25
Hyperlink Ensembles: A Case Study in Hypertext Classification Johannes Fürnkranz Austrian Research Institute for Artificial Intelligence Schottengasse 3, A-1010 Wien, Austria E-mail: [email protected] Technical Report OEFAI-TR-2001-30 Abstract In this paper, we introduce hyperlink ensembles, a novel type of ensemble classifier for classifying hypertext documents. Instead of using the text on a page for deriving features that can be used for training a classifier, we suggest to use portions of texts from all pages that point to the target page. A hyperlink ensemble is formed by obtaining one prediction for each hyperlink that points to a page. These individual predictions for each hyperlink are subsequently combined to a final prediction for the class of the target page. We explore four different ways of combining the individual predictions and four different techniques for identifying relevant text portions. The utility of our approach is demonstrated on a set of Web-pages that relate to Computer Science Departments. 1 Introduction Ensemble techniques have received considerable attention within the recent machine learning literature [24, 25, 51, 3]. The idea to obtain a diverse set of classifiers for a single learning problem and to vote or average their predictions is both simple and powerful, and the obtained accuracy gains often have a sound theoretical foundation. Averaging the predictions of the individual classifiers helps to reduce the variance and often increase the reliability of the final prediction. There are several techniques for ob- taining a diverse set of classifiers. Most common is to use subsampling for diversifying the training sets as in bagging [8] and boosting [30]. Other techniques include the use of different feature subsets [4], to exploit the randomness of the base algorithms [40], possibly by artificially randomizing their behavior [26], or by modifying the output labels [27]. Not surprisingly, the power of ensemble techniques was also recognized for text categorization tasks. For example, Larkey and Croft [42] found that combining the predictions of different classifiers for the same problem improves the results; error- correcting output codes were successfully applied to various text classification prob- lems [37, 5]; and Weiss et al. [65] applied boosted decision trees to the Reuters-21578 1

Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

HyperlinkEnsembles:A CaseStudyin Hypertext Classification

JohannesFürnkranzAustrianResearchInstitutefor Artificial Intelligence

Schottengasse3, A-1010Wien,Austria

E-mail: [email protected]

TechnicalReportOEFAI-TR-2001-30

Abstract

In this paper, we introducehyperlink ensembles,a novel type of ensembleclassifierfor classifyinghypertext documents.Insteadof usingthetext on a pagefor deriving featuresthat canbe usedfor training a classifier, we suggestto useportionsof texts from all pagesthatpoint to thetargetpage.A hyperlinkensembleis formed by obtainingone predictionfor eachhyperlink that points to a page.Theseindividual predictionsfor eachhyperlink aresubsequentlycombinedto afinal predictionfor theclassof thetargetpage.We explorefour differentwaysofcombiningtheindividual predictionsandfour differenttechniquesfor identifyingrelevant text portions. The utility of our approachis demonstratedon a set ofWeb-pagesthatrelateto ComputerScienceDepartments.

1 Intr oduction

Ensembletechniqueshave received considerableattentionwithin the recentmachinelearningliterature[24, 25, 51, 3]. The idea to obtaina diversesetof classifiersfora singlelearningproblemandto vote or averagetheir predictionsis both simpleandpowerful, andtheobtainedaccuracy gainsoftenhave a soundtheoreticalfoundation.Averagingthepredictionsof theindividual classifiershelpsto reducethevarianceandoftenincreasethereliability of thefinal prediction.Thereareseveraltechniquesfor ob-tainingadiversesetof classifiers.Mostcommonis to usesubsamplingfor diversifyingthetrainingsetsasin bagging[8] andboosting[30]. Othertechniquesincludetheuseof differentfeaturesubsets[4], to exploit therandomnessof thebasealgorithms[40],possiblyby artificially randomizingtheir behavior [26], or by modifying the outputlabels[27].

Not surprisingly, the power of ensembletechniqueswasalsorecognizedfor textcategorizationtasks. For example,Larkey andCroft [42] found that combiningthepredictionsof different classifiersfor the sameproblemimproves the results;error-correctingoutputcodesweresuccessfullyappliedto varioustext classificationprob-lems[37, 5]; andWeisset al. [65] appliedboosteddecisiontreesto theReuters-21578

1

Page 2: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

benchmarkdatasetandachieved oneof the bestresultsreportedin the literature. Apossiblereasonfor (at leastthe latter) successlies in the explanationthatboostingisanothertechniquefor maximizing the margin (i.e., the distancebetweena decisionboundaryandtheclassesit separates[60]). Thesameprincipleis at thecoreof supportvectormachines,whichhavealsobeensuccessfullyappliedto text categorizationtasks[38].

In thispaper, weinvestigateadifferentwayfor constructinganensembleof diverseclassifiers,whichis specificallytailoredfor classifyingWebdocuments.Thetechniqueis basedon the observation that typically onehasinformation from many incominghyperlinksthatpoint to a page.Our proposalis to exploit this informationby trainingaclassifierthatpredictstheclassof apageby first classifyingeachincominghyperlinkin isolation. This ensembleof predictionsis thenusedto derive the final predictionby looking for the majority amongthe individual predictions,therebyincorporatingconfidenceinformationabouteachprediction.Our resultsshow thatin theWEB

� KBdomain,documentscanbeclassifiedmorereliably with informationoriginatingfrompagesthat point to the documentratherthanwith featuresthat arederived from thedocumenttext itself.

Someof the resultspresentedin this paperhave previously appearedas[32], in acondensedformatandwithoutmakingtheconnectionto ensembletechniquesexplicit.

2 Moti vation

Vastamountsof documentsareavailableon-line,andclassifyingtheminto meaning-ful semanticcategoriesis a rewardingandchallengingtask. Applicationsof classi-fication techniquesincludebrowsing assistants[44, 2, 53], informationfiltering [41],e-mailsorting[17, 52,56], recognizingentitiesin ontologies[20, 48], andmany more[49]. While conventionalinformationretrieval focusesprimarily on informationthatis provided by the text that canbe found in the documents,Web documentsprovideadditionalinformationthroughtheway in whichdifferentdocumentsareconnectedtoeachotherby hyperlinks. In particular, the informationon what we will call prede-cessorpages—pagesthat have a hyperlink pointing to the target page—may containusefulinformationfor classifyingapage.Considerthesetof pagesshown in Figure1.Thetargetpageitself (shown at thebottom)doesnot containmuchinformationaboutits author. However, from any of its threepredecessorpagescanbe inferredthat thepersonin questionis a professor, andtheunionof thethreepagesrevealsinformationabouthisuniversity, oneof hisstudents,andhiscolleagues.

Thereareseveral reasonswhy the informationon predecessorpagescanimprovetheperformanceof a text classifierfor Webpages:

redundancy: Quite often thereis more thanonepagepointing to a single pageonthe Web. The ability to combinemultiple, independentsourcesof informationcanimprove classificationaccuracy asis witnessedby thesuccessof ensembletechniquesin otherareasof machinelearning.

independentencoding: As thesetof predecessorpagestypically originatesfrom sev-eraldifferentauthors,theprovidedinformationis lesssensitiveto thevocabularyusedby oneparticularauthor.

2

Page 3: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

Figure1: An examplefor anuninformative targetpagewhich canberecognizedasaprofessor’s home-pageby threepredecessorpages.

sparseor non-existingtext: Many Webpagesonly containa limited amountof text.In fact, many pagesonly containimagesandno machine-readabletext at all.Lookingatpredecessorpagesincreasesthechancesof encounteringinformativetext aboutthepageto classify.

irr elevant or misleadingtext: Oftenpagescontainirrelevanttext. ThetargetpageinFigure1 is suchanexample. In othercases,pagesaredesignedto deliberatelycontainmisleadinginformation. For example,many pagestry to includea lotof keywordsinto commentsor invisible partsof thetext in orderto increasethebreadthof their indexing for word-basedsearchengines.1 Again, the fact thatpredecessorpagesaretypically authoredby differentandindependentsourcesmayprovide relevantinformationor improve focus.

foreign languagetext: English is the predominantlanguageon the Web. Neverthe-less,documentsin other languagesoccur in non-negligible numbers. Even ifthe text on the pageis written in a foreign language,theremay be incominglinks from pagesthatarewritten in English. In many cases,this allows anEn-glishspeaker(or atext classifierbasedonEnglishvocabulary)to infer somethingaboutthecontentsof thepage.

1For example,theauthoronceencounteredapageof anAustrianski ressortthatcontainedall namesof itscompetitorsin commentsin orderto beretrievedif somebodylooksfor informationof oneof its competitors(in fact this washow the pagewasfound by the author). For recognizingthis pageasa ski ressort,thisinformationmaybehelpful. On theotherhand,theauthoralsocameacrossa pagethat includedanentiredictionaryof themostcommonwordsof theEnglishlanguageasinvisible text. . .

3

Page 4: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

In summary, theuseof text on predecessorpagesmayprovide a richervocabulary,independentassessmentof thecontentsof apagethroughmultipleauthors,redundancyin classification,focuson importantaspects,anda simplemechanismfor dealingwithpagesthathavesparsetext, no text, or text in differentlanguages.

3 RelatedWork

Theimportanceof informationcontainedin thehyperlinkspointingto apagehasbeenrecognizedearly on. Anchor texts (texts on hyperlinks in an HTML document)ofpredecessorpageswerealreadyindexedby theWorld-WideWebWorm,oneof thefirstsearchenginesandWebcrawlers [46]. Spertus[64] suggestsa taxonomyof differenttypesof (hyper-)links thatcanbefoundon theWebanddiscusseshow thelinks canbeexploited for variousinformationretrieval taskson the Web. Lately, the studyof thegraphpropertiesof theWebhasincreasedconsiderably[10]. This is mostlydueto thesuccessof algorithmsthatexplicitly focuson the exploitationof the link structureofthe Web. ProminentexamplesaretheHITS algorithmfor determininggoodhubandauthority pages[39] and the PageRankalgorithm for approximatingthe probabilitythatapageis visitedby a randomsurferon theWeb[9], which havebeensuccessfullyappliedto variouswebmining tasks[13, 23, 7]. Prerequisitefor this typeof researchis theavailability of extendeddocumentindexing techniquesthatallow fastaccesstobothoutgoingandincominghyperlinksof a page[6]. An excellentoverview of recentresearchin thearea,whichis nowadaysreferredto aswebmining, canbefoundin [11].

Not surprisingly, thepotentialof hyperlinksasadditionalinformationsourcesfortext categorizationtaskshasalso beenlooked at in recentresearch.Previous workon hypertext categorizationin oneway or anotheraddressedthis problemby merging(partsof) the text of the predecessorpageswith the text of thepageto classifyor bykeepinga separatefeatureset for the predecessorpages. For example,Chakrabartiet al. [12] evaluatedtwo variants,one that simply appendsthe text of the neighbor-ing (predecessorandsuccessor)pagesto thetext of thetargetpage,andonethatusestwo differentsetsof features,onefor the target pageandonefor a concatenationofthe neighboringpages.The resultswerenegative: in two domainsboth approachesperformedworsethantheconventionaltechniquethatusesonly featuresof the targetdocument.Fromtheseresults,Chakrabartiet al. [12] concludedthat thetext from theneighborsis too noisy to help classificationandproposeda different techniquethatincludedpredictionsfor theclasslabelsof theneighboringpagesinto thecomputationof thepredictionfor the targetpage.Unlessthe labelsfor theneighborsareknown apriori, the implementationof this approachrequiresan iterative techniquefor assign-ing the labels,becausechangingtheclassof a pagemay potentiallychangetheclassassignmentsfor all neighboringpagesaswell. Theauthorsimplementeda relaxationlabelingtechnique,andshowed that it improvesperformanceover the standardtext-basedapproachthat ignoresthehyperlink structure.Theutility of classespredictionsfor neighboringpageswasconfirmedby the resultsof Oh et al. [50] andYanget al.[68].

A differentline of researchconcentratesonexplicitly encodingtherelationalstruc-tureof theWebin first-orderlogic. Forexample,abinarypredicatelink_to(page1,

4

Page 5: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

page2) canbeusedto representthefactthatthereis ahyperlinkonpage1 thatpointsto page2. In orderto beableto dealwith sucha representation,onehasto gobeyondtraditionalattribute-value learningalgorithmsandresortto inductive logic program-ming. Craven et al. [22] usea variant of Foil [54] to learn classificationrules thatcanincorporatefeaturesfrom neighboringpages.Thealgorithmusesa deterministicversionof relationalpath-finding[57], which overcomesFoil’s restrictionto determi-nateliterals[55], to constructchainsof link_to/2 predicatesthatallow thelearnerto accessthe wordson a pagevia a predicateof the typehas_word(page). Forexample,theconjunctionlink_to(P1,P), has_word(P1) means“thereexistsa predecessorpageP1 that containsword word. SlatteryandMitchell [63] improvethebasicFoil-like learningalgorithmby integratingit with ideasoriginatingfrom theHITS algorithmfor computinghub andauthorityscoresof pages[39], while CravenandSlattery[21] combineit favorablywith a NaiveBayesclassifier.

At its core,usingfeaturesof pagesthatarelinkedvia alink_to/2 predicateisidentical to the approachevaluatedby Chakrabartiet al. [12] wherewordsof neigh-boring documentsareaddedasa separatefeatureset: in both cases,the learnerhasaccessto all the featuresin the neighboringdocuments.The main differencelies inthe fact that in the relationalrepresentation,the learnermay control the depthof thechainsof link_to/2 predicates,i.e., it may incorporatefeaturesfrom pagesthatareseveral links away. Froma practicalpoint of view, themaindifferencelies in thetypesof learningalgorithmsthatareusedwith bothapproaches:while inductive logicprogrammingtypically relieson rule learningalgorithmsthat try to classifypagesbyforming“hard” classificationrulesthatpredictaclassby lookingonly atafew selectedfeatures,theapproachof [12] is typically usedfor learningalgorithmsthatalwaysuseall of the available features(suchasa Naive Bayesclassifier). Yanget al. [68] dis-cussbothapproaches,relatethemto a taxonomyof five possibleregularitiesthatmaybepresentin theneighborhoodof a targetpage,andempiricallycomparethemunderdifferentconditions.

Our approachdiffers from theseprevious works by keepingthe featuresof eachindividual predecessorpageseparately. In fact,we proposeto usea separateclassifierfor eachpredecessorpage,whichusesfeaturesderivedfrom thepredecessorto predictthe classof the target page. The text of the target pageitself is completelyignored.Thuswe obtainseveralpredictionsfor theclassof the targetpage,onepredictionforeachpredecessorpage.Thesepredictionscanthenbecombinedinto a final predictionusing simple voting techniques. The next sectiondescribesthis techniquein moredetailanddiscussesits advantagesover theabove-mentionedapproaches.

4 Hyperlink Ensembles

As motivatedin Section2, we believe that thepagesthatpoint to a pagethatwe wantto classify—thepredecessorpagesof the target page—oftencontainmoreandbetterinformationaboutthepagethanthepageitself. Severalotherresearchershave basedtheir work on similar hypothesesbut with mostlynegative results.We believe thatthemainreasonfor this is basedon two shortcomingsof previousworks:

5

Page 6: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

� thefeaturesof thepredecessorpagesneedto bekeptseparately

� theredundancy providedby multiple incominglinks is importantinformation

Note that in conventionalattribute-valuerepresentations,it is not possibleto rep-resentsucha learningproblemin a way that featuresfrom differentpredecessorsareencodedseparately. Thereasonis thatthereis anarbitrarynumberof predecessorpagesandthereis no clearorderof thepredecessorpagesthatwould allow anencodinglike“this is a featureof the1stpredecessorpage”etc.2

It is also worth noting that the first two of the above shortcomingsare comple-mentary: The ideaof concatenatingthe text of the predecessorpages(as,e.g.,usedin [12, 50, 68]) maintainsthe redundancy (at leastif a bag-of-word representationisused,which allows the learnerto accessword frequencies)but it doesnot keepthefeaturesseparately. On theotherhand,approachesthatusea relationalrepresentation[22, 21] arein principleableto keeptheir featuresetsseparately(onewouldonly haveto addan inequalitypredicateto the backgroundknowledgethat allows to comparepageidentifiers),but therule-baselearningalgorithmsthataretypically usedwith sucha representationconstructminimal rule setsthat try to make the learnedrule setsasconciseaspossibleanddonot allow for redundancy.

Theapproachwe proposesolvestheseproblemsby makinga separatepredictionfor eachpredecessorpageandcombiningthesepredictionsat classificationtime. Thisguaranteesthat the featuresetsfor differentpredecessorsaretreateddifferently (eachonecorrespondsto adifferentclassificationproblem),but thattheir redundancy is nev-erthelessexploited(in a way, eachpredecessorpageis askedfor its opinionandtheircumulativevoteis usedasthefinal prediction).

To achieve this, we representa target pagewith a setof instances,one for eachpredecessorpage. Eachinstanceconsistsof featuresderived from the correspondingpredecessorpageandtheclasslabelof thetargetpage.Let usassumefor themomentthat we only considerthe wordson the anchortext asthe featuresthat representthepredecessorpage.Thehomepageof professorMarx at thebottomof Figure1 wouldthenbepresentedwith threeinstances,eachrepresentedby thewordsontheanchortextof the correspondingpredecessorpage(“professormarx” in the first case,“groucho”for thesecondpage,and“marx g” for thethird page).Eachof theseinstancesis labeledwith theclassinformationof thetargetpage(professor).

The dataset that is constructedin this way is subsequentlyusedfor training asingleclassifier. This classifieris thenableto predicta classlabel for links betweenapredecessorpageandits correspondingtargetpage.Ideally, all predictionsthatinvolvethesametargetpagewould uniformly predictthesameclass.However, in many casesthis learnedclassifierwill be imperfectandbrittle, so that conflicting predictionsarepossibleor even likely. Hence,we have to resortto someform of voting in ordertodeterminethefinal prediction(seebelow). Obviously, thisapproachmaybeviewedasan ensembletechnique,wherethe membersof the ensemblescorrespondto different

2In principle, this problemis a caseof multi-instancelearning[28]. We have not exploredthis relationfurther, but it shouldbenotedthatmany algorithmsthatareusedto solve multi-instancelearningproblemsareassumingthat it is sufficient to selectthebestof all differentrepresentationsof a given instance.Thisframework correspondsto theMaxcombinermethoddiscussedbelow. It is interestingto notethatthissettingperformedbestin ourexperiments.

6

Page 7: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

representationsof thesameproblem,onefor eachhyperlink. Consequentlywerefertothis techniqueashyperlinkensembles.

A crucial componentof eachensembletechniqueis the voting procedurethat isusedfor combiningthe predictionsof eachmemberof the ensembleinto a final pre-diction. Proposalsrangefrom simplevoting to meta-learningtechniqueslike stacking[66], arbitersandcombiners[14] or grading[62]. Meta-learningtechniquesarenotstraight-forwardly applicableto our approach,as they typically dependon having afixed numberof classifiersin the ensembles(for constructingthe metatraining set).Severalstudieshave comparedvoting techniquesfor combiningthepredictionsof theindividualclassifiersof anensemblein variouscontexts [e.g.,45,1]. It seemsto bethecasethat techniquesthat includeconfidenceestimatesof theensemblepredictorsintothecomputationof thefinal predictionsarepreferable[cf. also61], but thefinal wordon that issueremainsto be spoken. Consequently, we decidedto investigateseveraldifferentapproachesfor combiningclassifiers,which includevoting, weightedsums,andusingthe predictionwith the highestconfidencemeasure.Theseapproachesaredescribedin detail in Section5.2.

Similarly, a crucialcomponentof our techniqueis therepresentationof theprede-cessorpages.Previousworksusedtheentiretext of thepredecessorpages.However,this simple andstraight-forward solution is problematicbecausedifferent partsof apagemaybeondifferenttopics,someof whichmayhavenothingto dowith thetargetpage.In particular, apagewith � outgoinglinks may, in theworstcase,bepredecessorfor � differentclasses.As we usethesameclassifierfor eachpredecessor, it will as-signthesamelabelto two targetpagesthathappento havethesamepredecessor. Eventhoughtheotherpredecessorsof eachtargetpagemayover-rule this assignment,thisis clearlynot anoptimalsolution. Consequently, we believe it is necessaryto restrictthe featuresetto the part of the text that is relevant for the hyperlink so that the fea-turesetof thesamepredecessorpagemaybedifferentfor differenttargetpages.Themostobviouschoiceis to simply usetheanchortext thatappearson thehyperlink. Inourfirst experiments,wewill concentrateon thisapproach,but otherheuristicswill beevaluatedlaterin thepaper(Section7).

5 Implementation and Experimental Setup

5.1 The Ripper Rule Learner

We evaluatedour approachusing the Ripper rule learningalgorithm [16], which isavailablefor researchpurposesfromhttp://www.research.att.com/~diane/ripperd.html. Ripper is anefficient,noise-tolerantrule learnerbasedontheincre-mentalreducederrorpruningalgorithm[36, 31]. Beforelearninga rule, Ripper splitsthe available training datainto a growing set (usually

�����of the data)and pruning

set(the restof the data). It thenlearnssinglerulesby greedilyaddingoneconditionat a time (usingFoil’s informationgain heuristic[54]) until the rule no longermakesincorrectpredictionson thegrowing set. Thereafter, the learnedrule is simplifiedbydeletingconditionsas long as the performanceof the rule doesnot decreaseon thepruning set. All examplescoveredby the resultingrule are then removed from the

7

Page 8: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

trainingset,anda new rule is learnedin thesameway until all examplesarecoveredby at leastonerule. Thus,Ripper is a memberof the family of separate-and-conquer(or covering)rule learningalgorithms[33]. In a post-processingphase,Ripper usesaglobaloptimizationalgorithmthatallows it to re-evaluateandmodify thelearnedrulesin thecontext of theotherrules.

Ripper is ableto dealwith text categorizationproblemsvia theuseset-valuedfea-tures [18]. Basically, Ripper representsa documentasa setof words, i.e., it repre-sentsa documentby the setof words that occur in the document,disregardingtheirorderandtheir frequencies.For rule learningalgorithms,this representationseemstocomemorenaturalthanthecommonlyusedbag-of-wordsrepresentation,whichrepre-sentsa documentasa multi-set(i.e., a bag) of its words,i.e., ignoring their orderbutnot their frequency.3 However, thestraight-forward implementationof a set-of-wordsrepresentation—encodingthe presenceor absenceof eachpossibleword as a sepa-rateBooleanfeature—resultsin a very inefficient encodingof the training examplesbecausemuchspaceis wastedfor specifyingtheabsenceof wordsin adocument.Set-valuedfeaturesallow to specifya setof valuesinsteadof a singlevalueasin conven-tional attribute-valuefeatures.Thus,eachdocumentcanberepresentedwith a singlefeaturethatlists all thewordsthatappearin thedocument.Ripper thenconsiderscon-ditionsof theform word � feature. Theseconditionsareevaluatedastrue for a givenexample,wheneverword is partof thesubsetof thevaluesof feature for this example.

5.2 Voting schemes

As discussedabove, we constructeda trainingsetconsistingof oneexamplefor eachpredecessorof a page,labeledwith theclassof the targetpage. In thesimplestcase,the featuresof this set-valuedattribute consistedof the wordsof the anchortext (cf.Section7 for alternatives). Ripper wastrainedon this trainingsetproducinga singleclassifier. We usedRipper with the option-a unordered which inducesa setofunorderedrules,i.e., onesetof rulesfor eachclass,discriminatingthis classfrom allotherclasses.4 In orderto computea predictionfor a target page,this classifierwasappliedto eachof its predecessorpages,andgaveapredictionfor eachof them.Thesearethencombinedvia avotingscheme.

Basedon previousresultsfrom similar studiesin ensembletechniques[45, 1, 61],we implementedvariousvotingschemesthatmakeuseof confidenceinformation,i.e.,that incorporateinformationabouthow surethe classifieris aboutits prediction. AsRipper only returnsasinglepredictionandnotaprobabilitydistributionoverall possi-ble classes,we have to associatea confidencescorewith eachof Ripper’s predictions.We decidedto usethesameconfidencescorefor all examplesthatarecoveredby thesamerule. For this score,we usedtheLaplace-estimate � �

������of theprobability that

3Ripper alsosupportsbag-of-words representationsby allowing conditionsof the form word ��� toencodethe fact that word hasto occurat least � times. However, this option is hardly ever usedin theliterature,andwe have notencounteredacasewhereit significantlyimprovedtheresults.

4We have alsoexperimentedwith orderedrule sets,but theresultswereusuallya little worse.Besides,in “ordered” mode,Ripper treatsoneclassasthedefault classanddoesnot learnrulesfor that class.Wehave notyet tried theround-robinapproach,which learnsoneclassifierfor eachpairof classesandseemstooutperformbothorderedandunorderedrule sets[34].

8

Page 9: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

anexamplecoveredby therule is positive (estimatedon the � positive and � negativeinstancesthattherule coverson thetrainingset).This is thesameconfidenceestimatethatRipper usesinternallyfor tie-breakingon unorderedrule sets,whenmultiple rulesfire andpredictdifferentclassesfor thesameexample.Theonly extensionwemake isthatweassignaconfidencescoreof 0 to all predictionsfor whichnoneof therule setsfor the individual classesfired, i.e., for thosepredictionthat originatefrom a defaultrule (i.e., a rule thatsimply predictsthemajority class).Ripper addssuchrulesto theendof a theoryin orderto guaranteefull coverageof theexamplespace.Thereasonsfor ignoringpredictionsfrom suchdefaultrulesarethatontheonehandwedonotneedfull coverage(astheindividualpredictionsarecombinedinto anensemble),andthatontheotherhandit turnedout thatmany of the learnedruleshave a fairly low coverage,sothatmany of theexamplescanonly beclassifiedusinga default rule. Thus,it mayhappenquite frequentlythata few goodrulesareoutnumberedby a large numberofdefault predictions.Someof thesepreliminaryresultsmaybefoundin [32]. Notethatanexamplemaybecoveredby multiple ruleswith contradictingclasspredictions,sothatmorethanoneclassmayhavea confidencescore��� .

We implementedthefollowing votingschemes:

Voting (Vote): Thesimplesttechniqueis to giveeachmemberof thehyperlinkensem-ble onevote,andpredicttheclassthat receivesthemostvotes.Tiesarebrokenin favor of largerclasses,andpredictionswith 0 confidencescoreareignored.

WeightedSum (Weight): TheWeightvotingschemeis identicalto theprevioustech-niqueexceptthatconfidencescoresareusedto weightthevoteof eachensemblemember. Thus,a few predictionswith high confidencescoresmay over-rule alargernumberof predictionswith lowerscores.

WeightedNormalized Sum (Norm): This voting schemeis identicalto thepreviousone, except that the confidencescoresare first normalizedin a way that dis-tributesa total weightof 1 amongthe differentcandidateclassesfor eachlink.This is necessarybecausetheconfidencescorethatis associatedwith eachclassonly dependson the numberof positive andnegative examplescoveredby thebestrule that predictsthis classandcovers the example. Thereforethe confi-dencescoresassociatedwith eachclasscannotbeinterpretedasclassprobabilityestimatesunlessthey arenormalized.

Maximum Confidence(Max): Thelastcombinationmethodsimplychoosestheclasspredictionthatreceivesthehighestconfidenceamongall memberof theensem-bleandpredictsthatclass.This is anattemptto useonly themostaccurateof allapplicablerulesto classifya page.

Of course,moreelaboratepredictioncombinersarethinkable.Note,however, thatthe numberof predictionsthat needto be combinedvariesfrom exampleto example(dependingon the numberof predecessorpages). Hence,the applicationof meta-learningapproacheslike stacking[66] or arbitersandcombiners[14] is not straight-forward.

9

Page 10: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

Class Links PagesStudent 2128 36.67% 544 51.81%Faculty 1374 23.68% 147 14.00%Course 915 15.77% 229 21.81%Project 701 12.08% 83 7.90%Department 530 9.13% 4 0.38%Associate 121 2.09% 30 2.86%PostDoc 34 0.59% 13 1.24%

Table1: Classdistributionof thedatain links andpages.

5.3 The WEB � K B Dataset

Thedatasetwe usedfor demonstratingtheviability of our approachconsistsof 1050pagesthatarepartof a datasetcollectedfor the WEB

� KB project[20].5 Thepagesweremanuallyclassifiedinto oneof thecategoriesStudent, Department, Faculty, Re-search Project, Research Associate, PostDoc, andCourse. Within thesepages,5803hyperlinkspoint to anotherpagewithin this set. Table1 shows the classdistributionof thedatasetfor the 1050pagesandfor the5803hyperlinks. Theclasseshave verydifferentcharacteristics.Firstof all, they differ considerablyin theirsizes.Second,theaveragenumberof links thatpoint to a pagevaries. For example,thereareonly fourhomepagesof computersciencedepartmentsin theentireset,whichwouldbetoo fewdatato applya straight-forwardtext classificationalgorithm.However, therearemorethan100 links pointing to eachof thesepages,which makesDepartmenta classthatcanbelearnedfairly well.

The pages/linkswerecollectedfrom four universities,Cornell (243/1073),Texas(253/1264),Washington(256/1771),andWisconsin(298/1695).For constructingthehyperlink ensembles,we first discardedtheentiretext of eachtargetpage.Instead,weidentifiedthe setof predecessorpagesthat containa pointerto the target page. Thiswas doneby scanningthe datasetfor all occurrencesof an HREF that containstheaddressof thecurrentpage.In principle,this couldalsobeperformedon-lineusingasearchenginelikeGOOGLE thatallowsto queryfor pagesthatpoint to agivenaddress.Fromthesepredecessorpages,we identifiedtherelevantpartsof thedocuments(e.g.,the anchortext of the hyperlink to the target page),removed all HTML markersandsentencemarksfrom thetext andconvertedall wordsto lower casetherebyreplacingspecialcharacterswithin a wordwith ’_’ andall digits with theletter’D’.

5.4 Evaluation Procedure

All reportedresultsarefrom a4-fold leave-one-university-outcross-validation,i.e.,foreachexperimentwe combinedthe examplesof threeuniversitiesto learna classifierwhich was then testedon the dataof the fourth university. Becauseof the differenttestsetsizesfor eachof the four results,we usedmicro-averagingfor evaluatingtheaccuracy of thepredictors,i.e., we lumpedall predictionsfrom all four runstogetherandcomputedanaccuracy measureon theentiresetof predictions.

5A somewhat differentversionof this datasetis available from http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.

10

Page 11: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

AccuracyHyperlinkEnsembles(anchortext)

Vote 74.67Normal 74.38Weight 74.19Max 74.76

Full-text Classifier(set-of-words) 70.67FeatureSubsetSelection

(50%) 73.90(10%) 74.19(5%) 74.76(1%) 71.33(0.1%) 54.67

Table2: Accuracy resultsfor anchor-text-basedhyperlink ensembleswith a full-textclassifieranda full-text classifier+ featureselection.

6 Comparison to full-text classifier

Table2 shows the resultsof hyperlink ensemblesbasedon featuresusingthe anchortext of predecessorpages.The resultsof a full-text classifier, which usesthe setofwordsoccurringin the text of the targetpagesasa featureset,areshown below. Thehyperlink ensemblesoutperformthe full-text classifierby a significantmargin, eventhoughthey only usethe text thatoccurson anchortexts thatpoint to the targetpageandcompletelyignorethetext on thepageitself.

One reasonfor the betterperformanceof the hyperlink ensemblecould be thatit usesconsiderablylessfeaturesthan the full-text classifier. Thereis considerableevidencethat a reductionof the featureswill improve classificationaccuracy in textdomains[43, 47,67]. Couldweobtainasimilaraccuracy by employing featuresubsetselectionon thefull-text classifier?To answerthis we alsocomparedtheperformanceof hyperlinkensemblesto afull-text classifierthatusesfeaturesubsetselectionasapre-processor. Featuresubsetselectionwasperformedusingclassentropy asimplementedin the filter-text programthat comeswith Ripper. Table2 shows the resultsfor usingonly thetop � % of thefeaturesof thefull-text classifier(selectedby entropy). As canbeseen,at thebestlevel (5% to 10%)featuresubsetselectionperformsaswell asthehyperlink ensembles.

So we could concludefrom thesefirst experimentsthat—in this domain—hyper-link ensemblesperformaswell asanoptimizedfull-text classifier, but without theneedfor theexpensive featuresubsetselectionprocess,and,in particular, withouthaving toknow (or experimentallydetermine)theright level of featurereduction.However, notethatwe have not optimizedthehyperlink ensemblein any way. We have not checkedwhetherfeaturesubsetselectionwould improve thelink-classifiersaswell, and,moreimportantly, weonly focussedontheanchortextsof predecessorpages,whichprovidea fairly limited amountof information.In thenext section,wewill evaluatealternativewaysof obtainingfeaturesetsfor thepredecessorpages.

11

Page 12: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

7 Alter nativeFeaturesSets

The working hypothesisbehindour researchis that the information on predecessorpagesmayoftenbemoreinformative thantheinformationonthepageitself. However,we have not yet determinedon whatpartsof thepredecessorpagethe relevant infor-mationcanbefound. Sofar, we have only consideredtheanchortext of the link thatpointsto thetargetpage,which—intheexperimentsreportedin theprevioussection—hasalreadygivena satisfactoryperformance.Nevertheless,if we take anotherlook atFigure1, theanchortext canonly behelpful for classifyingthe left-mostof the threepredecessorpages.If thispagewasmissing,ouranchor-text-basedhyperlinkensemblewould not beableto determinethatDr. Marx is a professor, althoughthe informationis clearlypresentin theothertwo pages.

Using this picture as a motivation, we argue that in many casesat leastone ofthe following threepiecesof informationprovides an obvious clue for the intendedclassificationof thepage:

� theanchortext

� thecontext in which theanchortext appears

� theheadingsthatstructurallyprecedethesectionof thedocumentin which thelink occurs

Eachof thesethreecasescan handleone of the threepredecessorpagesshown inFigure1,andwebelievethatthey reflectgeneralregularities,at leastwithin thedomainwe studied.

For example,departmentpagestypically have a large numberof links pointingto themthat aremarked with anchortexts like “computersciencedepartment”,“CSdepartment”,“dept. of computerscience”,or similar. Eachof themshouldbesufficientto identify thelink aspointingto thepageof a computersciencedepartment.

Studenthomepagesveryoftencontainapointerto theiradvisor’shomepage.Thus,facultyhomepagescanoftenbeidentifiedby theoccurrenceof theword “advisor” intheneighborhoodof a link thatpointsto thepage.As studenthomepagesareusuallycontainmany links, it is quite likely that thereare several links occurringneartheword “advisor”. Thusit is reasonableto assumethat theuseof linguistic informationcouldhelpto furtherfocusthelearner. For example,beingableto recognizeasentencefragmentlike “my advisoris <...>” makesthelearner’s tasktrivial.

However, not all pagescontaingrammaticaltext. This is particularlytrue for so-calledhubpages,whicharecollectionsof pointersto authoritative informationsourceson a topic [39], or for pagesthatprovide a collectionof links to pagesthatareall in-stancesof acertaingroupof objects.For example,many computersciencedepartmentshaveapagethatlistsall students,faculty, staff, projects,courses,or otherinformation.Typically suchpages(or segmentsof pages)startwith aheadingthatidentifiesthetypeof informationthat is listed below (see,e.g.,the right-mostpredecessorpagein Fig-ure1). Clearly, this informationcanalsobevery usefulfor classifyingthepagesthatarepointedto in thelist below thisheading.

12

Page 13: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

In orderto capturesuchregularities,we implementedfour differentfeatureextrac-tion techniques:

Anchor: All wordsthatoccurredin theanchortext of the link (betweentheopening<A ...> andtheclosing</A> of theHTML link). This is therepresentationusedin theexperimentsof theprevioussection.

Heading: All wordsthatoccurredin headingsthatstructurally precedethehyperlinkin the HTML document.This meansa headingof type<H � > is includediff itappearsbeforethe hyperlink andno headingof type<H� > with ����� appearsin the segmentbetweenthe headingand the hyperlink. Pagetitles and titlesfor definitionlists (<DT>) werealsoincludedasheadings(with �! "� and � $#respectively). Throwing thewordsof all headingstogetheris acrudeapproxima-tion becauseheadingsfurtheraway couldcontainmisleadinginformation(e.g.,departmentpagesthatarestructuredinto sectionswith informationsaboutvari-ousaspectsof departments).Our motivationfor usingall headings,however, isthatit is notalwaystheheadingimmediatelyprecedingthelink thatcontainstherelevantinformation.Futurework mightweighttheheadingsdifferentlyaccord-ing to their structuraldistanceto thehyperlink.

Paragraph: All wordsof the paragraphin which the hyperlink occurs.Our methodfor determiningthe paragraphis somewhat heuristic: Piecesof text separatedby <P> or anemptyline areparagraphs,asarestructuralentitiessuchasitemsin a list <LI>. Our straightforward methodfor grabbingthe paragraphsis notperfect. E.g., it is hardto determinewhat to do with the breakmarker <BR>,which is sometimesusedasa simpleline break,occasionallyevenwithin a sen-tence,but sometimesalsofor generatingartificial list environments.As oneofour goalsfor the paragraphgrabberwasto provide a reasonabletext fragmentfor phraseextractionvia AutoSlog (seebelow), we tried to resolve suchissuesconservatively.

Phrases: We usedthetext fragmentextractedfor theparagraphinformationto gener-atephrasalfeaturesof the sort describedin [35]. AutoSlog-TS, originally con-ceivedfor informationextraction[58, 59], is ableto provide a learnerwith fea-turesthat capturesomeof the syntacticstructureof naturallanguagetext. Weuseda versionof AutoSlog-TS thatuseshyperlinksasa target6 andreturnspat-ternsthatcapturethesyntacticrole of theprepositionalphraseon thehyperlink.Considerfor examplethesentence“My advisoris<A HREF="http:/...">TomMitchell</A>.” . Fromtheabove input sentence,AutoSlog-TS would ex-tractthefeatureadvisor_is_% _ � thatwould matchall pagesin which a studentusesthis phraseto refer to heradvisor’s home-page.Note that this typeof fea-ture is ableto provide a betterfocusthansimply usingtheword advisor in theparagraphfeature,in particularin caseswheremorethanonehyperlink appearsin theparagraph.

6Themaindifferencebetweentheversionusedin [35] andtheversionwe usedin theseexperimentsisthat theformerextractsall syntacticpatternsfrom a text, while thelatterspecificallytargetsphrasesaroundhyperlinks.

13

Page 14: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

CombinationMethodClassifier Vote Normal Weight MaxDefault 51.81 51.81 51.81 51.81Anchor 74.67 74.38 74.19 74.76Headings 72.29 72.38 72.95 72.95Paragraph 66.86 66.86 66.95 66.29Phrases 56.29 56.29 56.38 56.57Anchor+Headings 85.33 84.95 85.14 86.57Anchor+Paragraph 74.29 74.00 73.90 74.67Anchor+Phrases 74.95 74.76 74.48 75.43Headings+Paragraph 79.90 80.19 81.14 81.33Headings+Phrases 77.33 76.86 76.95 77.14Paragraph+Phrases 66.86 67.05 66.86 66.10w/o Anchor 76.57 76.76 76.48 77.05w/o Headings 73.90 74.10 74.19 74.38w/o Paragraph 85.52 84.86 85.43 86.86w/o Phrases 82.29 81.71 82.67 83.24All 84.54 84.57 85.05 85.05

Table3: Accuraciesfor classifyingthe1050pagesusingvariousmethodsfor combin-ing link predictorsto pagepredictors.

Weevaluatedeachof theabovefeaturerepresentationsin isolation,but alsolookedat all possiblecombinationsof thesefeaturesets,i.e., we first ran experimentsusingonly singlefeaturesets,thenall pairsof featuresets,all triplets,andfinally usingallfour featuresets. If morethanonefeaturesetwasused,eachonewasencodedasaseparateset-valuedfeature,i.e., identicalwordsin differentfeaturesetsweretreatedasdifferentfeatures.We will refer to the set-valuedfeatureasa feature setandusethetermsfeatureandword (or phrasefor thePhrasesfeatureset)interchangably.

7.1 Accuracy

Table3 showstheaccuraciesmeasuredfor predictingthepagelabels.Therows list thedifferentrepresentationschemes,startingfrom thedefault predictionaccuracy (usingno features)to the classifierthat usesall features.The columnsof the tablegive theaccuracy for eachof the four implementedpredictioncombinationtechniquesvoting,normalizedweightedaverage,weightedaverage,andfinally themaximummethod(seeSection5.2).

Thefirst thing to noticeis thatsomeresultsareconsiderablybetterthanthosere-portedin Table2. For example,if all featuresetsareused,all resultsarenearthe85%mark,which is morethan10%above thebestresultobtainedby thefull-text classifier.This is clearevidencethathyperlinkensembles,whenusedwith asufficiently rich rep-resentationof thepredecessorpages,cansignificantlyoutperformfull-text classifiers.It shouldalsobe notedthat this classifer, which usesall four featuressets,usesless

14

Page 15: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

thanhalf of thefeaturesof thefull-text classifier(8,075vs.20,322).7

The resultsalso show that addinga new featureset will in generalincreasetheobtainedpredictive accuracy. The exceptionto the rule is the Paragraph featureset.Whenever its featuresareaddedto a representationthat alreadyincludesthe Anchorfeatures,theresultis a lossof predictiveaccuracy. A reasonfor thismightbethatthesetwo featuresetsaremuch lessindependentof eachother thanotherpairsof featuresets.8 Thefeaturesin thePhrasesfeaturesetareusedquiteinfrequentlyin thelearnedrules,andin generaldo not make abig difference.It shouldneverthelessbenotedthatthehighestaccuracy (86.86%)wasachievedwhenusingall but theParagraph featureset (and combiningthe predictionsof the links by chosingthe one with maximumconfidence)althoughthe differencesbetweenthis versionand the versionthat usesonly Anchor andHeadingsareinconclusive.

Among the four differenttechniquesfor combiningthe link predictionsto a pageprediction,takingthepredictionwith themaximumconfidenceis aclearwinner. In 12out of the15 runs,usingthis methodgave thebestresults(shown in bold face). It isinterestingto notethat this method,which focuseson the examplethat is consideredto bemostrelevantandignoresall others,looselycorrespondsto theso-calledsingle-tuplebiasin multi-instancelearning[15] (seealsofootnote2). However, in general,thedifferencesbetweenthecombinationmethodsarenotnearlyaslargeasthedifferencesbetweenthedifferentdocumentrepresentations.

7.2 Recall and Precision

Wehavediscussedabovethatmany of thetestexamplesareclassifiedusingthedefaultrule andthat it seemsto beadvisableto ignorethesedefault link predictionsfor com-puting thepagepredictions.But whathappensin caseswhereall links thatpoint to apageareclassifiedby default rules,i.e.,no link containsany informationthatcouldbeusedfor a justifiedprediction?In theexperimentsreportedin theprevioussection,wehave simply predictedthemajority classStudentfor eachof thesepages.What if weignorethesepredictions?It canbeexpectedthattheclassificationaccuracy goesup attheexpenseof classifyingfewer pages.This trade-off is commonlymeasuredin termsof precisionandrecall.

Table4 lists recallandprecisionestimatesthatshedsomelight uponthis question.Recallis thepercentageof pageswhichwereclassifiedusingatleastoneruleotherthanthedefaultrule. Notethatthisestimateis thesamefor all combinationmethodsbecausetheunderlyinglink classifiersarethesameandhencethelinks thatareclassifiedwithdefault rulesarethesame.Precisionis thepercentageof correctpredictionsamongallnon-default predictions,i.e., it measuresthe predictionaccuracy for only thosecaseswherea learnedrule wasused.In general,theprecisionscoresaremuchhigherthan

7Thereportednumberof featuresarethetotal numberof featuresin theentiredataset.Eachof thefourtrainingsets(which usedonly partof thedata)containedon averagea little morethan80%of the featuresfor bothtypesof classifiers.

8Note,however, thateven thoughthesetof wordsoccurringon theanchortext is a subsetof thesetofwordsoccurringin its surroundingparagraph,theresultingAnchor featuresetis not asubsetof theresultingParagraph featuresetbecausethe feature& _occurs_in_anchor_text is semanticallydifferentfromthefeature& _occurs_in_paragraph, theformerbeingmorespecificthanthelatter. This is a resultoftheencodingasseparateset-valuedfeatures.

15

Page 16: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

Recall PrecisionClassifier Vote Normal Weight MaxAnchor 40.76 83.64 82.30 82.48 83.88Headings 74.10 88.05 88.19 88.95 88.95Paragraph 46.67 75.71 75.91 75.92 74.49Phrases 10.57 70.27 66.94 71.17 72.97Anchor+Headings 85.90 92.35 91.91 92.13 93.79Anchor+Paragraph 60.19 83.23 82.81 82.59 83.86Anchor+Phrases 42.38 82.92 81.68 81.80 84.04Headings+Paragraph 82.38 88.44 88.79 89.94 90.17Headings+Phrases 74.48 92.20 91.58 91.69 91.94Paragraph+Phrases 46.95 78.09 78.43 78.09 76.47w/o Anchor 65.71 86.67 86.98 86.52 87.39w/o Headings 57.71 83.17 83.39 83.66 83.99w/o Paragraph 86.00 92.14 91.36 92.03 93.69w/o Phrases 78.00 86.94 86.20 87.42 88.16All 87.05 91.03 91.14 91.68 91.68

Table 4: Recall and Precisionfor the pagepredictors. Recall is the percentageofpagesthatarenot classifiedwith thedefault rule andPrecisionis how many of theseclassificationswerecorrect.

theaccuracy resultsof Table3. This is not surprisingbecauseaccuracy canbeviewedasaweightedsumbetweentheprecisionontherecalledexamplesandtheprecisiononthe examplesclassifiedby default rules(which shouldbe aboutthe default accuracy,althoughthevariancecanbeveryhigh).

More informative aretherecall results.For example,phrasalfeaturesonly have arecall of slightly morethan10%. This meansthatonly very few pagesareclassifiedwith a non-default rule if only this representationis used. Adding this featureset toother featuresusually doesnot increaserecall althoughsmall increasesin accuracyandprecisionarenoticable.This is consistentwith previouswork whereit wasshownthatsuchfeaturescanincreaseprecisionat low levelsof recall [35]. Thelow recallofParagraphis somewhatsurprising,asonecouldexpectthatthehighnumberof featuresshouldbeableto achieveahighercoverage.However, ahighernumberof featuresalsoincreasesthe dangerof overfitting, which, in our opinion, is what happenswith theParagraph featuresets.Headingsfeatureshave by far thehighestrecall. We explainthis with thefactthatthewordsoccuringin headingstendto bemorerepetitious.

8 Effectivenessof Hyperlink Ensembles

Onequestionthat remainsunansweredby Table3 is how muchdo we gain by com-bining thepredictionsof differentlinks pointing to thesamepage,i.e., how goodaretheensemblesin exploiting theredundancy providedby multipleclassificationswithinthe ensemble.If, for example,all predictionswithin the ensembleuniformly predict

16

Page 17: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

CombinationMethodEncoding No Vote Normal Weight MaxDefault 36.67 36.67 36.67 36.67 36.67Anchor 57.92 75.93 75.56 75.37 76.05Headings 43.34 66.62 69.89 70.77 64.33Paragraph 53.40 65.91 65.81 66.33 58.59Phrases 39.12 56.38 56.38 56.47 56.83Anchor+Headings 62.49 86.18 85.46 86.25 83.22Anchor+Paragraph 58.40 73.70 73.67 73.46 71.81Anchor+Phrases 58.43 74.39 74.10 73.79 75.53Headings+Paragraph 58.50 78.67 78.98 80.30 76.63Headings+Phrases 45.03 76.77 75.50 76.10 79.63Paragraph+Phrases 51.84 63.52 63.76 63.45 60.18w/o Anchor 55.56 78.01 78.25 75.87 76.55w/o Headings 55.85 71.19 71.62 69.95 65.95w/o Paragraph 59.80 83.68 82.22 83.65 82.65w/o Phrases 57.99 79.15 77.74 79.44 79.20All 63.11 82.35 82.68 83.68 79.27

Table5: Accuraciesfor classifyingthe5803links with variouspredictorcombinationmethods.Exceptfor thecolumnlabelledNo, thepredictionin eachcolumnweregen-eratedby assigningto eachlink the classificationof the pageit pointsto, which wasderivedasin table3.

thesameclasslabel, therewould beno needfor combiningthepredictions;we couldsimply useany of thepredictionsfor theindividual hyperlinks.

To investigatethisquestion,wecomputedaweightedaccuracy estimateby weight-ing eachpagewith the numberof links that point to that page. In otherwords, alllinks that point to the samepageperforman internalvote to decideupona commonclassificationfor the pagethey point to. Eachlink of sucha groupwill thenpredictthis commonlabel. The resultingaccuracy estimatecountsthe numberof correctlypredictedlinks over all links, andcanthusbe directly comparedto the accuraciesofthebaseclassifiersthatpredicttheclasslabelsof eachlink independently.

Theseresultsareshown in Table5. The first thing to notice is a substantialdif-ferencebetweentheindependentclassifier(first column)andtheclassfiersthatrely oncombiningthepredictionsfor differentlinks. Obviously, many mistakescouldbecor-rectedby combiningthepredictionsof differentlinks. It is alsointerestingto observethat theMax predictionmethod(lastcolumn)is not asdominantasin Table3 and,insomecases,it performssubstantiallyworsethanits competitors.The reasonfor thisis that the maximumpredictionis muchlesssusceptibleto variationsin the numberof link predictionsthatarecombinedto a singlepageprediction. If anerroneouslinkpredictionhasthemaximumconfidencescore,it is usedfor predictingtheclassof thepage.Thevotingandweightingmethods,ontheotherhand,canmakeuseof anumberof unanimouspredictionswith lower confidencescoresto overridea predictionwith ahigherconfidencescore.Thus,it canbeexpectedthatpageswith a highernumberof

17

Page 18: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

incominglinks areclassifiedmorereliably by voting or weighting,while pageswitha lower numberincominglinks arebetterclassifiedby taking the predictionwith themaximumscore. As the latter category is more frequent,the accuraciestend to behigherfor themaximumpredictionmethodin Table3, while they tendto behigherforthevotingandweightingschemesin Table5.

In summary, theseresultsillustratethat the useof hyperlink ensemblesallows toeffectively correcterroneouspredictionsof thebaseclassifierof theensemble.

9 Discussion

In thispaper, wehaveinvestigatedtheideaof forminganensembleclassifierfor hyper-text documentsby combininginformationfrom pagesthat have a hyperlink pointingto thepage.This approachallows to exploit a richervocabulary, independentassess-mentsof pagecontentsthroughmultipleauthors,andredundancy in classification.Thefact thatwe do not dependon the text on the targetpageprovidesusa with a simplemechamismfor dealingwith pagesthat have sparsetext, no text, or text in differentlanguages.

We implementedthe techniqueusinga rule-baseclassifier, which wastrainedtopredicttheclasslabelsof individual links. Thepredictionsof links pointingto thesamepagewerethencombinedin four differentwaysto yield predictionsfor this page.Thebestresultswereachieved by selectingthe predictionwith the maximumconfidencefrom theensemble.Amongfour differentwaysfor identifying relevantinformationonthe predecessorpages—theanchortext, the headingsthat structurallyprecedeit, thetext of theparagraphin which it occurs,anda setof linguistic phrasesthecapturethesyntacticrole of theanchortext in this paragraph—headingsandanchortext seemtobemostuseful.Linguistic phrasesseemto provide a betterfocususingtheraw text oftheparagraphs,but the they do not seemto beasusefulasin previouswork [35], themainproblembeingtheir low coverage.

Althoughtheencodingschemeswe usedarerathersimple,our experimentsillus-trate that the useof information aboutthe HTML structureof pagesand aboutthestructureof theWebitself canbeusefulfor improving text categorizationon theWeb.The useof moreelaboraterepresentationschemes(e.g., including informationaboutthetypeof headingsor evenusinganentireHTML-tree asin [29]) suggestsitself asarewardingtopic for further research,asdoestheuseof relationallearningtechniques,suchasthoseintroducedin [19, 21], which do not exploit theredundancy providedbymultiple incominglinks but, instead,areableto usehyperlinkpathsof arbitrarylength.In addition,we alsothink of combiningfull-text classifierswith hyperlink ensembles(e.g.,by simply includingthefull-text classifierinto theensemble),andof having sep-arateclassifiersfor eachfeaturesets(therebyintegratingourhyperlinkensembleswithensembletechniquesthatarebasedon multiple featuresets[e.g.,4]).

In a way, our hyperlink ensemblesare similar to someprevious resultswhichshowedthat theuseof classinformationfrom predecessor(andsuccessor)pagesmayimprove classificationaccuracy [12, 50, 68]. The main differenceis that thesetech-niquesusethe predictedclassesof the predecessorpagesas intermediateresultsforthe predictionof the target page,while we proposeto predictthecategory of the tar-

18

Page 19: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

getpageusingfeaturesderivedfrom its predecessorpages.As describedin Section2,theabove-mentionedtechniquesalsohave to rely on someiterative techniquebecausetheclasslabelsof neighboringpagesdependon eachother. Furthermore,it makesthestrongassumptionthatall neighboringpagesalsohave someclasslabelattachedto it.Our techniquedoesnot make suchanassumption,which we believe doesnot hold fortheopendomainof Webpages.

Themain limitation of our work is thatwe only evaluatedour techniqueon a sin-gle domain,for which we obtainedvery goodresults(thebase-lineperformanceof afull-text classifieroptimizedwith featuresubsetselectionwasimprovedby morethan10%). It shouldbenotedthatour experimentswereperformedoff-line on this dataset,whichhascertainpeculiaritiesthatmightmakeit exceptionallywell-suitedfor thiskindof approach.For example,all thepageswerecollectedusinga Webcrawler which re-trievedall pagesthatcouldbereachedby somepathfrom the top-level pagesof fourcomputersciencedepartmentswithout leaving thedomainof thesedepartments.Thisprocedureguaranteedthatall pagesoriginatedfrom a fairly narrow domain(computersciencein academia).It remainsanopenquestion,how our techniqueswould performin anopendomain,i.e.,for classifyingarbitrarypageswith arbitraryhyperlinks,but webelieve thatour techniquesarewell-suitedto this typeof problembecause—contraryto previousapproaches—wedonotmaketheassumptionthatall (or some)predecessorpagescanbeassignedto meaningfulclasses,andweareableto exploit theredundancyprovidedby multiple links pointingto apage.

Acknowledgements

The Austrian ResearchInstitute for Artificial Intelligenceis supportedby the Aus-trian FederalMinistry of Education,Scienceand Culture. Parts of this work wereperformedduringtheauthor’s stayat Carnegie Mellon University, which wasenabledby a Schrödinger-Stipendium(J1443-INF)of the AustrianFondszur FörderungderwissenschaftlichenForschung(FWF). The authorhasbenefitedgreatly from discus-sionswith Mark Craven, Tom Mitchell, Ellen Riloff, andthe membersof the CMUtext learninggroup. Thanksgo also to Ellen Riloff for providing AutoSlog-TS andsupportin usingit.

19

Page 20: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

References

[1] Erin L. All wein, RobertE. Schapire,andYoramSinger. Reducingmulticlasstobinary:A unifying approachfor margin classifiers.Journalof MachineLearningResearch, 1:113–141,2000.

[2] RobertArmstrong,DayneFreitag,ThorstenJoachims,andTom Mitchell. Web-Watcher: A learningapprenticefor the world wide web. In C. Knoblock andA. Levy, editors,Proceedingsof AAAI SpringSymposiumon InformationGath-ering fromHeterogeneous,DistributedEnvironments, pages6–12.AAAI Press,1995.TechnicalReportSS-95-08.

[3] Eric BauerandRon Kohavi. An empiricalcomparisonof voting classificationalgorithms: Bagging,boosting,andvariants. Machine Learning, 36:105–169,1999.

[4] StephenD. Bay. Nearestneighborclassificationfrom multiple featuresubsets.IntelligentDataAnalysis, 3(3):191–209,1999.

[5] AdamBerger. Error-correctingoutputcodingfor text classification.In Proceed-ings of the IJCAI-99Workshopon Machine Learningfor InformationFiltering,1999.

[6] KrishnaBharat,AndreiBroder, MonikaR.Henzinger, PuneetKumar, andSureshVenkatasubramanian.Theconnectivity server: Fastaccessto linkageinformationontheWeb.ComputerNetworks, 30(1–7):469–477,1998.Proceedingsof the7thInternationalWorld WideWebConference(WWW-7), Brisbane,Australia.

[7] KrishnaBharatandMonika R. Henzinger. Improved algorithmsfor topic dis-tillation in a hyperlinked environment. In Proceedingsof the 21stACM SIGIRConferenceon Research andDevelopmentin InformationRetrieval (SIGIR-98),pages104–111,1998.

[8] LeoBreiman.Baggingpredictors.MachineLearning, 24(2):123–140,1996.

[9] Sergey Brin andLawrencePage.Theanatomyof a large-scalehypertextual Websearchengine.ComputerNetworks, 30(1–7):107–117,1998. Proceedingsof the7th InternationalWorld Wide WebConference(WWW-7), Brisbane,Australia.

[10] Andrei Broder, Ravi Kumar, FarzinMaghoul,PrabhakarRaghavan,SridharRa-jagopalan,RaymieStata,Andrew Tomkins,andJanetWiener. GraphstructureintheWeb. In IvanHermanandAlbert Vezza,editors,Proceedingsof the9th Inter-national World Wide Web Conference(WWW-9), Amsterdam,The Netherlands,2000.ForetecSeminars,Inc.

[11] SoumenChakrabarti. Datamining for hypertext: A tutorial survey. SIGKDDexplorations, 1(2):1–11,January2000.

20

Page 21: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

[12] SoumenChakrabarti,Byron Dom, and Piotr Indyk. Enhancedhypertext cate-gorizationusinghyperlinks. In Proceedingsof theACM SIGMODInternationalConferenceon Managementon Data, pages307–318,Seattle,WA, 1998.ACMPress.

[13] SoumenChakrabarti,Byron Dom, PrabhakarRaghavan, SridharRajagopalan,David Gibson,andJonKleinberg. Automatic resourcecompilationby analyz-ing hyperlink structureandassociatedtext. ComputerNetworks, 30(1–7):65–74,1998.Proceedingsof the7thInternationalWorld WideWebConference(WWW-7), Brisbane,Australia.

[14] Philip K. ChanandSalvatoreJ. Stolfo. A comparative evaluationof voting andmeta-learningon partitioneddata.In Proceedingsof the12thInternationalCon-ferenceonMachineLearning(ICML-95), pages90–98.MorganKaufmann,1995.

[15] YannChevaleyre andJean-DanielZucker. A framework for learningrulesfrommultiple instancedata.In Luc De RaedtandPeterFlach,editors,Proceedingsofthe 12thEuropeanConferenceon MachineLearning(ECML-01), pages49–60,Freiburg, Germany, 2001.Springer-Verlag.

[16] William W. Cohen.Fasteffective rule induction. In A. PrieditisandS. Russell,editors,Proceedingsof the12th InternationalConferenceon MachineLearning(ML-95), pages115–123,Lake Tahoe,CA, 1995.MorganKaufmann.

[17] William W. Cohen. Learningrules that classify e-mail. In M.A. HearstandH. Hirsh,editors,Proceedingsof theAAAISpringSymposiumonMachineLearn-ing in InformationAccess, pages18–25.AAAI Press,1996. TechnicalReportSS-96-05.

[18] William W. Cohen.Learningtreesandruleswith set-valuedfeatures.In Proceed-ings of the 13th National Conferenceon Artificial Intelligene(AAAI-96), pages709–716.AAAI Press,1996.

[19] Mark Craven. Usingstatisticalandrelationalmethodsto characterizehyperlinkpaths. In D. Jensenand H. Goldberg, editors,Artificial Intelligenceand LinkAnalysis: Papers from the 1998AAAI Fall Symposium, pages14–20,Orlando,Florida,1998.AAAI Press.TechnicalReportFS-98-01.

[20] Mark Craven,DanDiPasquo,DayneFreitag,Andrew McCallum,Tom Mitchell,Kamal Nigam, andSeánSlattery. Learningto constructknowledgebasesfromtheWorld Wide Web. Artificial Intelligence, 118(1-2):69–114,2000.

[21] Mark CravenandSeánSlattery. Relationallearningwith statisticalpredicatein-vention:Bettermodelsfor hypertext. MachineLearning, 43(1-2):97–119,2001.

[22] Mark Craven, SeánSlattery, and Kamal Nigam. First-orderlearningfor Webmining. In C. NédellecandC. Rouveirol, editors,Proceedingsof the10thEuro-peanConferenceon Machine Learning(ECML-98), pages250–255,Chemnitz,Germany, 1998.Springer-Verlag.

21

Page 22: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

[23] Jeffrey DeanandMonikaR. Henzinger. Findingrelatedpagesin theWorld WideWeb. In A. Mendelzon,editor, Proceedingsof the8th InternationalWorld WideWebConference(WWW-8), pages389–401,Toronto,Canada,1999.

[24] ThomasG. Dietterich. Machinelearningresearch:Four currentdirections. AIMagazine, 18(4):97–136,Winter1997.

[25] ThomasG. Dietterich. Ensemblemethodsin machinelearning. In J. KittlerandF. Roli, editors,First InternationalWorkshoponMultiple ClassifierSystems,pages1–15.Springer-Verlag,2000.

[26] ThomasG. Dietterich. An experimentalcomparisonof threemethodsfor con-structingensemblesof decisiontrees: Bagging,boosting,and randomization.MachineLearning, 40(2):139–158,2000.

[27] ThomasG. DietterichandGhulumBakiri. Solvingmulticlasslearningproblemsvia error-correctingoutputcodes.Journal of Artificial IntelligenceResearch, 2:263–286,1995.

[28] ThomasG.Dietterich,RichardH. Lathrop,andTomásLozano-Pérez.Solvingthemultiple instanceproblemwith axis-parallelrectangles.Artificial Intelligence, 89(1–2):31–71,1997.

[29] DanDiPasquo.UsingHTML structureto aid in automaticinformationretrievalfrom the world wide web. SeniorHonorsThesis,Schoolof ComputerScience,CarnegieMellon University, May 1998.

[30] Yoav FreundandRobertE. Schapire.A decision-theoreticgeneralizationof on-line learningandan applicationto boosting. Journal of Computerand SystemSciences, 55(1):119–139,1997.

[31] JohannesFürnkranz.Pruningalgorithmsfor rule learning.MachineLearning, 27(2):139–171,1997.

[32] JohannesFürnkranz.Exploiting structuralinformationfor text classificationonthe WWW. In D.J. Hand,J. N. Kok, andM.R. Berthold,editors,AdvancesinIntelligentDataAnalysis:Proceedingsof the3rd InternationalSymposium(IDA-99), pages487–489,Amsterdam,Netherlands,1999.Springer-Verlag.

[33] JohannesFürnkranz.Separate-and-conquerrule learning. Artificial IntelligenceReview, 13(1):3–54,February1999.

[34] JohannesFürnkranz. Roundrobin rule learning. In C. E. Brodley and A. P.Danyluk, editors,Proceedingsof the18th InternationalConferenceon MachineLearning(ICML-01), pages146–153,Williamstown, MA, 2001.Morgan Kauf-mannPublishers.

[35] JohannesFürnkranz,Tom Mitchell, and Ellen Riloff. A casestudy in usinglinguistic phrasesfor text categorizationon the WWW. In M. Sahami,editor,Learning for Text Categorization: Proceedingsof the 1998AAAI/ICML Work-shop, pages5–12,Madison,WI, 1998.AAAI Press.TechnicalReportWS-98-05.

22

Page 23: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

[36] JohannesFürnkranzandGerhardWidmer. IncrementalReducedError Pruning.In W. CohenandH. Hirsh, editors,Proceedingsof the 11th InternationalCon-ferenceon MachineLearning(ML-94), pages70–77,New Brunswick,NJ,1994.MorganKaufmann.

[37] RayidGhani. Usingerror-correctingcodesfor text classification.In P. Langley,editor, Proceedingsof the 17th InternationalConferenceon Machine Learning(ICML-00), pages303–310,Stanford,CA, 2000.MorganKaufmann.

[38] ThorstenJoachims. Text categorizationwith supportvectormachines:Learn-ing with many relevant features.In C. NédellecandC. Rouveirol, editors,Pro-ceedingsof 10thEuropeanConferenceon MachineLearning(ECML-98), pages137–142,Chemnitz,Germany, 1998.Springer-Verlag.

[39] JonM. Kleinberg. Authoritative sourcesin a hyperlinkedenvironment. Journalof theACM, 46(5):604–632,September1999. ISSN0004-5411.

[40] JohnF. Kolen and JordanB. Pollack. Back propagation is sensitive to initialconditions.In Advancesin Neural InformationProcessingSystems3 (NIPS-90),pages860–867.MorganKaufmann,1991.

[41] KenLang.NewsWeeder:Learningtofilter netnews.In A. PrieditisandS.Russell,editors,Proceedingsof the12th InternationalConferenceon MachineLearning(ML-95), pages331–339.MorganKaufmann,1995.

[42] LeahS.Larkey andW. BruceCroft. Combiningclassifiersin text categorization.In Hans-PeterFrei,DonnaHarman,PeterSchäuble,andRossWilkinson,editors,Proceedingsof the19thACM InternationalConferenceon Research andDevel-opmentin InformationRetrieval (SIGIR-96), pages289–297,Zürich, CH, 1996.ACM Press,New York, US.

[43] David D. Lewis. Featureselectionandfeatureextractionfor text categorization.In Proceedingsof a WorkshoponSpeech andNatural Language, pages212–217,Harriman,NY, 1992.

[44] Henry Lieberman. Letizia: An agentthat assistsweb browsing. In C. S. Mel-lish, editor, Proceedingsof the14th InternationalJoint Conferenceon ArtificialIntelligence(IJCAI-95), pages924–929.MorganKaufmann,1995.

[45] EddyMayorazandMiguel Moreira.Onthedecompositionof polychotomiesintodichotomies. In Proceedingsof the 14th InternationalConferenceon MachineLearning(ICML-97), pages219–226,Nashville,TN, 1997.MorganKaufmann.

[46] Oliver A. McBryan. GENVL andWWWW: Tools for tamingtheWeb. In Pro-ceedingsof the1stWorld-WideWebConference(WWW-1), pages58–67,Geneva,Switzerland,1994.Elsevier.

[47] Dunja Mladenic. Featuresubsetselectionin text-learning. In C. NédellecandC. Rouveirol, editors, Proceedingsof the 10th EuropeanConferenceon Ma-chineLearning(ECML-98), pages95–100,Chemnitz,Germany, 1998.Springer-Verlag.

23

Page 24: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

[48] Dunja Mladenic. Turning Yahoo into an automaticweb-pageclassifier. InH. Prade,editor, Proceedingsof the13thEuropeanConferenceon Artificial In-telligence(ECAI-98), pages473–474,Brighton,U.K., 1998.Wiley.

[49] Dunja Mladenic. Text-learningandrelatedintelligent agents:A survey. IEEEIntelligentSystems, 14(4):44–54,July/August1999.

[50] Hyo-JungOh, SungHyon Myaeng,and Mann-Ho Lee. A practicalhypertextcategorizationmethodusinglinks andincrementallyavailableclassinformation.In Proceedingsof the23rd ACM InternationalConferenceon Research andDe-velopmentin InformationRetrieval (SIGIR-00), pages264–271,Athens,Greece,2000.

[51] David OpitzandRichardMaclin. Popularensemblemethods:An empiricalstudy.Journalof Artificial IntelligenceResearch, 11:169–198,1999.

[52] Terry R. PayneandPeterEdwards. Interfaceagentsthat learn: An investigationof learningissuesin a mail agentinterface.AppliedArtificial Intelligence, 11(1):1–32,1997.

[53] MichaelPazzani,JackMuramatsu,andDanielBillsus. Syskill & Webert: Iden-tifying interestingwebsites. In Proceedingsof the13thNationalConferenceonArtificial Intelligence(AAAI-96), pages54–61.AAAI Press,1996.

[54] J.RossQuinlan. Learninglogical definitionsfrom relations.MachineLearning,5:239–266,1990.

[55] J. RossQuinlan. Determinateliterals in inductive logic programming. In Pro-ceedingsof the8th InternationalWorkshoponMachineLearning(ML-91), pages442–446,1991.

[56] JasonD. M. Rennie.ifile: An applicationof machinelearningto e-mailfiltering.In M. Grobelnik,D. Mladenic,andN. Milic-Frayling, editors,ProceedingsKDD-2000Workshopon Text Mining, Boston,MA, 2000.

[57] Bradley L. RichardsandRaymondJ.Mooney. Learningrelationsby pathfinding.In Proceedingsof the10thNationalConferenceon Artificial Intelligence(AAAI-92), pages50–55,SanJose,CA, 1992.AAAI Press.

[58] EllenRiloff. Automaticallygeneratingextractionpatternsfrom untaggedtext. InProceedingsof the13thNationalConferenceonArtificial Intelligence(AAAI-96),pages1044–1049.AAAI Press,1996.

[59] Ellen Riloff. An empiricalstudyof automateddictionaryconstructionfor infor-mationextractionin threedomains.Artificial Intelligence, 85:101–134,1996.

[60] RobertE. Schapire,Yoav Freund,PeterBartlett,andWeeSunLee. Boostingthemargin: A new explanationfor theeffectivenessof voting methods.TheAnnalsof Statistics, 26(5):1651–1686,1998.

24

Page 25: Hyperlink Ensembles: A Case Study in Hypertext Classificationftp.softlab.ntua.gr/facilities/public/AD/Text... · 2003. 9. 27. · Hyperlink Ensembles: A Case Study in Hypertext Classification

[61] Robert E. Schapireand Yoram Singer. Improved boostingalgorithmsusingconfidence-ratedpredictions.MachineLearning, 37(3):297–336,1999.

[62] AlexanderK. Seewald andJohannesFürnkranz.An evaluationof gradingclas-sifiers. In Advancesin Intelligent Data Analysis: Proceedingsof the 4th Inter-nationalSymposium(IDA-01), pages115–124,Lisbon,Portugal, 2001.Springer-Verlag.

[63] SeánSlatteryandTom Mitchell. Discovering test set regularitiesin relationaldomains.In P. Langley, editor, Proceedingsof the17thInternationalConferenceon MachineLearning(ICML-00), pages895–902,Stanford,CA, 2000.MorganKaufmann.

[64] Ellen Spertus.ParaSite:Mining structuralinformationon the Web. ComputerNetworksandISDNSystems, 29(8-13):1205–1215,September1997.Proceedingsof the6th InternationalWorld WideWebConference(WWW-6).

[65] SholomM. Weiss,ChidanandApté,FredJ.Damerau,David E. Johnson,FrankJ.Oles,Thilo Goetz,andThomasHampp. Maximizing text-mining performance.IEEE IntelligentSystems, 14(4):63–69,July/August1999.

[66] David H. Wolpert.Stackedgeneralization.Neural Networks, 5(2):241–260,1992.

[67] Yiming YangandJ.O.Pedersen.A comparativestudyonfeatureselectionin textcategorization.In D.H. Fisher, editor, Proceedingsof the14thInternationalCon-ferenceon Machine Learning (ICML-97), pages412–420.Morgan Kaufmann,1997.

[68] Yiming Yang,SeánSlattery, andRayidGhani.A studyof approachesto hypertextcategorization.Journalof IntelligentInformationSystems, in press.SpecialIssueon AutomaticText Categorization.

25