

    -4.00

    0.00

    0.000.020.040.06

    -20.00

    -16.00

    -12.00

    -8.00

    -4.00

    0.00

    0.000.020.040.06

    -20.00

    -16.00

    -12.00

    -8.00

    -4.00

    0.00

    0.000.02 0.040.06

    -20.00

    -16.00

    -12.00

    -8.00

    -4.00

    0.00

    0.000.020.040.06

    dept

    h (m

    b.g

    .l.)

    -20.00

    -16.00

    -12.00

    -8.00

    -4.00

    0.00

    0.000.02 0.04 0.06

    Dq (-)

    -20.00

    -16.00

    -12.00

    -8.00

    -4.00

    0.00

    Dq (-) Dq (-) Dq (-) Dq (-) Dq (-)

    end of injection

    dept

    h (m

    b.g

    .l.)

    Gorgonzola: injection experiment

    Deiana et al., VZJ, 2008

  • G. Cassiani et al.

    Injection phase

    0.00 0.02 0.04 0.06

    -20

    -16

    -12

    -8

    -4

    0

    0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06

    Dq DqDqDq DqDqDq DqDq

    dept

    h (m

    b.g

    .l.)

    1 hr 2 hr 3 hr 5.5 hr 7 hr 8 hr 9 hr 10 hr 11 hr

    zop GPR

    Deiana et al., VZJ, 2008

  • G. Cassiani et al.

    MASS BALANCE

    MODEL FIELD DATA

    known injected

    mass

    mass in given control volume

    mass in given control volume