47
Hydrogen Isotope Gas Absorption/Adsorption Characteristics of Pd Nanopowders A. Kitamura , Y. Miyoshi, H. Sakoh, A. Taniike (Division of Marine Engineering, Graduate School of Maritime Sciences, Kobe University) A.Takahashi, R. Seto, and Y. Fujita (Technova Inc) To be presented at ACS-NET 2011, Anaheim 1 Kitamura ACSNET2011

Hydrogen Isotope Gas Absorption/Adsorption … Isotope Gas Absorption/Adsorption Characteristics of Pd Nanopowders A. Kitamura, Y. Miyoshi, H. Sakoh, A. Taniike (Division of Marine

Embed Size (px)

Citation preview

Hydrogen Isotope Gas

Absorption/Adsorption

Characteristics of Pd Nanopowders

A. Kitamura, Y. Miyoshi, H. Sakoh, A. Taniike (Division of Marine Engineering,

Graduate School of Maritime Sciences, Kobe University)

A.Takahashi, R. Seto, and Y. Fujita

(Technova Inc)

To be presented at ACS-NET 2011, Anaheim

1Kitamura ACSNET2011

Outline• Extensive measurements of heat release under

hydrogen isotope absorption/adsorption of 7 kinds (PP, PB, PZ, NZ, PNZ-I,PNZ-II, PNZ2B) of Pd nano-powders in a twin gas charging system have been made by Kobe group in 2010-2011.

• Anomalies in heat and D(H)-absorption observed by Pd (and Pd-Ni) nano-powders dispersed into/onto ZrO2 support are briefly overviewed.

• Heat and absorption data for larger Pure Pd powder and Pd-Black are shown in concentration in the present report.

Kitamura ACSNET2011 2

D2 gas cylinder

A2 system

H2run

Vacuum pumps

Reaction chamber

Pressure gaugeVacuum gauge

A1 system

D2 run

H2 gas cylinder

Outer vacuum chamber

A1・A2 twin system for simultaneous D2/H2 absorption experiments.3

Kitamura ACSNET2011 3

Ts

To

Ti

Vacuum pump Chiller

Vacuum pump

Vacuum pump

Pressure gauge

Pressure gauge

‘Super Needle’ valve

Liq. N2trap

Res

ervo

ir

tan

kH

2or

D2

Thermo-couples

Heater

Sample

Reaction chamber

Insulation chamber

Schematic of one of the twin absorption system. 4

Kitamura ACSNET2011 4

Samples tested: 7 kinds

[1] Phys. Lett. A, 373 (2009) 3109-3112.

[2] Low Eergy Nuclear Reactions, (AIP Conf. Proc. 1273, ed. Jan Marwan, 2010) to be changed to JCMNS4, 2011.

[3] LENR Source Book 3, (ed. Jan Marwan, ACS) to be published.

Pd Ni Zr O Supplier Remarks

100nmf -Pd 99.5%,

100nmf--- --- ---

Nilaco

Corp.[1],[2], this report

PP

Pd-black 99.9%,

300mesh--- --- ---

Nilaco

Corp.[1],[2], this report

PB

mixed oxide 0.312 --- 0.688 (1.69)

Santoku

Corp.

[1],[2],[3], ICCF16,

ACS2011PZ

mixed oxide --- 0.467 0.533 (1.53)

Santoku

Corp.[2]

NZ

mixed oxide 0.080 0.352 0.568 (1.57)

Santoku

Corp.[2]

PNZ

mixed oxide 0.023 0.891 0.292 (1.50)

Santoku

Corp.PNZII

mixed oxide0.04 0.29 0.67 (1.67)

Dr. B.

AhernICCF16, ACS2011

PNZ2B

5

Kitamura ACSNET2011 5

Experimental procedure

Sample setup

Absorption run{D2(H2) gas charging at R.T.}

Baking (440K, 3h, vac.)

Evacuation

Forced oxidation{O2 gas filling

at 470K for 30h}

Forced reduction {D2(H2) gas charging

at 570K for 24h}

Data acquisition: Temp., Pressure, Radiation (neutron, )

Evacuation

(#2 run) (#3 run) (#1 run) (A/B run)

Baking (570K, 0.5h, vac.)

6

Kitamura ACSNET2011 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400

Time (min)

WD, W

H

(W)

0.00

0.05

0.10

0.15

0.20

PD, P

H

(MP

a)

D-PZ13#3H-PZ14#3DH

Power Pressure

2nd phase1st phase

Heat Evolution appeared in Two Phases: for PZ Samples

Integration gives the 1st phase specific output energy E1.

7

Kitamura ACSNET2011 7

0

100

200

300

400

500

1400 2400 3400Time [min]

Tem

per

atu

re [℃

]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pre

ssu

re [

MP

a]

DpD

by introducing O2 gas at a pressure of 0.2 MPa and a temperature

of 470 K for 30 hours. The pressure difference DpD is used to

calculate the degree of oxidization, x for Pd+(x/2)O2→PdOx

Forced oxidization

0

100

200

300

400

500

1400 2400 3400Time [min]

Tem

pera

ture

[℃

]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pre

ssur

e [M

Pa]

A1 T

A2 T

A1 Ps

A2 Ps

9Kitamura ACSNET2011

8

Comparison of the 1st-phase specific output energy E1 for the

runs D(H)-PZ11(12)#1 through D(H)-PZ13(14)#3Bd

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E1 (

eV/a

tom

-Pd

)

D-PZ11 H-PZ12

#1 #2 #3 #3d #3A #3Ad #3B 3Bd

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E1 (

eV/a

tom

-Pd

)

D-PZ13 H-PZ14

#1 #1d #1A #1Ad #1B #1Bd #2 #2d #3 #3d

PZ11-14 sample (Pd:31.2% Zr:68.8%)

PZ13,14#3run

PdO/Pd(D2) : 0.073

PdO/Pd(H2) : 0.061

PZ11,12#3run

PdO/Pd(D2) : 0.086

PdO/Pd(H2) : 0.054

10

Kitamura ACSNET2011 9

Bulk-like Data Bulk-like Data

0.0

1.0

2.0

D/P

d, H

/Pd

D-PZ13 H-PZ14

#1 #1A #1B #2 #30.0

1.0

2.0

D/P

d, H

/Pd

D-PZ11 H-PZ12

#1 #2 #3 #3A #3B

Comparison of the loading ratio D(H)/Pd for the runs

D(H)-PZ11(12)#1 through D(H)-PZ13(14)#3Bd

PZ11-14 sample (Pd:31.2% Zr:68.8%)

PZ13,14#3run

PdO/Pd(D2) : 0.073

PdO/Pd(H2) : 0.061

PZ11,12#3run

PdO/Pd(D2) : 0.086

PdO/Pd(H2) : 0.054

11

Kitamura ACSNET2011 10

Bulk-like Data Bulk-like Data

0.0

0.5

1.0

1.5

QD (e

V/D

),

QH

(e

V/H

)

D-PZ13 H-PZ14

#1 #1A #1B #2 #3

0.0

0.5

1.0

1.5

QD (e

V/D

),

QH

(e

V/H

)

D-PZ11 H-PZ12

#1 #2 #3 #3A #3B

Comparison of the hydridation energy QD(H) for the runs

D(H)-PZ11(12)#1 through D(H)-PZ13(14)#3Bd

PZ11-14 sample (Pd:31.2% Zr:68.8%)

PZ13,14#3run

PdO/Pd(D2) : 0.073

PdO/Pd(H2) : 0.061

PZ11,12#3run

PdO/Pd(D2) : 0.086

PdO/Pd(H2) : 0.054

12

Kitamura ACSNET2011 11

Bulk-like DataBulk-like Data

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Time (min)W

D(H

) (W

), h

D(H

) (e

V/D

(H))

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H))

Typical variation of the specific sorption energy, hD (hH),

compared with that of the power, WD (WH), in the #3 run for

the PZ13(14) sample.

1b phase1a phase 1b phase1a phase

D-PZ13#3 H-PZ14#3

0.0

0.5

1.0

1.5

2.0

0 200 400 600 800

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H))

100 0

hD hH

h value for bulk Pd

WD WH

WD

(H)

[W]

,h

D(H

)[e

V/D

(H)]

16Dynamic D(H)-Sorption Energy observed for PZ Samples:

Larger for D-sorption in the Ia Phases

Kitamura ACSNET2011 12

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Time (min)W

D(H

) (W

), h

D(H

) (e

V/D

(H))

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H))

hD

WD

WH

hH

1b phase 1b phase

Typical variation of the specific sorption energy, hD (hH),

compared with the power, WD (WH), in the #2 run for the

PZ11(12) sample.

#2 Run (After O-Reduction) for PZ Samples showed

bulk-like data.

0.0

0.5

1.0

1.5

2.0

0 200 400 600 800

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H)) D-PZ11#2

H-PZ12#2

h value for bulk Pd

WD

(H)

[W]

,h

D(H

)[e

V/D

(H)]

17

Kitamura ACSNET2011 13

-0.5

0.0

0.5

1.0

1.5

-50 150 350

Time (min)

WD

(H) (

W),

P

D(H

) (

MP

a)

-0.5

0.0

0.5

1.0

1.5

LD

(H)

W-H

W-D

P-H

P-D

L-H

L-D

Heat-Power

Pressure

Significant Heat Peak After 0.19% Surface-PdO Formation

Large Powder of Pure Pd :PP3,4#3 100-nmf Pd

LD(t)

LH(t)

18

Kitamura ACSNET2011 14

Phase-IPhase-II

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

PP3#1 PP3#1d PP3#2 PP3#2d PP3#3 PP3#3d PP3#3A

E1

[e

V/a

tom

-Pd

]

D

H

Comparison of the 1st-phase specific output energy E1 for

the runs D(H)-PP3(4)#1 through D(H)-PZ3(4)#3A

PP3,4 sample (100-nmf Pd)

; Show the similar (but smaller) effect of oxidization

O/Pd(D2) : 0.002

O/Pd(H2) : 0.002

19

Kitamura ACSNET2011 15

Bulk-like Data (Sorption-E = De-sorption-E)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PP3#1 PP3#1d PP3#2 PP3#2d PP3#3 PP3#3d PP3#3A

D/P

d ,

H/P

d

D

H

Comparison of the loading ratio D(H)/Pd for

the runs D(H)-PP3(4)#1 through D(H)-PZ3(4)#3A

O/Pd(D2) : 0.002

O/Pd(H2) : 0.002

PP3,4 sample (100-nmf Pd)

; Show the similar (but smaller) effect of oxidization20

Kitamura ACSNET2011 16

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PP3#1 PP3#1d PP3#2 PP3#2d PP3#3 PP3#3d PP3#3A

QD

[e

V/D

] ,

QH

[eV

/H]

D

H

Comparison of the hydridation energy QD(H) for

the runs D(H)-PP3(4)#1 through D(H)-PZ3(4)#3A

O/Pd(D2) : 0.002

O/Pd(H2) : 0.002

PP3,4 sample (100-nmf Pd)

; Show the similar (but smaller) effect of oxidization21

Kitamura ACSNET2011 17

Bulk-like Data

0.0

0.3

0.6

0.9

1.2

0 50 100 150 200

Time (min)

WD

(H

) (

W)

0

0.5

1

1.5

2

h

D(H

) (e

V/D

(H))

0.0

0.3

0.6

0.9

1.2

0 50 100 150 200

Time (min)

WD

(H

) (

W)

0

0.5

1

1.5

2

h

D(H

) (

eV

/D(H

))

PP3,4 #1(right) and #3(left) (100-nmf Pd):

Effect of slight PdO layer is great (Ia) cf. bulky (Ib).

PP3,4#3

(After Oxidization)

h value for bulk

Pd (ca. 0.3 eV)

PP3,4#1

(As received, pure Pd)

1a phase

1b phase 1b phase

O/Pd(D2) : 0.002

O/Pd(H2) : 0.002

22

Heat Power

Heat Power

Kitamura ACSNET2011 18

η

Palladium Black Samples

PB5,6#1: Virgin Runs (10g each)

-0.3

0.0

0.3

0.6

0.9

1.2

1.5

-300 0 300 600

Time (min)

WD

(H)

(W),

P

D(H

) (M

Pa

)

-0.3

0.0

0.3

0.6

0.9

1.2

1.5

LD

(H)W-H

W-D

P-H

P-D

L-H

L-D

Power D/Pd

H/Pd

Kitamura ACSNET2011 19

PB5,6#1; h-values vs. power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 100 200 300 400 500

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H)) Eta-H

Eta-D

W-H

W-D

Phase-Ia Phase-Ib

Eta

Power

Bulk Level Eta

Kitamura ACSNET2011 20

η

PB5,6#2; After Forced De-Oxidization

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-50 0 50 100 150 200 250 300 350 400 450 500 550

Time (min)

WD

(H) (

W),

P

D(H

) (

MP

a)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

LD

(H)

W-H

W-D

P-H

P-D

L-H

L-D

H/Pd

D/Pd

Power

Pressure

Kitamura ACSNET2011 21

PB5,6#2 h-values vs. powers after De-oxidization

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H)) Eta-H

Eta-D

W-H

W-D

Phase-Ib Only

Eta : Close to bulk values

Power

Kitamura ACSNET2011 22

η

PB5,6#3: 2(D)-1.7(H)%PdO/Pd, After Oxidization

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

-50 0 50 100 150 200

Time (min)

WD

(H) (

W),

P

D(H

) (

MP

a)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LD

(H)

W-H

W-D

P-H

P-D

L-H

L-D

Ia Ib Phase-II

Power

D/Pd

Kitamura ACSNET2011 23

PB5,6#3 h vs. Power: After Forced Oxidization (2-1.7%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H)) Eta-H

Eta-D

W-H

W-D

Ia Phase Ib Phase

Power

Eta

Kitamura ACSNET2011 24

η

Integrated Heat Data for PB5,6 E1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

eV/a

tom

-Pd

D2 H2

#1 #1d #3 #3d #3A #3Ad #2 #2d #3_2

#3d_2

Bulk-like Data

Kitamura ACSNET2011 25

Integrated Data for PB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

#1 #1d #3 #3d #3A #3A #2 #2d #3_2 #3_2d

D2 H2

LD, L

H

0

0.2

0.4

0.6

0.8

1

#1 #1d #3 #3d #3A #3A #2 #2d #3_2 #3_2d

eV

/ato

m-D

(H

)

D2 H2

Absorption Energy per D(H) Saturated Loading Ratios

Bulk-like Data

Bulk-like Data

Kitamura ACSNET2011 26

PZ: 8-nmf Pd(31.2%)Zr(68.8%)

(1)The 1st phase is found to be divided into sub-phases Ia and Ib;

Summary-1

1a phase; with rapid absorption/adsorption and high heat output.

- Probably occurring in the near-surface region

- Oxygen incorporation is necessary for this phase to appear.

- hD value is larger than hH., several times in some cases.

1b phase; with a lower heat output nearly equal to the bulk value.

(2) The 1a phase is observed only in #1 and #3 runs.

(3)The as-received sample has very large 1st-phase parameters;

(specific output energy E1D(H), the loading ratio D(H)/Pd~2.0,

the hydridation energy QD(H): 1.5(1.3) eV or more for D(H).)

Forced reduction sample has given the significantly smaller

1st-phase parameters (close to those for bulk Pd sample).

Forced oxidization sample has substantially recovered

the large values of the 1st-phase parameters.Kitamura ACSNET2011 27

PP: 100-nmf Pd 99.5%

(1) The similar effects are observed less prominently;

- the existence of the 1a and 1b phases, and

- increased absorption parameters by oxygen incorporation.

- general trend is similar to the following PB behavior.

PB: palladium black

(1) Virgin (as received) samples gave high D(H)/Pd values (ca. 1.0)

and higher heat release than PP.

(2) Slight PdO formation made more enhanced effect of initial large

heat peak (QD(H): 1.2(1.1) eV/D(H)-sorption), Ia phase, and

following Ib phase with bulky (ca. 0.3 eV/D(H)-sorption) heat

power.

(4) After the forced de-oxidization, heat levels and loading ratios gave

bulk-like values (0.3 eV/D(H) and D(H)/Pd = ca. 0.6)

(5) The ratio of hD/hH is a little bit larger than 1.0 for Ia phases.

Summary-2

Kitamura ACSNET2011 28

Summary-3:Tested Metal/Ceramics Powders and Results

Pd Ni Zr O Supplier

100nmf -Pd

PP

995%,

100nmf

--- --- --- Nilaco

Corp.

[1],[2]

Pd-black

PB

99.9%,

300mesh

--- --- --- Nilaco

Corp.

[1],[2]

8-10nmf -Pd

PZ

0.346 --- 0.654 (1.64) Santoku

Corp.

[1],[2],[3], discussed

in the present paper

mixed oxide

NZ

--- 0.358 0.642 (1.64) Santoku

Corp.

[2]

mixed oxide

PNZ

0.105 0.253 0.642 (1.64) Santoku

Corp.

[2]

2nmf-PdNi

PNZ2B

0.04 0.29 0.67 (1.67) Dr. B.

Ahern

only briefly in the

present paper

[1] Phys. Lett. A, 373 (2009) 3109-3112.

[2] Low Eergy Nuclear Reactions, (AIP Conf. Proc. 1273, ed. Jan Marwan, 2010).

[3] LENR Source Book 3, (ed. Jan Marwan, ACS) to be published.29

Anomalies observed?

No, bulk metal data, but PdO

Yes, a little large heat & D/Pd

Yes, Heat and D/Pd reproducible

No heat and loading

Yes, but weak

Yes, very large heat and

D(H)/M, reproducible

Drastic change happens by Meso-Catalyst! Why?

Kitamura ACSNET2011

Supplement Data below

Kitamura ACSNET2011 30

The 1st phase is divided into the 1a-phase and the 1b-phase.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400

Time (min)

WD, W

H

(W)

0.00

0.05

0.10

0.15

0.20

PD, P

H

(MP

a)

D-PZ13#3H-PZ14#3DH

Power Pressure

2nd phase1st phase

1b phase

1a phase

13

Kitamura ACSNET2011 31

Time-dependent loading ratio,

LD(H)(t), expressed as a

function of pressure in the

runs D(H)-PZ13(14)#3

through D(H)-PZ13(14)#3

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

P D, P H (kPa)

LD, L

H

LD (D/Pd; D-PZ13#3)

LH (H/Pd; H-PZ14#3)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

P D, P H (kPa)

LD, L

H

LD (D/Pd; D-PZ13#2)

LH (H/Pd; H-PZ14#2)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

P D, P H (kPa)

LD, L

H

LD (D/Pd; D-PZ13#1)

LH (H/Pd; H-PZ14#1)

As-received

(#1)

de-oxidized

(#2)

Oxidized

(#3)

1a phase 1b phase

14

Kitamura ACSNET2011 32

Time-resolved specific sorption energy,

or differential heat of hydrogen uptake,

defined as the output energy per one hydrogen isotope

atom absorbed/adsorbed,

)()(

d)()(

true

tLttL

ttWt

tt

t

-+

+

Dh

D

,,)()(

d),()(

tLttL

ttWt

tt

t

-D+

D+

h

+

t

tttW

tW

meas d)(

),(

The interval Dt is arbitrary, and chosen here to be 1 min.

The values of Wtrue(t) should be de-convoluted from the measured output power

Wmeas(t), which has an indicial delay with a time constant of , and is

approximated here by W(t,) averaged over .

The hydridation energy QD(H) introduced earlier is equal to the integrated power

over the 1st phase divided by D(H)/Pd at the end of the 1st phase in the absence

of oxygen.

15

Kitamura ACSNET2011 33

-0.2

0.0

0.2

0.4

0.6

0.8

-50 150 350 550 750

Time (min)

WD

(H

) (W

), P

D(H

) (M

Pa)

-0.3

0.0

0.3

0.6

0.9

1.2

LD

(H

)

Pd Ni Zr O Supplier

0.04 0.29 0.67 (1.67)Dr. B.

Ahern

PNZ2B3,4#1

Pressure for H

Pressure for D

Power

LD(t)

0

1

2

3

0 10 20 30 40 50 60

Pressure (kPa)

LD, L

H

H/PdNi (H-PNZ2B1#1)

D/PdNi (D-PNZ2B2#1)

L(t) vs PLH(t)

23

Kitamura ACSNET2011 34

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E1 (

eV

/ato

m-P

dN

i)

H-PNZ2B1

D-PNZ2B2

#1 #1d #1A #1Ad #1B #1Bd #2 #2d #3 #3d

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E1 (

eV

/ato

m-P

dN

i)

H-PNZ2B3D-PNZ2B4

#1 #1d #1A #1Ad #1B #1Bd #2 #2d #3 #3d

Comparison of the 1st-phase specific output energy E1 for the

runs D(H)-PNZ2B2(1)#1 through D(H)-PNZ2B4(3)#3d

PNZ2B1-4 sample (Pd : 4% Ni : 29% Zr : 67%)

; Deoxidization works as well as oxidization

PNZ2B3,4#3run

PdO/Pd(D2) : 0.086

PdO/Pd(H2) : 0.087

PNZ2b1,2#3run

PdO/Pd(D2) : 0.069

PdO/Pd(H2) : 0.072

24

Kitamura ACSNET2011 35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LD, L

H

H-PNZ2B1D-PNZ2B2

#1 #1A #1B #2 #30.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LD, L

H

H-PNZ2B3

D-PNZ2B4

#1 #1A #1B #2 #3

Comparison of the loading ratio D(H)/[Pd・Ni] for the runs

D(H)-PNZ2B2(1)#1 through D(H)-PZ4(3)#3

PNZ2B3,4#3run

PdO/Pd(D2) : 0.086

PdO/Pd(H2) : 0.087

PNZ2b1,2#3run

PdO/Pd(D2) : 0.069

PdO/Pd(H2) : 0.072

PNZ2B1-4 sample (Pd : 4% Ni : 29% Zr : 67%)

; Deoxidization works as well as oxidization25

Kitamura ACSNET2011 36

0.0

0.2

0.4

0.6

0.8

1.0

QD (

eV

/ato

m-D

), Q

H (

eV

/ato

m-H

)

H-PNZ2B3D-PNZ2B4

#1 #1A #1B #2 #3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

QD (

eV

/ato

m-D

), Q

H (

eV

/ato

m-H

)

H-PNZ2B1D-PNZ2B2

#1 #1A #1B #2 #3

Larger energy QD(H) for the D-runs

D(H)-PNZ2B2(1)#1 through D(H)-PNZ2B4(3)#3

PNZ2B3,4#3run

PdO/Pd(D2) : 0.086

PdO/Pd(H2) : 0.087

PNZ2b1,2#3run

PdO/Pd(D2) : 0.069

PdO/Pd(H2) : 0.072

PNZ2B1-4 sample (Pd : 4% Ni : 29% Zr : 67%)

; Deoxidization works as well as oxidization26

Kitamura ACSNET2011

37

PNZ2B3,4#1

0.0

0.3

0.6

0.9

1.2

0 50 100 150 200

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H))

0.0

0.5

1.0

1.5

2.0

W-D

W-H

Eta-D

Eta-H

Absorption / desorption energies are constant and anomalously large,

while Ni does not absorb D(H) at all at room temperature.

WD

(H)[

W]

h value for

bulk Pd

27

Kitamura ACSNET2011 38

PB5,6#3_2: 0.47%PdO/Pd

The second forced-oxidization runs gave smaller Ia phase.

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-50 0 50 100 150 200

Time (min)

WD

(H) (

W),

P

D(H

) (

MP

a)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LD

(H)

W-H

W-D

P-H

P-D

L-H

L-D

IaIb

PowerH/Pd

Kitamura ACSNET2011 39

PB5,6#3_2 h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50 60

Time (min)

WD

(H) (W

), h

D(H

) (e

V/D

(H)) Eta-H

Eta-D

W-H

W-D

Ia PhaseIb Phase

Kitamura ACSNET2011 40

PB5,6#1 hD/hH

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 100 200 300 400 500

Time (min)

h(D

)/h

(H)

Kitamura ACSNET2011 41

PB5,6#2 hD/hH

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60

Time (min)

h(D

)/h

(H)

Kitamura ACSNET2011 42

PB5,6#3 hD/hH

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100

Time (min)

h(D

)/h

(H)

Kitamura ACSNET2011 43

PB5,6#3A hD/hH

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60

Time (min)

h(D

)/h

(H)

Kitamura ACSNET2011 44

PB5,6#3_2 hD/hH

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60

Time (min)

h(D

)/h

(H)

Kitamura ACSNET2011 45

PB5,6 Integrated Data Table

QD xQR

kJ kJ/g-Pd eV/atom-Pd eV/D(H) eV/atom-Pd

D2 unknown 8.00 0.80 0.88 1.11 0.80 0.00 -3.11 -0.34

H2 unknown 8.16 0.82 0.90 1.19 0.76 0.00 -2.92 -0.32

D2 0.0203 5.97 0.60 0.69 1.01 0.65 0.03 -2.74 -0.30

H2 0.0171 5.56 0.56 0.65 1.04 0.59 0.03 -2.98 -0.33

D2 0.0000 1.57 0.16 0.17 0.61 0.28 0.00 -1.59 -0.17

H2 0.0000 1.97 0.20 0.22 0.71 0.31 0.00 -2.01 -0.22

D2 0.0000 1.59 0.16 0.18 0.63 0.28 0.00 -1.63 -0.18

H2 0.0000 2.02 0.20 0.22 0.72 0.31 0.00 -2.05 -0.23

D2 0.0047 2.56 0.26 0.29 0.71 0.40 0.01 -1.87 -0.21

H2 0.0047 2.93 0.29 0.33 0.80 0.40 0.01 -2.27 -0.25

E1D(H)/Pd kJ

PB5,6#3_2

1st phase desorption

PB5,6#1

eV/atom-Pd

PB5,6#3

PB5,6#3A

PB5,6#2

PdO/Pd

Kitamura ACSNET2011 46

Summary of the results obtained so far(1) PZ sample (Santoku; Pd36Zr64)

- very large specific energy of absorption/adsorption, E1 ~ 2 eV/Pd,

- very large loading ratio, D(H)/Pd ~ 1.5 - 2.3,

- very large hydridation energy, QD(H) ~1.0 eV/D(H),

- 1a-phase; near-surface phenomenon with h(1a) = 1.33(1.15) eV/D(H), while

1b-phase; bulk characteristics with h(1b) = 0.47(0.41) eV/D(H),

- deteriorates after an absorption run, and recovers after forced oxidization.

(2) PP sample (Nilaco; 0.1-mf)

- E1 ~ 0.2 eV/Pd, D(H)/Pd ~ 0.6, QD(H) ~ 0.3 eV/D(H),

- less prominent 1a-phase, and less effective enhancement by oxidization.

(3) PB sample (Nilaco; Pd-black)

- intermediate characteristic values.

(4) PNZ (Santoku; Pd11Ni25Zr64, Pd2Ni44Zr54) and NZ (Ni36Zr64)

- absorption in proportion to Pd content.

(5) PNZ2B (B.Ahern; Pd4Ni29Zr67; melt spinning)

- absorption occurs at R.T. with E1 ~ 2.0 (1.8) eV/atom-[PdNi],

- D(H)/[PdNi] ~ 3.3 (3.3),

- QD(H) (and h) ~ 0.55 (0.50) eV/atom-D(H),

- 1a-phase / 1b-phase ; indistinguishable,

- modest deterioration after absorption runs. Kitamura ACSNET2011 47