181

Click here to load reader

Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

Embed Size (px)

Citation preview

Page 1: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

Fall 2003

Hydrocarbon Processes in the Oil Refinery

Prof. Dr. J.A. Moulijndr.ir. M. Makkee

Industrial CatalysisDelftChemTech

Delft University of TechnologyThe Netherlands

http://www.dct.tudelft.nl/race

Page 2: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Hydrocarbon processes in the Oil RefineryContent Lectures

*

CARE, Chemical Process Technology lectures background knowledge

•• Chemical Process Technology, Wiley, 2001Chemical Process Technology, Wiley, 2001J. A. J. A. MoulijnMoulijn, M., M. MakkeeMakkee, A.E. van , A.E. van DiepenDiepen

»» Chapter 2, Crude oil compositions (2.3.3) Chapter 2, Crude oil compositions (2.3.3) »» Chapter 3, Processes in the Oil RefineryChapter 3, Processes in the Oil Refinery»» Chapter 5, Synthesis Gas (5.1, 5.2, and 5.4) Chapter 5, Synthesis Gas (5.1, 5.2, and 5.4) »» Chapter 6, Fischer Chapter 6, Fischer TropschTropsch (6.3) (6.3)

•• Lecturing notes Lecturing notes -- Speakers from IndustrySpeakers from Industry

Page 3: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CERTTUUDelftDelft &CER

Programme

Up to 29 September Lectures Moulijn/Makkee30 September Dr. H.P.A. Calis (Shell)

Fischer Tropsch

6 October ir. A. Rooijmans (ExxonMobil)Flexicoking

7 October dr. F. Plantenga (Akzo-Nobel)Hydrotreating + Alkylation

13 October ir. H. van Wechem (Shell)Upgrading Shell Pernis Refinery (Per+)

14 October Dr. R. Antonelli (UOP)Trends for the future Refinery

Page 4: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Oil refinery; an overview

Page 5: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Introduction

•• Chapter 2 Chapter 2 –– Composition crude oilComposition crude oil

•• Chapter 3Chapter 3–– RefineryRefinery

»» Relatively mature optimised plantsRelatively mature optimised plants•• Nevertheless changesNevertheless changes

–– MarketMarket–– LegislationLegislation

»» Some 600 worldwideSome 600 worldwide»» Large volumesLarge volumes»» Very instructive example chemical process Very instructive example chemical process

technologytechnology

Page 6: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern oil refinery

Crude oil

Straight run gasoline

LPG and Gas

Naphtha

Hydro-treating

Reformate

Middle distillates

Heavy atm. gas oil

Solventextraction

Lube base stocks

Gasoline

Vacuum gas oil

Solventdewaxing

Lube oils

Waxes

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Slurry oil

Refinery fuel gas

LPG

Gasoline

Solvents

Kerosene

Diesel

Heating oil

Lube oil

Greases

Asphalt

Industrial fuels

Coke

Trea

ting

and

Blen

ding

Delayed coker / Flexicoker

Propanedeasphalter

Hydro-treating

Catalyticreforming

Catalyticcracking

Visbreaker

Hydro-cracking

Fuel oil

Asphalt

LPG and Gas

Cycle oil

Alkylation AlkylateLPG

Hydro-treating

Vacu

umD

istil

latio

nAt

mos

pher

icD

istil

latio

n

Page 7: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Distillation FractionsDistillate fraction Boiling point

(oC) C-atoms/ molecule

Gases <30 1-4 Gasoline 30-210 5-12 Naphtha 100-200 8-12 Kerosine (jet fuel) 150-250 11-13 Diesel, Fuel oil 160-400 13-17 Atmospheric Gasoil

220-345

Heavy Fuel Oil 315-540 20-45 Atmospheric Residue

>540 >30

Vacuum Residue >615 >60

MiddleDestillates

Page 8: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Chemical processesThermal Catalytic

Visbreaking HydrotreatingDelayed coking Catalytic reformingFlexicoking Catalytic cracking

HydrocrackingCatalytic dewaxingAlkylationPolymerizationIsomerization

Processes in an Oil Refinery

Physical processes

DistillationSolvent extractionPropane deasphaltingSolvent dewaxingBlending

Page 9: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Physical Processes

Page 10: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

620 K

C1 - C4

Gases

Gasoline

Kerosene

Gas oil

ResidueCrude oil

steam

steam

steam

reflux water

Fractionator Stripper StripperFurnace

Simple Crude Distillation

Page 11: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Market Demands

•• Clean products (no S, N, O, metals, etc.)Clean products (no S, N, O, metals, etc.)•• More gasoline (high octane number)More gasoline (high octane number)•• More diesel (high cetane number)More diesel (high cetane number)•• Specific products (Aromatics, alkenes, etc.)Specific products (Aromatics, alkenes, etc.)•• Less residueLess residue

•• How to meet these demands?How to meet these demands?•• More sophisticated distillationMore sophisticated distillation•• Physical separation stepsPhysical separation steps•• Chemical conversion stepsChemical conversion steps

Page 12: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

C1 - C4

Gases

620 K

Gasoline

Kerosene

Gas oil

ResidueCrude oil

steam

steam

steam

reflux water

Fractionator Stripper StripperFurnace

More sophisticated ???Higher T Higher T ddiistillationstillation ????

Page 13: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern Crude Distillation UnitCrude Oil

Intermediate gas oil

Gases

reflux water

vacuumsteam

vacuum

Heavygas oil

Slops

Gasoline

vacuum residue

Kerosene

Lightgas oil

steam

Mainfractionator

Strippers Mild vacuumcolumn

Driers

circulating reflux

circulating reflux

FurnaceFurnace

Page 14: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern oil refinery

Crude oil

Straight run gasoline

LPG and Gas

Naphtha

Hydro-treating

Reformate

Middle distillates

Heavy atm. gas oil

Solventextraction

Lube base stocks

Gasoline

Vacuum gas oil

Solventdewaxing

Lube oils

Waxes

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Slurry oil

Refinery fuel gas

LPG

Gasoline

Solvents

Kerosene

Diesel

Heating oil

Lube oil

Greases

Asphalt

Industrial fuels

Coke

Trea

ting

and

Blen

ding

Delayed coker / Flexicoker

Propanedeasphalter

Hydro-treating

Catalyticreforming

Catalyticcracking

Visbreaker

Hydro-cracking

Fuel oil

Asphalt

LPG and Gas

Cycle oil

Alkylation AlkylateLPG

Hydro-treating

Vacu

umD

istil

latio

nAt

mos

pher

icD

istil

latio

n

Page 15: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Propane DeasphaltingExtraction

ReasonReasonCokeCoke--forming tendencies of forming tendencies of asphaltenicasphaltenic materialsmaterials

How?How?Reduction by Reduction by extraction withextraction with suitable solventsuitable solvent

propane propane butane, pentanebutane, pentane

Why propane?Why propane? Conditions?Conditions? Flow scheme?Flow scheme?Easy separationEasy separationAvailableAvailable......

Modest temperatureHigh pressure

Page 16: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Propane Deasphalting

Deasphalted oil

Vacuum residue

Liquid propane

Asphalt

Propane recycle

Flash drumDeasphalting tower Strippers

Steam

Steam

Condensers

Steam condenser

Water

Propane storage

Make-up propane

310 - 330 K35 - 40 bar

Steam

Propane evaporatorCond.

Page 17: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern oil refinery

Crude oil

Straight run gasoline

LPG and Gas

Naphtha

Hydro-treating

Reformate

Middle distillates

Heavy atm. gas oil

Solventextraction

Lube base stocks

Gasoline

Vacuum gas oil

Solventdewaxing

Lube oils

Waxes

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Slurry oil

Refinery fuel gas

LPG

Gasoline

Solvents

Kerosene

Diesel

Heating oil

Lube oil

Greases

Asphalt

Industrial fuels

Coke

Trea

ting

and

Blen

ding

Delayed coker / Flexicoker

Propanedeasphalter

Hydro-treating

Catalyticreforming

Catalyticcracking

Visbreaker

Hydro-cracking

Fuel oil

Asphalt

LPG and Gas

Cycle oil

Alkylation AlkylateLPG

Hydro-treating

Vacu

umD

istil

latio

nAt

mos

pher

icD

istil

latio

n

Page 18: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Thermal Processes

Page 19: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Thermal Processes

Feedgasoilcoke

Furnace

T, tres

Visbreaking•mild conditions

Delayed Coking•long residence time (24 h)

Flexicoking•combination thermal cracking and coke gasification/combustion

Steam Cracking•production lower olefins

Page 20: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Thermal Processes

•• VISBREAKINGVISBREAKING–– Mild thermal crackingMild thermal cracking–– Reduction of viscosityReduction of viscosity

•• DELAYED COKINGDELAYED COKING–– Long residence times (24 h)Long residence times (24 h)–– Heavy feed Heavy feed →→ coke + oil + gascoke + oil + gas

•• FLEXICOKINGFLEXICOKING–– Combination of thermal cracking and Combination of thermal cracking and –– coke gasification / combustioncoke gasification / combustion

Page 21: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

~ 10 wt%

~ 80 wt%

Vacuum residue

Cracked residue

Heavy gas oil

Fractionator Vacuum fractionator

Gasoline

FlashReactor

Light gas oil

730 K20 bar

Furnace

Visbreaking

Page 22: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

UnstabilizedNaphtha

Gas

Furnace Fractionator

CokeFeed

Coke drums Gas oil stripper

Gas oil

2 bar

770 K

710 K

Delayed Coking

Page 23: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalytic Processes

Page 24: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Market Demands

•• Clean products (no S, N, O, metals, etc.)Clean products (no S, N, O, metals, etc.)•• More gasoline (high octane number)More gasoline (high octane number)•• More diesel (high cetane number)More diesel (high cetane number)•• Specific products (Aromatics, alkenes, etc.)Specific products (Aromatics, alkenes, etc.)•• Less residueLess residue

•• How to meet these demands?How to meet these demands?•• More sophisticated distillationMore sophisticated distillation•• Physical separation stepsPhysical separation steps•• Chemical conversion stepsChemical conversion steps

Page 25: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Octane Numbers, Boiling Points•• nn--pentanepentane 6262 309 K309 K•• 22--methyl butanemethyl butane 9090 301301•• cyclopentanecyclopentane 8585 322322•• nn--hexanehexane 2626 342342•• 2,22,2--dimethylbutanedimethylbutane 9393 323323•• benzenebenzene >100>100 353353•• cyclohexanecyclohexane 7777 354354•• nn--octaneoctane 00 399399•• 2,2,32,2,3--trimethylpentanetrimethylpentane 100100 372372•• methylmethyl--tertiarytertiary--butylbutyl--etherether 118118 328328

•• straight run gasolinestraight run gasoline 6868 67 (MON)67 (MON)•• FCC light gasolineFCC light gasoline 9393 8282•• alkylatealkylate 9595 9292•• reformate reformate (CCR)(CCR) 9999 8888

Page 26: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Cetane Numbers•• nn--alkanesalkanes 100100--110110•• nn--hexadecane (cetane)hexadecane (cetane) 100100•• isoiso--alkanesalkanes 3030--7070•• alkenesalkenes 4040--6060•• cycloalkanescycloalkanes 4040--7070•• alkylbenzenesalkylbenzenes 2020--6060•• naphtalenesnaphtalenes 00--2020•• αα--methyl methyl naphtalenenaphtalene 00

•• straight run gas oilstraight run gas oil 4040--5050•• FCC cycle oilFCC cycle oil 00--2525•• thermal gas oilthermal gas oil 3030--5050•• hydrocracking gas oilhydrocracking gas oil 5555--6060

Page 27: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Fluid Catalytic Cracking (FCC)

Page 28: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

CH2 C CH3C+H3CCH3 CH3

CH3

H3C CCH3

CH2 + C CH3

CH3

CH3+

Catalytic Cracking

•• World capacity: > 500 million metric ton/yearWorld capacity: > 500 million metric ton/year

•• Reactions:Reactions:–– CC--C bond cleavage:C bond cleavage:–– IsomerizationIsomerization–– ProtonationProtonation//deprotonationdeprotonation–– AlkylationAlkylation–– PolymerizationPolymerization–– CyclizationCyclization, condensation , condensation coke formationcoke formation

“β scission”

Page 29: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

+ H + o rC H C H 2R C H 2 C +RH

HR C + C H 3

H

Alkenes:

via carbenium ions

Stability: tertiary > secondary > primary > ethyl > methyl

+ H+ C +RH

HHC H3 + H2C H2 C H3R R C + C H3

H

Alkanes:

via carbonium ions

Or, if carbenium ions are present:

C H 2 C H 2 C H 3C +H 3CC H 3

H 3C C C H 2 C H 2 C H 2 C H 3

H

H

+

+

H 3C C C H 2 C H 2 C H 2 C H 3

H

C H 2 C H 2 C H 3C HC H 3

H 3C+

Cracking Mechanism

Page 30: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

+

H3C CH2 CH2 CH2 CH2 CH2 CH3

H3C CH CH3

CH3

H3C CH CH2 CH2 CH2 CH2 CH3

H3C CHCH2

CH CH3CH2CH2

H+

CH CH3H2C

H3C CH CH3

CH3

H3C CH CH CH2 CH2 CH3

CH3

+

hydride shifts +C-C bond breaking

hydride transfer

Isomerization

etc.

Protonated cyclopropane

Classical carbenium ion

Initation

n-Alkene

n-Alkane

iso-Alkane

+

+

Mechanism of cracking of alkanes

Count the Hs! What is wrong??

Page 31: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Product DistributionThermal versus Catalytic Cracking

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Carbon Number

mol

per

100

mol

cra

cked

n-C

16 Thermal

Catalytic

Page 32: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern oil refinery

Crude oil

Straight run gasoline

LPG and Gas

Naphtha

Hydro-treating

Reformate

Middle distillates

Heavy atm. gas oil

Solventextraction

Lube base stocks

Gasoline

Vacuum gas oil

Solventdewaxing

Lube oils

Waxes

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Slurry oil

Refinery fuel gas

LPG

Gasoline

Solvents

Kerosene

Diesel

Heating oil

Lube oil

Greases

Asphalt

Industrial fuels

Coke

Trea

ting

and

Blen

ding

Delayed coker / Flexicoker

Propanedeasphalter

Hydro-treating

Catalyticreforming

Catalyticcracking

Visbreaker

Hydro-cracking

Fuel oil

Asphalt

LPG and Gas

Cycle oil

Alkylation AlkylateLPG

Hydro-treating

Vacu

umD

istil

latio

nAt

mos

pher

icD

istil

latio

n

Page 33: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Mechanism: HMechanism: H++ donor or Hdonor or H-- acceptor acceptor acid sitesacid sites

Catalysts for FCC

OriginallyOriginally•• AlClAlCl33 solution:solution:

–– corrosioncorrosion–– waste streamswaste streams

SubsequentlySubsequently•• Clays (acidClays (acid--treated)treated)•• Amorphous silicaAmorphous silica--aluminaalumina

–– more stable and more selectivemore stable and more selective–– better pore structurebetter pore structure–– better attrition stabilitybetter attrition stability

•• ZeolitesZeolites–– even more active and stableeven more active and stable

»» less coke, higher thermal stabilityless coke, higher thermal stability

Page 34: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

-

-

silica-alumina:

silica:

SiO

OO

Si

Si

Si SiO

OOO

Si

Si

SiOH H++

OO

O

Si

Si

SiO

OOO

Si

Si

Si H++Al HO Si Al Si

Weak acid

Strong acid

Cracking Catalysts

Page 35: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

• Large number found and/or synthesized

• Total porosity up to 0.5 ml/g

• Examples

Supercage0.8 nm

Sodalite cage

FAU

SOD

LTA

Y (Faujasite)Zeolite A

Sodalite

Zeolites

Page 36: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

FCC process

•• Catalyst Catalyst zeolitezeolite–– Small poresSmall pores–– Particle size??Particle size??–– Reactor?Reactor?

•• Product distributionProduct distribution–– Broad mixture, including Broad mixture, including cokcokee

•• ThermodynamicsThermodynamics–– Exothermal, Exothermal, endothermalendothermal??–– Temperature?, pressure?Temperature?, pressure?

Page 37: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

RECl3, NH4Cl

Wash liquor

Sodium silicate

Sodium aluminate

Water

NaOH

Al2O3 source

SiO2 source

Water

NaOH

Na zeolitecrystallization

Silica-aluminasynthesis

Filter Dryer

Mixer

Ion exchange

FCC catalyst particles

Spray dryer

Matrix material

Zeolite

matrixzeolite (dp = 2-10 µm)

50-70 µm

Micro pores < 3 nmMeso pores 3 - 50 nmMacro pores > 50 nm

Production of FCC catalyst

Page 38: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CERRegeneration by coke combustion

provides heat

0

20

40

60

80

100

1950s 1960s 1970s 1980s

% w

t on

feed

Gas

LPG

Gasoline

LCO

HCO/slurry

Coke

Amorphous ZeoliteLow Al High Al REY USY

Product Distribution of Gas Oil Cracking

• Coke– Carbon deposited

– Catalyst poisoned on s scale

Coke“Mixed Blessing”

Process Design?

Page 39: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

FCC: Fluidized-bed Reactor and Regenerator

Latermuch moreactive catalyst

Consequencesfor process?

Cracking

C + O2→ CO / CO2

Air

Flue gas

Spent catalyst

Regenerated catalyst

Feed

To fractionation

970 K

775 K

SteamGrid

2-stage Cyclones

Regenerator Reactor

Riser

Fluidized bed

Fluidized bed

2-stage Cyclones

Pros and cons fluid beds??

Page 40: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern FCC Unit: Riser Reactor

waste heat boiler

compression

expansion

catalyst fines

propane

propene

butane

butene

L/L sep.water

G/L sep.gas (C2 and lighter)

slurry oil

light cycle oil

heavy cycle oil

flue gas

spent cat.

regenerated cat.

steam

riser

steam

cyclones

FeedAir

Gasoline

Regenerator Reactor Fractionator Absorber Debu-tanizer

Depro-panizer

Page 41: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Reactor Regenerator

Temperature (K) 775 973

Pressure (bar) 1 2

Residence time 1-5 s minutes/half hour

Typical Conditions in Riser FCC

Page 42: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

0 20Time (s)

Cat

alys

t fra

ctio

n (a

.u)

Total area = 1

Riser Reactor: Plug flow Reactor??Residence Time Distribution ?

Page 43: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

4.5

5

5.5

6

6.5

7

1960 1965 1970 1975 1980 1985 1990 1995

Year

Feed

thro

ughp

ut (m

illion

bar

rels

/day

)Capacity required with amorphous catalysts(extrapolated)

Capacity with zeolitic catalysts(actual situation)

Catalytic Cracking Capacity in the US

Page 44: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Sulfur Distribution in FCC Products•• Capacity: Capacity: 50000 barrels /day50000 barrels /day•• catalyst / oil ratio: catalyst / oil ratio: •• Catalyst inventory: Catalyst inventory: •• Catalyst Catalyst recirculationrecirculation rate: rate: •• feedstockfeedstock sulfursulfur content:content: 2 wt%2 wt%

6 kg/kg6 kg/kg500 ton500 ton50000 ton/day50000 ton/day

121277CokeCoke

72724343LiquidsLiquids

84845050HH22SS

ton S/dayton S/day% of % of sulfur sulfur in in feedfeed

productproduct

Do we have a problem?

Page 45: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

1

10

100

1000

10000

0 0.5 1 1.5 2

FCC feedstock sulfur, wt.%

FCC

gas

olin

e su

lfur,

ppm

w

untreated feed

Effect of HDS of FCC feedstock on gasoline sulfur content

Page 46: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

How to avoid SO2 emission FCC unitwithout capital investment???

2 SO2 + O2 → 2 SO3

SO3 + MO → MSO4

Trapping SO2 in regenerator by the formation of sulfate

What happens in the riser??

Dependent on the metal the sulfate is not stable in riser (or stripper)

Stable in regeneratorNot in riserSulfates of Ce, Mg,..

MSO4 + H2 → MSO3 + H2OMO + H2S

orMS + H2O

H2

H2O

MO

Page 47: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Novel Developments in FCC0.51 - 0.55 nm

Production of light alkenes (CProduction of light alkenes (C33==, C, C44

==))–– addition of ZSMaddition of ZSM--55–– aapplicationpplication

»» petrochemical feedstockpetrochemical feedstock»» isobutene for MTBE, ETBEisobutene for MTBE, ETBE

Processing of heavier feedstocksProcessing of heavier feedstocks–– improved reactors, strippers, feed injection, gas/solid separaimproved reactors, strippers, feed injection, gas/solid separationtion–– application of catalyst cooling and high application of catalyst cooling and high TT

»» much higher coke production, metal deposits, more much higher coke production, metal deposits, more sulfursulfur

Page 48: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Hydroprocessing

Page 49: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern oil refinery

Crude oil

Straight run gasoline

LPG and Gas

Naphtha

Hydro-treating

Reformate

Middle distillates

Heavy atm. gas oil

Solventextraction

Lube base stocks

Gasoline

Vacuum gas oil

Solventdewaxing

Lube oils

Waxes

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Slurry oil

Refinery fuel gas

LPG

Gasoline

Solvents

Kerosene

Diesel

Heating oil

Lube oil

Greases

Asphalt

Industrial fuels

Coke

Trea

ting

and

Blen

ding

Delayed coker / Flexicoker

Propanedeasphalter

Hydro-treating

Catalyticreforming

Catalyticcracking

Visbreaker

Hydro-cracking

Fuel oil

Asphalt

LPG and Gas

Cycle oil

Alkylation AlkylateLPG

Hydro-treating

Vacu

umD

istil

latio

nAt

mos

pher

icD

istil

latio

n

Page 50: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Hydrotreating and HydrocrackingHYDROTREATINGHYDROTREATING•• Conversion with hydrogenConversion with hydrogen•• Reactions: hydrogenation &Reactions: hydrogenation & hydrogenolysishydrogenolysis•• Removal of heteroRemoval of hetero--atoms (S, N, O)atoms (S, N, O)•• Some hydrogenation of double bonds & Some hydrogenation of double bonds &

aromatic ringsaromatic rings•• Molecular size not drastically alteredMolecular size not drastically altered•• Also termedAlso termed hydropurificationhydropurification

HYDROCRACKINGHYDROCRACKING•• Similar to hydrotreatingSimilar to hydrotreating•• Drastic reduction in molecular sizeDrastic reduction in molecular size

Page 51: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Hydrotreating

Page 52: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Why Hydrotreating ?

•• Protection of the environmentProtection of the environment–– reduction acid rainreduction acid rain

•• Protection of downstream catalystsProtection of downstream catalysts–– in further processingin further processing–– SS--compounds in Diesel fuel give difficulties in catalytic compounds in Diesel fuel give difficulties in catalytic

cleaning of exhaust gasescleaning of exhaust gases

•• Improvement of gasoline properties Improvement of gasoline properties –– odour, colour, stability, corrosionodour, colour, stability, corrosion

Page 53: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Hydrotreating Reactions

5) Phenols

4) Pyridines

3) Benzothiophenes

2) Thiophenes

1) Mercaptans

5

5

3

RSH +

+

+

+

+

+

+

+

+

H2

H2

H2

H2

H2

RH

S

S

H2S

H2S

H2S

+ NH3

H2O

N

OH

HDSHDS

HDSHDS

HDSHDS

HDNHDN

HDOHDO

Page 54: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

0 1 2 3 4 5

1000/Temperature (1/K)

0

10

20

30

40

50

60

70

80

90

100

S

S

CH3SH

lnK e

q

Industrial conditions600-650 K

Equilibrium data

Page 55: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Naphtha Gas OilTemperature (K) 590 - 650 600 - 670Pressure (bar) 15 - 40 40 - 100H2/oil (Nm3/kg) 0.1 - 0.3 0.15 - 0.3 WHSV (kg feed/(m3 catalyst)/h) 2000 - 5000 500 - 3000

Catalyst: mixed metal sulfides (CoS and MoS2 or NiS and WS2 on Al2O3)

γ-Al2O3

‘CoMoS’S

CoMo

Typical process conditions

Process design ???

Page 56: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Inert beads

Catalyst bed

Distributor

Support grid

Product

Gas + liquid

Catalyst particle with liquid film

Gas

DeflectorGas

Liquid

Complete wetting

Incomplete wetting

Trickle-bed Reactor

Page 57: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

steam

Hydrogen

Feed

hydrogen recycle to H2S removal

Sour water

Product

SeparatorStripperHot HP separator

ReactorFurnace

Gas (C3

-)

Recycle gas scrubbing

NaphthaCold HP separator

H2S

water

Hot LP separator

Hydrotreating Process (trickle bed)

Page 58: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Development of maximum Sulfur Content in automotive Diesel in Europe

Year

1 2 3 4

3000

500 35050

0

500

1000

1500

2000

2500

3000

3500

1996 2000 2005< 1996

Max S in Dieselppm

Page 59: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Activity of Various Catalysts for HDS ofPretreated Gas Oil

CoMo/γ-Al2O3260 ppm

NiW/γ-Al2O3

PtPd/ASA (I)

Pt/ASA

Feed 760 ppm

NiMo/γ-Al2O3230 ppm

200 ppm

140 ppm

60 ppm

S

CH3

S

CH3

SCH3

C2H5

SCH3

What catalyst do you select for

Deep desulphiding

???

NaphtaHeavy gasoil ???

Retention time

Page 60: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Hydrocracking

Page 61: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Silica-alumina

‘NiMoS’S

NiMo

Hydrocracking

Similar to FCCSimilar to FCC–– but Hbut H22 inhibits some secondary reactions inhibits some secondary reactions

»» e.g. coke formation e.g. coke formation

Catalyst ???Catalyst ???

•• Acid sitesAcid sites–– SiOSiO22, Al, Al22OO33, silica, silica--alumina, zeolitesalumina, zeolites

•• Hydrogenation sitesHydrogenation sites–– NiSNiS//MoSMoS, , NiSNiS/WS/WS22, Pt, Pt

»» NHNH33 inhibits reactioninhibits reaction»» HH22S inhibits reactionS inhibits reaction

Page 62: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Reactions during Hydrocracking

Hetero-atom removal

Aromatics hydrogenation

Hydrodecyclization

Alkanes hydrocracking

Hydro-isomerization

+

+ 2 H2 + 3 H2

NH

+ NH3+ 6 H2

+ H2

+ 3 H2

+

∆ H0208 (kJ/mol)

- 374

- 326

- 119

- 44

- 4

Page 63: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Process Configurations for Hydrocracking

Feed HT

Gas

NaphthaMD

HC

Two stage

Gas

GasNaphtha

FeedMD

Series flow

HCHT

Feed

NaphthaMD

Hydrowax

Single stage / once through

HT/HC

HT = hydrotreating

HC = hydrocracking

MD = middle distillates

low investmentinhibition

high investmenthigh rates

Page 64: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Two-stage Hydrocracker

Fresh hydrogen

Feed

Hydrogen recycle

to acid gas and NH3 removal

FractionatorHigh/Low pressure separators

ReactorFurnace

C1 − C4

Naphtha

Middle distillates

Purge

Quench H2

ReactorFurnace

Quench H2

Page 65: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Summary of Processing Conditions

Mild single stage /first stage

second stage

Temperature (K)Hydrogen pressure (bar)Total pressure (bar)Catalyst

670 – 70050 – 8070 – 100Ni/Mo/S/γ-Al2O3 +P*

610 – 71080 – 130100 – 150Ni/Mo/S/γ-Al2O3+P*

530 – 65080 – 130100 – 150Ni/W/S/USY zeolite

Page 66: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern oil refinery

Crude oil

Straight run gasoline

LPG and Gas

Naphtha

Hydro-treating

Reformate

Middle distillates

Heavy atm. gas oil

Solventextraction

Lube base stocks

Gasoline

Vacuum gas oil

Solventdewaxing

Lube oils

Waxes

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Slurry oil

Refinery fuel gas

LPG

Gasoline

Solvents

Kerosene

Diesel

Heating oil

Lube oil

Greases

Asphalt

Industrial fuels

Coke

Trea

ting

and

Blen

ding

Delayed coker / Flexicoker

Propanedeasphalter

Hydro-treating

Catalyticreforming

Catalyticcracking

Visbreaker

Hydro-cracking

Fuel oil

Asphalt

LPG and Gas

Cycle oil

Alkylation AlkylateLPG

Hydro-treating

Vacu

umD

istil

latio

nAt

mos

pher

icD

istil

latio

n

Page 67: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalytic Reforming

Page 68: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalytic Reforming

•• Important for gasoline productionImportant for gasoline production–– Increases octane number Increases octane number

•• Important for base chemicals productionImportant for base chemicals production–– aromaticsaromatics–– HH22

Page 69: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Octane Numbers, Boiling Points•• nn--pentanepentane 6262 309 K309 K•• 22--methyl butanemethyl butane 9090 301301•• cyclopentanecyclopentane 8585 322322•• nn--hexanehexane 2626 342342•• 2,22,2--dimethylbutanedimethylbutane 9393 323323•• benzenebenzene >100>100 353353•• cyclohexanecyclohexane 7777 354354•• nn--octaneoctane 00 399399•• 2,2,32,2,3--trimethylpentanetrimethylpentane 100100 372372•• methylmethyl--tertiarytertiary--butylbutyl--etherether 118118 328328

•• straight run gasolinestraight run gasoline 6868 67 (MON)67 (MON)•• FCC light gasolineFCC light gasoline 9393 8282•• alkylatealkylate 9595 9292•• reformate reformate (CCR)(CCR) 9999 8888

What reactions would you carry out??

Page 70: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

C + 3 H2C

C C C C C C C C + H2

C C C C C C C C C C C C CC

CC

C + 3 H2C

Isomerization

Cyclization

Aromatization

Combination

∆ H0208 (kJ/mol)

- 4

+ 33

+ 205

+ 177

73

~ 100

~ 50

26

~ 40

Octane number

Reactions for Increase of Octane Number

Page 71: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 550 600 650 700 750 800

Temperature (K)

Cyc

lohe

xane

con

vers

ion

(-)

1 bar 5 bar 25 bar10 bar

Aromatization of CyclohexaneEffect of T and p

FavourableFavourable–– low pressurelow pressure–– high temperaturehigh temperature

Page 72: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 550 600 650 700 750 800

Temperature (K)

Cyc

lohe

xane

con

vers

ion

(-)

H2/cyclohexane (mol/mol)

0 105

Aromatization of CyclohexaneEffect of T and H2/CH feed ratio

Page 73: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Conceptual process design?

Catalyst stability highest forCatalyst stability highest for–– low Tlow T–– excess Hexcess H22–– low S impuritylow S impurity

Catalyst regeneration possibleCatalyst regeneration possible–– removal coke by combustionremoval coke by combustion–– restoring acidity by Clrestoring acidity by Cl22 treatmenttreatment–– Redispersion Redispersion of noble metal

ThermodynamicsThermodynamics–– high Thigh T–– low plow p–– ∆∆H >>0H >>0

of noble metal

Time scale stability dependent on conditions• months• days

How to handle deactivation?? Reactor ???

Fixed Bed and Moving Bed are used

Page 74: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Axial-flow reactor Radial-flow reactor

Gas flow Gas flow

Catalyst bed

Reactors for Catalytic Reforming

Page 75: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalytic reforming section Stabilizer

Reformate

C4-

Hydrogen separator

Hydrogen recycle

Reactor

Furnace

Pretreated naphtha feed

Net hydrogen

770 K 780 K 790 K

720 K 780 K760 K

Semi-Regenerative Catalytic Reforming (SRR)

Page 76: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Hydrogen (fresh & recycle)

Air

Cl2

Lift gas

Collectors

Lift pots

Regenerator ReactorsReactor 3 Reactor 4

Naphtha (desulfurized)

Catalyst recycle

Reformate

buffer drum

Reactor 1 Reactor 2

Continuously-Regenerative Catalytic Reforming (CRR)

Page 77: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

semi fully continuous

H2/HC (mol/mol) 10 4-8 4-8

Pressure (bar) 15-35 7-15 3-4

Temperature (K) 740-780 740-780 770-800

Catalyst life 0.5-1.5 y days-weeks days-weeks

γ-Al2O3

-Al-O-Al-O-Al-O-Al-O-Al-

HO Cl

Pt

Operating conditions in catalytic reforming

Page 78: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalytic ReformingTypical Feedstock and Product Composition

(vol%)

Component Feed ProductAlkanesAlkenesNaphthenesAromatics

45 – 550 – 230 – 405 – 10

30 – 5005 – 1045 – 60

Page 79: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Alkylation

Page 80: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern oil refinery

Crude oil

Straight run gasoline

LPG and Gas

Naphtha

Hydro-treating

Reformate

Middle distillates

Heavy atm. gas oil

Solventextraction

Lube base stocks

Gasoline

Vacuum gas oil

Solventdewaxing

Lube oils

Waxes

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Slurry oil

Refinery fuel gas

LPG

Gasoline

Solvents

Kerosene

Diesel

Heating oil

Lube oil

Greases

Asphalt

Industrial fuels

Coke

Trea

ting

and

Blen

ding

Delayed coker / Flexicoker

Propanedeasphalter

Hydro-treating

Catalyticreforming

Catalyticcracking

Visbreaker

Hydro-cracking

Fuel oil

Asphalt

LPG and Gas

Cycle oil

Alkylation AlkylateLPG

Hydro-treating

Vacu

umD

istil

latio

nAt

mos

pher

icD

istil

latio

n

Page 81: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Alkylation

AimAim•• Conversion of alkenes &Conversion of alkenes & alkanesalkanes to higher branched to higher branched alkanesalkanes

–– alkylatealkylate: high octane number gasoline: high octane number gasoline

PastPast–– Thermal process ( 770 K, 200Thermal process ( 770 K, 200--300 bar)300 bar)

NowadaysNowadays–– Catalytic process ( 298 K, 8 bar)Catalytic process ( 298 K, 8 bar)–– H2SO4 / HF / AlClH2SO4 / HF / AlCl33--HClHCl

Page 82: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

+ small amounts of other products

4 %

25 %

16 %

38 %

CC C C CC C

C

CC C

CC C C CC C

CC C+CC CC

CC C C CC C

Example of Alkylation

Page 83: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Initiation

Propagation

+

+

+

+

+ +

Etc.

C C C

C C C C C

C C

C C C C CC

C C C C C C C CC

C C

C

C C C C CC

CC C

C C C CC

CC C C

H+ C+

C+ C+

C+C+

C+

C+

C

C C

Reaction via Carbenium Ions

Alkylation Mechanism

Page 84: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Feedstocks?

Heterogeneous catalyst would be a breakthrough

Alkylation

FCC, Hydrocracking, Distillation, ....

FCC, coking

ii--butanebutane

CC--C=CC=CCC--CC--C=CC=C

Practical (Practical (disdis)advantages two common catalyst systems)advantages two common catalyst systemsHH22SOSO44 HFHF10 10 ooCC 30 30 ooCC100100 0.50.5 kg acid consumption/tkg acid consumption/t alkylatealkylate

Page 85: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Alkylation, summary•• ii--C4/C4/alkenealkene should be large (5 should be large (5 -- 15)15)•• Inorganic acid phase: accumulation CInorganic acid phase: accumulation C--C=CC=C

mixing essentialmixing essential•• Acid catalystsAcid catalysts HH22SOSO44 (95%, 1% H(95%, 1% H22O)O)•• HFHF (90%, 1% H(90%, 1% H22O)O)•• Highly exothermic reactionsHighly exothermic reactions

What catalyst do you prefer??What catalyst do you prefer??

•• HH22SOSO44 most active, but bymost active, but by--productsproducts•• HF less active, but hazardousHF less active, but hazardous

Page 86: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Recycle acid

Reject acid

Reactor & Acid settler

Fresh acidIsobutane

Alkene

caustic

spent caustic

Recycle isobutane

Caustic scrubber

De-isobutanizerDebutanizer

Propane

Depropanizer

Receiver

Economizer

n-Butane

Alkylatewaste water

water

Vapor (i-C4 / C3)

Alkylation with H2SO4 in Cascade of CSTRs

Page 87: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Alkylation with H2SO4 in Stratcocontactor with autorefrigeration

PC

Recycle acid

Alkylate & C3 + C4

Recycle C3 + C4Alkene & isobutane feed

To condenser and separator

Reactor

Settler

Emulsion (HCs/acid)

Page 88: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Comparison of H2SO4 and HF Alkylation

H2SO4 process HF processTemperature (K)Pressure (bar)Residence time (min)Isobutane/butene feed ratioAcid strength (wt%)Acid in emulsion (vol%)Acid consumption per mass ofalkylate (kg/t)

277 – 2832 – 620 – 308 – 1288 – 9540 – 6070 – 100

298 – 3138 – 205 – 2010 – 2080 – 9525 – 800.4 – 1

Page 89: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Conversion of heavy residues

Page 90: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Modern oil refinery

Crude oil

Straight run gasoline

LPG and Gas

Naphtha

Hydro-treating

Reformate

Middle distillates

Heavy atm. gas oil

Solventextraction

Lube base stocks

Gasoline

Vacuum gas oil

Solventdewaxing

Lube oils

Waxes

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Gasoline, Naphtha, Middle distillates

Slurry oil

Refinery fuel gas

LPG

Gasoline

Solvents

Kerosene

Diesel

Heating oil

Lube oil

Greases

Asphalt

Industrial fuels

Coke

Trea

ting

and

Blen

ding

Delayed coker / Flexicoker

Propanedeasphalter

Hydro-treating

Catalyticreforming

Catalyticcracking

Visbreaker

Hydro-cracking

Fuel oil

Asphalt

LPG and Gas

Cycle oil

Alkylation AlkylateLPG

Hydro-treating

Vacu

umD

istil

latio

nAt

mos

pher

icD

istil

latio

n

Page 91: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Conversion of Heavy Residues

How?How?Why?Why?

•• Carbon outCarbon out–– Coking processesCoking processes

•• Hydrogen inHydrogen in–– Hydrotreating

•• Product distribution not rightProduct distribution not right–– Demand for lighter productsDemand for lighter products–– Demand for cleaner productsDemand for cleaner products

»» low/zero low/zero sulfursulfur gasoline and gasoline and dieseldiesel

•• Heavier, moreHeavier, more sulfursulfurcontaining,containing, crudes crudes are are processedprocessed

•• Stricter regulations on refinery Stricter regulations on refinery emissions

Hydrotreating

emissions

Page 92: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Light Crude Oil Product Distribution

Gasoline

Kerosene /Gas oil

Fuel oil(3.5% sulfur)

Own use

LPG 4%

28%

39%

22%

7%

Complex refinery

Gasoline

Kerosene /Gas oil

Fuel oil(3.5% sulfur)

Own use

LPG 2%15%

35.5%

44%

3.5%

Hydroskimming refinery

Page 93: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Impact on refinery

Deep conversion: whitening of the barrelDeep conversion: whitening of the barrel–– MoreMore hydrotreatinghydrotreating facilitiesfacilities–– Production capacity for HProduction capacity for H22 productionproduction–– Production of refinery fuel gas for heating (instead of Production of refinery fuel gas for heating (instead of

using heavy oil fraction)using heavy oil fraction)–– Production capacity for conversion HProduction capacity for conversion H22SS–– EndEnd--ofof--pipe solutionspipe solutions

Page 94: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

•• “Carbon Out”“Carbon Out”

•• Thermal crackingThermal cracking–– Residual oilResidual oil →→ gas, liquid, cokegas, liquid, coke

•• Coke gasification / combustionCoke gasification / combustion–– C + C + ½½ OO22 →→ COCO exoexo–– C + HC + H22OO →→ CO + HCO + H22 endoendo–– C + COC + CO22 →→ 2 CO2 CO endoendo

Flexicoking

Process scheme?

Page 95: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Coke fines

Sulfur

Sulfur removal

Cyclone

Coke slurry

Venturiscrubber

Air

Steam

Steam

Liquid productsto fractionator Low calorific

gas

Feed

750 - 800 K

1000 -1100 K

1200 - 1300 K

Reactor Heater Gasifier

Scrubber

Water Separator

Purge coke

Thermal cracking Heat exchange Combustion/Gasification

Flexicoking

Product yields

Gas and LPG 10 - 15 %Naphtha,Gasoil 55 - 65 %Coke 25 - 30 %

Composition?

Page 96: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalytic Hydrogenation of ResiduesWhat are the differences with thermal processes??

•• Catalytic ProcessesCatalytic Processes–– Catalyst deactivationCatalyst deactivation

»» Metal depositionMetal deposition»» Coke depositionCoke deposition

–– Molecular size largeMolecular size large»» Diffusion limitations to be expectedDiffusion limitations to be expected

–– High hydrogen pressureHigh hydrogen pressure

Process design?Process design?

•• Technology based on (semi)continuous catalyst Technology based on (semi)continuous catalyst replacementreplacement

–– FluidizedFluidized--bed reactors, small catalyst particlesbed reactors, small catalyst particles–– MovingMoving--bed reactors, catalyst particles with wide poresbed reactors, catalyst particles with wide pores–– Slurry reactors, very small catalyst particlesSlurry reactors, very small catalyst particles

Page 97: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalyst Deactivation

Deposition of poisonsDeposition of poisons

–– AsphaltenesAsphaltenes, coke, coke

–– Metals as metal Metals as metal sulfidessulfides

NiNi--porphyrin porphyrin + H+ H22 NiS NiS + hydrocarbons+ hydrocarbons

VV--porphyrin porphyrin + H+ H22 VV22SS33 + hydrocarbons+ hydrocarbons

Page 98: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalyst Deactivationduring hydrotreating

....... .

.

...

..

.

.

.

.

.

....... .

.

.

....

..

.

.

.

.

.

. ..

.

. . .

. . ..

..

.

. .

.

... .. .

. . . .... ..

..

... ..... .. ...

.

.

.. ..

.

.

. .

..

.

time on stream

catalystpellet

fresh catalyst active sitepoisoning

pore plugging

.

.

.. . . . .

....

.. ..

.... . ... . .

.

.. .

.. ..microscale .

.

.. . . . .

....

.. ..

.... . ... . .

.

.. .

.. ..

.

.

.. . . . .

....

.. ..

.... . ... . .

.

.. .

.. ..

active site

pore

metal sulfidedeposit

Page 99: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Reactors for Hydroconversion of Residues

Fixed-bed reactor (trickle flow)

Inert beads

Distributor

Support grid

Product

Gas + liquid

Catalyst bed

Slurry reactor

Gas bubble

Catalyst in suspensionGas

Liquid +cat.

Product (+ cat.)

Fluidized-bed reactor (three phase)

Catalyst in suspension

Level of fluidized bed

Product

Gas bubble

Gas

Liquid

Page 100: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

ProductsFractionation

Hydrogen rich gas

Low pressure separator

High pressure separators

Off gasCatalyst addition

Catalyst removal

Hydrogen

Feed

Heaters Reactors Separation

Purification700 - 740 K150 - 200 bar

Process with Fluidized-bed Reactors (Lummus)

Page 101: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Products to separation

Stationary catalyst bed

Stationary catalyst bed

Hydrogen

Hydrogen

Spent catalyst

Catalyst rejuvenation

Moving catalyst bed

Fresh catalyst

Feed

HDMbunker reactor

HCON fixed-bed reactor

620 - 710 K100 - 200 bar

HYCON Process

Page 102: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Sulfurremoval Extraction Drying

Classification

Rejuvenatedcatalyst

Used catalyst

HDM Catalyst Rejuvenation

Page 103: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Processes with Fixed-bed Reactors

HDM catalyst HDS catalystwide pores

HDS catalystnarrow pores

Residual feed

Metal content(ppmw)

Fixed bed< 25

25 - 50

50 - 100

> 100

>> 100

Fixed bed, dual catalyst system

Fixed bed, threefold catalyst system

Fixed bed, HDS catalystsMoving bedBunker HDM

Fixed bed, HDS catalystsBunker HDM

Cat. rejuvenation

Page 104: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Products

Hydrogen

Feed

CatalystFractionationLP

separator

Heaters Slurry reactor

Cold LP separator

700 - 740 K150 - 300 bar

HP separator

Off gasPurification

Residue

Fixed-bed reactor

Veba Combi-Cracking Process (Slurry Reactor)

Page 105: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Treatment refinery gas streams

Page 106: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

•• Removal of HRemoval of H22SS–– Exhaust from hydrotreatingExhaust from hydrotreating–– Exhaust from FCCExhaust from FCC

•• Removal of NORemoval of NOxx, SO, SO22–– Exhaust from burnersExhaust from burners–– Exhaust from FCC regeneratorExhaust from FCC regenerator

•• Recovery of HRecovery of H22–– Exhaust from hydrotreatingExhaust from hydrotreating–– Exhaust from FCCExhaust from FCC

Treatment of Refinery Gas Streams

Page 107: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

H2S Removal and Conversion

•• Removal by absorption in Removal by absorption in regenerable regenerable liquid solventsliquid solvents

AlkanolaminesAlkanolamines

MEA (monoMEA (mono--ethanol amine)ethanol amine)

DIPA (DIPA (didi--isoiso--propanol propanol amine)amine)

•• Conversion of HConversion of H22S to elemental S:S to elemental S:–– Claus processClaus process–– SCOT process (SSCOT process (S--compounds compounds →→ HH22SS →→ Claus plant)Claus plant)–– SuperClausSuperClaus processprocess

CH2HO CH2 NH2

CH3 CH CH2 N CH2 CH CH3OH OHH

Page 108: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

LP steam

Absorber Regenerator

Feed gas

Rich solution

Lean alkanolaminesolution

H2Sto sulfur recovery

Purified gas

315 K 385 K

H2S removal by amine absorption

Page 109: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Sulfur recovery limited by equilibriumClaus: About 95% H2S converted to SSCOT & SuperClaus: nearly 100% recovery

2 H2S + O2 S2 + 2 H2O ∆ H0298 = - 444 kJ/mol

H2S oxidized to elemental S:

Claus Process

Page 110: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Claus Process

H2S + 3/2 O2 SO2 + H2O

2 H2S + SO2 3/2 S2 + 2 H2O

Reheater

Air

Tail gas

Sulfur pit

Boiler feed water

LP steam

Sulfur pump

QC

H2S :SO22 :1

520 K

HP steam

> 1300 K

Boiler feed waterAcid

gas

Liquid sulfur

Claus reactor 2 Claus reactor 3Reaction furnace

Waste heat boiler

Claus reactor 1

Condenser 4Condenser 1 Condenser 2 Condenser 3

Page 111: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

SCOT Process

SO2, CS2, COS + H2 H2S

LP steam

LP steam

Treated gas to incinerator

Acid gas recycle to Claus plant

Purge

AirFuel gas

Reducing gas570 KClaus tail gas

Line burner SCOT reactor Cooling tower Absorber Regenerator

Page 112: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

SuperClaus Process

SuperClaus reaction: H2S + 1/2 O2 1/2 S2 + H2O

Reheater

Air

Acid gas

Tail gas

Boiler feed water

LP steam

Boiler feed water

HP steam

Reaction furnace

Waste heat boiler

Claus reactor 1

> 1300 K

Condenser 1 Condenser 2 Condenser 3 Condenser 4

Claus reactor 2 Selective oxidation reactor

S S S S

QCH2S

0.8-3 vol%

Page 113: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Methods:Methods:–– Cryogenic distillationCryogenic distillation

»» Energy intensiveEnergy intensive–– AbsorptionAbsorption

»» High purity can not be obtainedHigh purity can not be obtained–– AdsorptionAdsorption

»» TSA (Temperature Swing Adsorption)TSA (Temperature Swing Adsorption)»» PSA (Pressure Swing Adsorption)PSA (Pressure Swing Adsorption)

–– Membrane separationMembrane separation

Recovery of Hydrogen from Refinery Gas Streams

Page 114: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

•• Applications:Applications:–– Air dryingAir drying–– NN22 productionproduction–– HH22 purification: Hpurification: H22 hardly adsorbshardly adsorbs

•• Transient process: cyclicTransient process: cyclic–– Adsorption of impuritiesAdsorption of impurities–– Regeneration of adsorbent bedRegeneration of adsorbent bed

»» by raising T: TSAby raising T: TSA»» by reducing p: PSAby reducing p: PSA

Adsorption

Page 115: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Adsorber 1 Adsorber 2 Adsorber 3 Adsorber 4

Purified hydrogen

Purge gasFeed

Adsorption Pressurization Regeneration / purge

Depressurization

10 - 40 bar 1 - 10 bar

Depressurization / Pressurization

Depressurization / Purge

Hydrogen purification using PSA

Page 116: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Adsorber 1

Time

Adsorption

Adsorption

Adsorption

Adsorption

Regeneration

Regeneration

Regeneration

Regeneration

Pres

sure

Step 1 Step 2 Step 3 Step 4

Adsorber 2

Adsorber 3

Adsorber 4

Cycle-sequence in PSA

Page 117: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

•• High selectivityHigh selectivity•• High permeabilityHigh permeability•• High mechanical stabilityHigh mechanical stability•• Thermal stabilityThermal stability•• Chemical resistanceChemical resistance

Membranes: important properties

Page 118: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

•• DialysisDialysis•• Seawater desalinationSeawater desalination•• Membrane distillationMembrane distillation•• Concentration of proteins in food industryConcentration of proteins in food industry•• Separation of gas mixturesSeparation of gas mixtures

Membranes: Applications

Page 119: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Polymeric membranesPolymeric membranes–– AdvantageAdvantage

»» high selectivityhigh selectivity–– DisadvantagesDisadvantages

»» limited thermal stability (180 limited thermal stability (180 ooC)C)»» prone to degradationprone to degradation

Inorganic membranesInorganic membranes•• Pd, porous layersPd, porous layers

–– AdvantagesAdvantages»» stable at high temperaturestable at high temperature»» large variety of materialslarge variety of materials

–– DisadvantageDisadvantage»» generally low selectivitygenerally low selectivity

Membranes

Page 120: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Membrane ProcessesAdvantages and Disadvantages

•• AdvantagesAdvantages

–– Low energy consumptionLow energy consumption»» no phase transfer no phase transfer

–– Mild conditionsMild conditions–– Low pressure dropLow pressure drop–– No additional phase requiredNo additional phase required–– Continuous separationContinuous separation–– Easy operationEasy operation

»» No moving partsNo moving parts

•• DisadvantagesDisadvantages

–– FoulingFouling–– Low lifetimeLow lifetime–– Often low selectivityOften low selectivity–– No economy of scale (scaleNo economy of scale (scale--up up

factor ~ 1)factor ~ 1)

Page 121: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Feed (pmax = 148 bar)

RetentatePermeate

Fiber bundle end seal

Potted open end Fiber bundle

D = 0.1 - 0.2 m

L = 3 m

Monsanto hollow-fiber Module

Page 122: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Feed gas Application Total capacity(m3 (STP) h-1)

H2-N2, CH4, Ar Ammonia synthesis gas 390400H2-CH4, N2 Methanol synthesis gas 6100H2-CO Synthesis gas in the

Chemical industry 12540H2-enriched gas refineries, chemical industry 164300CO2-CH4 Natural gas 34100

Biogas 310N2-concentration Inertization 800

Applications in Gas Separation

Page 123: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Catalytic Reformer

Naphtha Hydrodesulfurization

Refinery products Hydrodesulfurization

Gas oil Hydrodesulfurization

Cracking products Hydrodesulfurization

Permeate6.4 Nm3 h-1

17 bar92% H2

Membrane units

Heating gas

Retentate13.6 Nm3 h-1

48 bar55% H2

Feed20 Nm3 h-1

48 bar60% H2

Hydrogen Recovery in Oil Refineries

Page 124: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Novel processes for high-quality gasoline and diesel

Page 125: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Reformulated Gasoline

•• Prior to 1973Prior to 1973–– reformatereformate + tops + lead+ tops + lead

•• From 1973 onFrom 1973 on–– leadlead--free gasolinefree gasoline

»» enhance ON by catalytic reforming, enhance ON by catalytic reforming, isomerizationisomerization, …, …•• Maximum Maximum sulfursulfur, , alkenealkene, benzene content, benzene content•• Minimum oxygenate contentMinimum oxygenate content

•• Best gasolineBest gasoline–– alkylate alkylate

»» but not attractive processbut not attractive process

Page 126: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Source* Sulfur (wt%) Aromatics (wt%) Cetane numberStraight-run gas oilLight cycle oil from FCCGas oil from thermal processesGas oil from hydrocrackingFischer-Tropsch gas oil

1 – 1.52 – 2.82 – 3< 0.010

20 – 40> 7040 – 70< 10≈ 0

40 – 50< 2530 – 50> 55> 70

* Before hydrodesulfurization

Diesel

Page 127: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

0.0

0.2

0.4

0.6

0.8

1.0n-

buta

ne

iso-

buta

ne

neop

enta

ne

benz

ene

p-xy

lene

o-xy

lene

amm

onia

wat

er

hydr

ogen

carb

on m

onox

ide

carb

on d

ioxi

de

oxyg

en

nitro

gen

Dia

met

er (n

m) X,Y

4A

ZSM-5

(C4H

9)3N

(C4F

9)3N

Shape Selectivity

Page 128: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

+

CH3OH H2O

Reactant selectivity

Transition-state selectivity

Product selectivity

Shape Selectivity

Page 129: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

CH3CCH3

OCH3

CH2CH3C CH2H3CCH3

+ CH3CH2OH

+ CH3OHC CH2H3CCH3

CH3CCH3

O CH3

CH3

MTBE

ETBE

Routes to MTBE and ETBE

Page 130: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

C C CC

iso-butane iso-buteneC C C

C

C C C Cn-butane n-butene

C C C C

Isomerization Isomerization

Dehydrogenation

Routes to Isobutene

Page 131: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

C C C C+

C C C CC C C C

C C C CCC

CC+

C C C CC

CC C+

+C C C

CC C CC

C C C CC

CC

C +

skeletalisomerization

C C CC

C C CC

+

C C C C C C C Cdouble bond isomerization

+

C C CcH+

C C CC

skeletalisom.

C C CC

Ferrierite

Butene Isomerization in Ferrierite

Page 132: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

C4 feed

ReactorHeater

C4 product

DistillationCompressor

C5+

620 K1 − 2 bar

Butene Isomerization

Page 133: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

300 350 400 450 500 550 600 650 700

Temperature (K)

Mol

frac

tion

C6

isom

ers

in to

tal h

exan

es (-

)

C-C-C-C-C-C

C-C-C-C-CC

C-C-C-C-CC

C-C-C-CC

C

C-C-C-CC

C

Isomerization of Hexanes - Equilibrium Composition

Page 134: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

80

82

84

86

88

90

92

300 350 400 450 500 550 600

Temperature (K)

RO

N

once through process

with recycle of normal alkanes

Feed:Pentanes 60%Hexanes 30%Cyclics 10%

Pt/Cl/Al2O3 Pt/H-Mordenite

Effect of n-Alkane Recycle on Octane Number

Page 135: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

TIP (Total Isomerization Package) ProcessHYSOMER lead

C4 −

HYSOMER ISOSIVC5/C6 feed

iso-alkanesnormal alkanes recycle

ISOSIV HYSOMERC5/C6 feed

normal + iso alkanes recycle

C4 −

iso-alkanesISOSIV lead

Page 136: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

ocess via Main product(s)GO

ischer-Tropsch

methanolmethanolalkenessynthesis gas

gasolinealkenes for MOGD processdistillates/gasolinedistillates

From Synthesis Gas to Gasoline and Diesel

PrMTMTMOGDF

Page 137: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

2 CH3OH ←→ H3C-O-CH3 + H2O H3C-O-CH3 → Light alkenes + H2O Light alkenes + H3C-O-CH3 → Heavy alkenes + H2O Heavy alkenes → Aromatics + Alkanes Aromatics + H3C-O-CH3 → Higher aromatics + H2O

MTG (Methanol to Gasoline) Process

Page 138: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

10-4 10-3 10-2 10-1 1 10

Space time (h⋅m3reac/m3

liq)

70

60

50

40

30

20

10

0

Methanol

DME

Water

C2-C5 alkenes

Alkanes (+ C6+ alkenes)

Aromatics

Prod

uct d

istri

butio

n (w

t%)

MTG (Methanol to Gasoline) Process

Page 139: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Gasoline to fractionation

Purge gas to fractionation

Water

Crude methanol

DME Reactor Conversion reactors (ZSM-5)

Swing reactor being regenerated

580 K

690 K

620 K

690 K

22 bar

Mobil MTG Process

Page 140: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Distillate to hydrotreating

Adiabatic oligomerization reactors SeparatorsFurnace

Gasoline

LPG

Gasoline recycle

Alkene feed

470 - 530 K30 - 100 bar

Mobil MOGD (Methanol to Gasoline and Distillates) Process

Page 141: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Gas-to-LiquidSyngas & Fischer Tropsch

Page 142: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Gas-to-Liquid Conversion

SyngasSyngasgenerationgeneration

FischerFischer--TropschTropschsynthesissynthesis

Fuel Fuel upgradingupgrading

•• FeedFeed–– Coal, oil, natural gas, biomassCoal, oil, natural gas, biomass

»» Remote natural gas resourcesRemote natural gas resources»» Associated gas crude oil rigsAssociated gas crude oil rigs

•• Flexible technologyFlexible technology–– MonetisingMonetising alternative to flaring, realternative to flaring, re--injectioninjection–– Political drivePolitical drive–– New productsNew products–– Chemicals source in future?Chemicals source in future?

•• Lower environmental impact Lower environmental impact –– HighHigh--quality clean fuelsquality clean fuels–– More efficient utilization fossil resourcesMore efficient utilization fossil resources–– Renewable, contributes to sustainable society Renewable, contributes to sustainable society

Page 143: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Production Synthesis Gas5.1, 5.2, 5.4

Important base chemical for variety of applicationsImportant base chemical for variety of applications

Mixtures Main uses

H2 Refinery hydrotreating and hydrocracking3 H2 : 1 N2 Ammonia plant feed2 H2 : 1 CO Alkenes (Fischer-Tropsch reaction)2 H2 : 1 CO Methanol plant feed1 H2 : 1 CO Aldehydes and alcohols (Oxo reactions)CO Acids (formic and acetic)

Feedstock??Feedstock??

Process??

Hydrocarbons•natural gas, oil,coal•biomass

Future for H2Solar??

Process?? Steam reformingPartial oxidation

Page 144: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Reactions starting from CH4

Steam reformingSteam reforming CHCH44 + H+ H22O O ↔↔ CO + 3 HCO + 3 H22

‘Water gas shift’‘Water gas shift’ CO + HCO + H22OO ↔↔ COCO22 + H+ H22

‘CO‘CO22 reforming’reforming’ CHCH44 + CO+ CO22 ↔↔ 2 CO + 2 H2 CO + 2 H22

Thermal crackingThermal cracking CHCH44 ↔↔ C + 2 HC + 2 H22

BoudouardBoudouard reactionreaction 2 CO2 CO ↔↔ C + COC + CO22

Partial oxidationPartial oxidation CHCH44 + ½ O+ ½ O22 →→ CCΟ + 2 ΗΟ + 2 Η22

Complete combustionComplete combustion CHCH44 + 2 O+ 2 O22 → → CCΟΟ22 + 2 Η+ 2 Η22ΟΟ

∆∆ HHrr = = 206 kJ/mol206 kJ/mol

∆ Hr = - 41 kJ/mol

∆ Hr = 247 kJ/mol

∆ Hr = 75 kJ/mol

∆ Hr = -173 kJ/mol

∆ Hr = -36 kJ/mol

∆ Hr = -803 kJ/mol

What reaction(s) are most attractive??

Page 145: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Carbon monoxide, methanol, ammonia, hydrogen, etc.

Pulverization

Coal

H2OO2/air

Heavy oil fractionH2OO2/air

Desulfurization

Natural gas

H2O Air/O2/(H2O)

Autothermicreforming

Steamreforming

PurificationAdjustment

Partialoxidation

PurificationAdjustment

PurificationAdjustment

Sulfur removal

Sulfur removal

GasificationCarbonremoval

Conversion Routes to Synthesis Gas

Page 146: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

H2/CO = 3

Steam Reforming ThermodynamicsH2O/CH4 = 1

Heat required ???

Temperature

?

Page 147: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Steam reformingH2O/CH4 = 1

Partial oxidationO2/CH4 = 0.5

H2/CO = 3 H2/CO = 2

Equilibrium Compositionssteam reforming versus partial oxidation

Page 148: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

H2O/CH4 = 1

Thermodynamics steam reformingEffect of Temperature and Pressure

With increasing pressurelower conversionmore CH4

Page 149: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Process Design

•• T, p ????T, p ????•• Heat management?Heat management?•• Full conversion?Full conversion?

Page 150: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Typical Allothermal Steam Reforming Process

Superheated HP Steam

Fuel

Air

Natural gasCO2

Process steam

Reformer Desulfurizer

BFW

Flue gas to stack

Steam BFWCooling water

Condensate

Raw syngas

Knock-out drum

Radiation section

Convection section

Tubes filled with catalystL = 7 - 12 mdt = 70 - 130 mm500 - 600 tubes

Material tubes•Ni-Cr alloy up to 1150 oC (Tm = 1370 oC)• More expensive materials at higher T

•Heat transfer ↓ with dt ↑• Pressure drop ↓ with dt ↑

Optimal tube diameter??

Page 151: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Radiantsection

FRONT ELEVATIONISO VIEW

ConvectionsectionAir preheater

Steam Reformer

Page 152: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

ocess H2O/C(mol/mol)

Texit (K) pexit (bar) Composition (vol%)2)

H2 CO CO2 CH4

ydrogenydrogen1)

moniathanol

ldehydes/ alcoholseducing gas

2.54.53.73.01.81.15

112310731073112311381223

2727331717 5

48.6 9.2 5.2 5.934.6 5.3 8.0 2.439.1 5.0 6.0 5.550.3 9.5 5.4 2.628.0 25.9 19.7 1.170.9 22.4 0.9 1.5

rom naphthaRest is H2O

Typical Reformer ConditionsIndustrial Processes

Pr

HHAmMeAR

1) F2)

Critical points??? Excess H2OCH4 slip

Page 153: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Methane slip

Temperature (K)

Met

hane

slip

(% u

ncon

verte

d)

0

10

20

30

40

50

60

1000 1050 1100 1150 1200

1 bar

10 bar

20 bar

30 barH2O/CH4 = 3

Temperature (K)

Met

hane

slip

(% u

ncon

verte

d)

1050 1100 1150 12000

10

20

30

40

50

60

70

80

1000

H2O/CH4 = 1

H2O/CH4 = 2

H2O/CH4 = 3

H2O/CH4 = 5

p = 30 bar

Practical conditions H2O/CH4 = 2.5 - 4.5T: 1090 - 1150 KP: 7 - 30 bar

Page 154: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

New Processes

Coke problem, in particular for heavy feed stocksCoke problem, in particular for heavy feed stocks–– prepre--reformer at low temperaturereformer at low temperature

Investment largeInvestment large–– ““autothermicautothermic” reforming” reforming

Exergy Exergy loss enormousloss enormous–– membrane reactormembrane reactor

»» equilibrium is shifted (palladium for Hequilibrium is shifted (palladium for H22 permeation)permeation)»» OO22 plant avoided (Oplant avoided (O22 permeation from air)permeation from air)

Other chemical routesOther chemical routes–– methane (catalytic partial oxidation, CPO)methane (catalytic partial oxidation, CPO)–– ethane (catalytic partial oxidation)ethane (catalytic partial oxidation)–– methanol (catalytic decomposition)methanol (catalytic decomposition)

Page 155: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CERCnHm + H2O → CH4 + CO2/CO

Steam Reformer with Prereformer

770 K

Superheated HP Steam

Fuel

Air

Feed

Process steam

Reformer

Desulfurizer

BFW

Flue gas to stack

Hot raw syngas

Pre-reformer

Page 156: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

CH4 + O2 → CO + 2 H2

CH4 + 2 O2 → CO2 + 2 H2O

CH4 + H2O ↔ CO + 3 H2

CH4 + CO2 ↔ 2 CO + 2 H2

Syngas

Natural gas Steam

Oxygen

Burner

Catalyst bed

Combustion zone ≈ 2200 K

Reforming zone 1200 - 1400 K

20 - 100 bar

Molar feed ratio

H2O/CH4 = 1 - 2

O2/CH4 ≈ 0.6

“Autothermal” Reforming

Composition syngas?Why O2, not air?Investment high or low?T-profile in reactor?

Page 157: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

ICI Combined Reforming Exxon CAR

Gas-heated reformer

Autothermicreformer

Oxygen

Syngas

Natural gas Steam

Combined autothermicreformer

Catalyst

Dense phase with catalyst

Natural gas Steam

Syngas

Oxygen

Catalyst

Heat-integrated ReformersHot gas from the Hot gas from the autothermal autothermal reformer used for steam reformingreformer used for steam reforming

Page 158: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Exergy •• Quality of energy in > quality of energy out Quality of energy in > quality of energy out

–– (quantity remains the same: first law)(quantity remains the same: first law)

•• ExergyExergy losses in processlosses in process–– External lossesExternal losses

»» emissions to environment (e.g. in offemissions to environment (e.g. in off--gas), similar to energy gas), similar to energy losses (‘spills’)losses (‘spills’)

–– Internal lossesInternal losses»» physical (heat exchange, compression) & chemical (depend on physical (heat exchange, compression) & chemical (depend on

process and reaction conditions)process and reaction conditions)

reformer29%

methanol synthesis

24%

distillation38%

rest9%

reformer78%

methanol synthesis

7%

distillation8%

rest7%

Energy spill Exergy loss

ExergyExergy analysis analysis methanol methanol production (ICI)production (ICI)

Page 159: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Methane (Hydrocarbon) Partial Oxidation

•• NonNon--catalytic partial oxidation (SGP process)catalytic partial oxidation (SGP process)–– Very high temperature (1650 K)Very high temperature (1650 K)–– Small amounts of soot are producedSmall amounts of soot are produced

»» →→ extensive extensive gasgas--cleanclean--upup

•• Catalytic partial oxidation (CPO) Catalytic partial oxidation (CPO) –– Relatively low temperature (900 Relatively low temperature (900 –– 1300 K)1300 K)

»» Less loss of Less loss of exergyexergy»» Less severity for materialsLess severity for materials

–– No soot formationNo soot formation–– Very fast reaction (residence time, 0.5 Very fast reaction (residence time, 0.5 –– 4 ms)4 ms)

»» →→ small equipmentsmall equipment–– No commercial process yet existsNo commercial process yet exists

•• Both processes require pure oxygen (capital intensive Both processes require pure oxygen (capital intensive cryogenic distillation)cryogenic distillation)

Page 160: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Mechanism and Thermodynamics (CPO)O2

CH4 CO + H2

CO2 + H2OO2

CH4

O2

Mildly exothermal

Highly exothermalEn

doth

erm

al

•• Dominant pathway depends on: Dominant pathway depends on: –– Catalyst (and support)Catalyst (and support)

RhodiumRhodiumdirect CO + Hdirect CO + H22 formationformation

RutheniumRutheniumcombustioncombustion--reformingreforming

–– Oxygen partial pressureOxygen partial pressure•• Coke formation occurs at low OCoke formation occurs at low O22

partial pressurepartial pressure

•• Synthesis gas formation is favored by: Synthesis gas formation is favored by: –– Low pressureLow pressure–– High temperatureHigh temperature–– CHCH44:O:O22 ≤≤ 22

Page 161: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Considered Reactor Types

•• Immobile catalystImmobile catalyst–– Fixed bedFixed bed–– (Foam) Monolith(Foam) Monolith–– GauzeGauze–– Coated wallCoated wall

•• Reactant feedingReactant feeding–– Continuous flowContinuous flow–– Reverse flowReverse flow–– Alternating flowAlternating flow

»» OO22 CHCH44 OO22–– OO22 membrane

Synthesis gas

MethaneOxygen

FluidizedFluidized bedbedreactorreactor

Synthesis gas

Reduced cat.

Oxidised cat.riser

AirMethane

Riser reactorRiser reactor

Synthesis gas

MethaneOxygen

membrane

Page 162: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Reactor Temperature Profile

Hot spot formationHot spot formation–– ∆∆T up to 600 KT up to 600 K–– promotespromotes

»» Catalyst sinteringCatalyst sintering»» Active metal evaporationActive metal evaporation»» Migration of active metal into Migration of active metal into »» supportsupport»» Coke formationCoke formation

–– Detrimental to catalyst stabilityDetrimental to catalyst stability

•• Solution?Solution?–– increase heatincrease heat--transfertransferCatalytic bed length (-)

10

1000

600

1400

Tem

pera

tur e

(o C)

Adiabatic Temperature

mainly total oxidation

mainly reforming

> pO2 < pO2

Page 163: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Commercial CPO Process

•• Requirements: Requirements: –– Good catalyst stabilityGood catalyst stability

Mechanical (fluid bed and riser reactor)Mechanical (fluid bed and riser reactor)Activity and selectivityActivity and selectivity

–– Cheap oxygen supply (oxygen separation membrane)Cheap oxygen supply (oxygen separation membrane)Inside or outside reactorInside or outside reactor

–– High flow rate (small equipment)High flow rate (small equipment)»» High catalyst activityHigh catalyst activity»» Limited mass transfer limitation (catalyst utilization, Limited mass transfer limitation (catalyst utilization,

expensive noble metals)expensive noble metals)–– Suppression of total oxidation reactions (hotSuppression of total oxidation reactions (hot--spots)spots)

»» Good conductive heatGood conductive heat--transfertransfer»» Internal heatInternal heat--exchangeexchange

Page 164: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

CPO (Fuel Cell Application)

VaporizerHydrocarbons (Petrol, Diesel)

CPO WGS CO ox

H2 + CO2

Fuel Cell

Exothermal processesOxygen

or

Natural Gas

WaterH2O + CO2

Air

Page 165: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Production Raw Syngas for NH3 synthesisN2 + 3 H2 ↔ 2 NH3

BackgroundO-containing molecules poison ammonia synthesis catalyst (Fe)

purification steps; CO removal, CO2 removal

Component (mol%)H2N2COCO2CH4Ar

56.3422.2012.768.180.220.30

60.0220.163.33

15.850.210.25

61.1519.770.40

18.240.200.24

74.6824.100.490.200.240.29

74.0624.69

< 5 ppm< 5 ppm

0.950.30

HT CO Shift57 m3

LT CO Shift61 m3

CO2removal

Methanation25 m3

640 K 710 K 490 K 510 K 590 K 640 KTo compression & ammonia synthesis

(61 m3)

Desulfurization24 + 27 m3

Steam reforming

17 m3

Autothermicreforming

33 m3

670 K 660 K 770 K 1020 K 1020 K 1270 K

CH4

H2

Steam Air

Page 166: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

CO conversion: Water-gas shiftCO + H2O ↔ CO2 + H2

Temperature (K)

KpOHCO

COHp pp

ppK

2

22=640 K

710 K

490 K

510 K

HT shift LT shift

13 mol% CO

0.4 mol% COtoo high for Fe catalystModerately exothermal

Favourable: low T

Page 167: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

CO conversion

•• Remaining CO removed byRemaining CO removed by methanationmethanationCO + 3 HCO + 3 H2 2 ↔↔ CHCH44 + H+ H22OO

–– But first COBut first CO22 removed by absorptionremoved by absorption

Removal system GJ/mol CO2

MEA 210

MEA with inhibitors 93-140

K2CO3 with additives 62-107

MDEA with additives 40-60

Page 168: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Fischer-Tropsch

Page 169: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Main reactionsAlkanesAlkenesWater-gas shift

n CO + (2n + 1) H2 → Cn H2n + 2 + n H2On CO + 2n H2 → CnH2n + n H2OCO + H2O ←→ CO2 + H2

Side reactionsAlcoholsBoudouard reaction

n CO + 2n H2 → H(-CH2-)nOH + (n-1) H2O2 CO → C + CO2

Fischer-Tropsch Process Product distribution

par 6.3

•• Product distribution depends onProduct distribution depends on»» CatalystCatalyst»» ConditionsConditions

•• T, T, ppCOCO, p, pH2H2, , pptottot

»» ReactorReactor»» Process designProcess design

Large variety: CH4. CO, CO2, H2O, alkanes, alkenes

Page 170: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Fischer-Tropsch Process - Mechanism

Product probability

initiation

1-αC2H4 C2H6

αpropagation

αpropagation

1-αCH4

termination

CO + H2

CH2 1-α

α(1-α)

1-αCnH2n CnH2n+2

αpropagation

αn -1 (1-α)

Page 171: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Fischer-Tropsch synthesis Kinetic schemeKinetic scheme

CO + 2HCO + 2H22 CCnnHH2n+22n+2 + H+ H22OO

00,10,20,30,40,50,60,70,80,9

1

0 0,2 0,4 0,6 0,8 1chain growth probability

mas

s fr

actio

n

methanemethane

ethaneethane

propanepropanebutanebutane

gasolinegasoline dieseldiesel

waxwax

αα

CC22HH44

CC33HH66

CC44HH66

CHCH44

CC22HH66

CC33HH88

CC44HH1010

C*C*

CC22**

CC33**

CC44**

CC55**

......

......

αα11--αα

•• What products would you try to synthesize?What products would you try to synthesize?•• αα, , Process?Process?

Page 172: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Anderson-Schulz-Flory Distribution

00.10.20.30.40.50.60.70.80.9

1

0 0.2 0.4 0.6 0.8 1

chain growth probability

mas

s fr

actio

nmethanemethane

ethaneethane

propanepropanebutanebutane

gasolinegasoline dieseldiesel

waxwax

•• Maximum diesel selectivity 39.4% with Maximum diesel selectivity 39.4% with αα = 0.87= 0.87

How to maximise diesel???

high high αα catalyst and subsequent cracking of waxcatalyst and subsequent cracking of wax

Page 173: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Reactor design??

•• Reaction highly exothermalReaction highly exothermal•• Temperature influences product distributionTemperature influences product distribution

–– Highly dependent on catalyst, roughlyHighly dependent on catalyst, roughly»» > 530 K carbon deposition> 530 K carbon deposition»» < 570 K wax deposition< 570 K wax deposition»» Viscosity product mixture increases at lower TViscosity product mixture increases at lower T

•• HH22/CO ratio influences product distribution/CO ratio influences product distribution•• Paraffins Paraffins do not react furtherdo not react further•• Olefins do reactOlefins do react

–– To To paraffinsparaffins–– InsertionInsertion

Page 174: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Fischer-Tropsch Process - Reactors

Gaseous products

Syngas

Liquid products

Steam

Multi-tubular fixed-bed reactor

Products

Slide valves

Riser

Standpipe

Cooling oil in

Cooling oil out

Syngas

Riser reactor

Syngas

Liquid products

Gaseous products

Cooling water

Steam

Slurry reactor

Cooling water

Page 175: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Multi-tubular fixed-bed reactor

Riser reactor Slurry reactor

ConditionsInlet T (K)Outlet T (K)Pressure (bar)H2/CO feed ratioConversion (%)

496509251.760 − 66

593598232.5485

533538150.68*

87Products (wt%)CH4C2H4C2H6C3H6C3H8C4H8C4H10C5 – C11 (gasoline)C12 – C18 (diesel)C19

+ (waxes)Oxygenates

2.00.11.82.71.72.81.7

18.014.052.0

3.2

10.04.04.0

12.01.79.41.9

40.07.04.06.0

6.81.62.87.51.86.21.8

18.614.337.6

1.0

Fischer-Tropsch Process - Comparison of Reactors

Page 176: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Separation Separation

Fixed-bed FT

Alcohols Ketones

Aqueous phaseWax

Gasoline Diesel

Oil work-up

GasolineDieselFuel oil

Oligo-merization

Oil OilC3, C4

Off-gas

Oil work-up

Purification

Separation

Lurgi gasifiers

To towngas,ammonia

Oxygen plant

Power plant

Coal Coal WaterAir

O2

N2

H2O Electricity

Raw syngasCO2, H2S

Tar & oil work-up

Road primeCreosotePitch

Naphtha

Phenols

Hydro-genation

Waxes

Hydro-genation

NaphthaBTXLight NaphthaHeavy Naphtha

AutothermalreformerH2O

O2

Oxygenateswork-up

Riser FT

To towngas,ammonia

Off-gas

LPG Gasoline

Fischer-Tropsch Process - Sasol I

Page 177: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Separation

Slurry FT

Oxygenateswork-up

Hydro-dewaxing

Catalytic reforming

Isomerization

Diesel

Gasoline

Gasoline

H2O

C12+

C7 - C11

C5 - C6

C1 - C4 CO2removal

Cryogenic separation

Oligo-merization

LPGC3 - C4

Ethene

Autothermalreformer

CH4

Syngas

Purified syngas

Gasoline

Alcohols

Ketones

F-T Process - Sasol II and III Product Work-up

Page 178: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Wax synthesis Flash

Wax conversion

H2

Distillation

Fuel gas (including LPG)

NaphthaKeroseneGas oil

Syngas

F-T Process - Shell Middle Distillate Synthesis (SMDS)

Page 179: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Most favourite FTS reactorsSlurry bubble column reactorSlurry bubble column reactor

Gas Liquid

GasLiquid

Coolant in

Coolant out

Multi tubular fixed bed reactorMulti tubular fixed bed reactor

Liquid

Liquid

Gas

Gas

Coolant in

Coolant out

ConvenientConvenientSimple to scaleSimple to scale--up

Nearly isothermal conditionsNearly isothermal conditionsLow pressure dropLow pressure dropHigh catalyst efficiencyHigh catalyst efficiencyCatalyst renewal

up

Catalyst renewalBackmixingBackmixingCatalyst attritionCatalyst attritionModerate G/L mass transferModerate G/L mass transferLiquid Liquid –– solid separation

Low catalyst efficiencyLow catalyst efficiencyHeat exchange Heat exchange -- TT--profilesprofilesPressure dropPressure dropEven distributionsolid separation Even distribution

Page 180: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Fischer Tropsch Technology

•• Still room for improvementsStill room for improvements•• Systematic approachSystematic approach•• Structure in catalyst and reactorStructure in catalyst and reactor

–– MonolithsMonoliths–– StagingStaging–– Decoupling cooling Decoupling cooling -- reactionreaction

Staged slurry bubble column reactorStaged slurry bubble column reactor‘Air’‘Air’--lift recycle reactorlift recycle reactorMonolith loop reactorMonolith loop reactorStructured internalsStructured internalsSubcoolingSubcooling

Kinetics very importantKinetics very important

Page 181: Hydrocarbon Processes in the Oil Refinery - Moulijn & Makkee

TTUUDelftDelft &CER

Proton-Exchange-Membrane (PEM) Fuel Cell

Negative bus plateHydrogen frame

Air frame

Anode

Cathode

Platinum catalyst

O2

H2

H2O

PEM

Positive bus plate

e- e- e- e- e- e- e-

e- e- e- e- e- e- e-

e-

e-

e-

e-

e-

e-

e-

e-O2

H2 H2

H+ H+ H+ H+Electricity

e-

e-