17

I. · 2005-03-15 · 2 populations and populations of the impinged forms downstream of the plant. In addition, the impingement of micronekton may indirectly affect nektonic species

  • Upload
    hoangtu

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

I. INTRODUCTION

conversion (OTEC) f a c i l i t y , which may process roughly 13.8 x 10 6 5 m of water per day ( f o r a 40 MW p l a n t ) , w i l l impact t he marine ecosystem and poss ib ly extend t o the marine f i s h e r i e s . The f i n a l environmental impact statement (EIS) prepared by t h e National Oceanic and Atmospheric Adminis t ra t ion (NOM) f o r commercial OTEC l i c e n s i n g ind ica t ed t h a t t h e ma jo r i ty of t h e environmental e f f e c t s c e n t e r on t h e marine ecosystem because it is t h e source of evaporat ing and condensing waters and t h e r e c i p i e n t of t h e p l a n t ' s e f f l u e n t ([U.S.] NOAA 1981). The EIS f u r t h e r categorized these e f f e c t s as being major ( those p o t e n t i a l l y causing s i g n i f i c a n t long-term environmental impact), minor ( those causing i n s i g n i f i c a n t long- o r sho r t - term environmental changes), and p o t e n t i a l (short-term impacts occurr ing only during a c c i d e n t s ) . of organisms t o the s t r u c t u r e , impingement on, and entrainment o f , organ- isms due t o the withdrawal of water a t the co ld and warm water i n t a k e s , l e t h a l o r s u b l e t h a l e f f e c t s of b ioc ide releases and thermal a l t e r a t i o n s , and n u t r i e n t r e d i s t r i b u t i o n from t h e discharge plume. These concerns are a l s o p o t e n t i a l l y those which would a f f e c t t he f i s h e r i e s t o the g r e a t e s t degree (Matsumoto 1983).

The environmental e f f e c t s of a commercial ocean thermal ene r y

The major e f f e c t s included a t t r a c t i o n o r avoidance

Assessment of t he impact of OTEC f a c i l i t i e s upon marine f i s h e r i e s w i l l depend on s imula t ion models which provide t h e b a s i s f o r br inging t h e r e s u l t s of p reope ra t iona l d a t a and environmental impact s t u d i e s i n t o pe r spec t ive . The goal of t hese models i s t o minimize the environmental e f f e c t s i n the design of OTEC p l a n t s .

This r epor t desc r ibes the techniques i n ob ta in ing t h e types of information r equ i r ed t o develop p r e d i c t i v e models f o r a s ses s ing t h e impact upon f i s h e r i e s by t h e major concerns r e s u l t i n g from OTEC ope ra t ions .

11. ASSESSMENT TECHNIQUES FOR FACTORS THAT MAY AFFECT FISHERIES

A. Impingement

Previous s t u d i e s on environmental impacts of OTEC ope ra t ions have l abe led impingement as a major concern. Impingement occurs when c e r t a i n nektonic and l a r g e p l ank ton ic organisms with l imi t ed avoidance c a p a b i l i t i e s are pu l l ed and trapped a g a i n s t t h e i n t a k e screens due t o t h e f o r c e of t he water being drawn i n t o the p l an t during normal operat ion. Su l l ivan and Sands (1980) c l a s s i f i e d impingement as not only an environ- mental i s s u e but a l s o as an economic concern t o p l a n t ope ra t ions because of maintenance c o s t s of c leaning t h e in t ake sc reen and p l a n t downtime.

1. Organisms a f f e c t e d

The organisms most l i k e l y t o be impinged i n es t imated screen mesh s i z e of 0.95 t o 1 .3 cm (Sands 1980) are the micronekton, namely s m a l l e p i p e l a g i c and mesopelagic f i s h e s , macroplanktonic c rus t aceans , cephalopods, and o t h e r g e l a t i n o u s i n v e r t e b r a t e s . Assuming 100% m o r t a l i t y of itnpinged organisms, t h e environmental concerns focus upon t h e p o t e n t i a l r educ t ion i n the l o c a l

2

popula t ions and popula t ions of t h e impinged forms downstream of t h e p l an t . I n a d d i t i o n , t he impingement of micronekton may i n d i r e c t l y a f f e c t nektonic spec ies through food cha in i n t e r a c t i o n s ( [ U . S . I NOAA 1981).

Regarding the proposed OTEC p l an t a t Kahe Poin t , Hawaii, Matsumoto (1983) reviewed pas t r e sea rch results on the d i s t r i b u t i o n and behavior of commercial pe l ag ic f i s h e s and concluded t h a t t h e r e should be no immediate e f f e c t on t h e f i s h e r i e s due t o impingement a t e i t h e r t he warm water o r cold water i n t a k e s (wi th i n t a k e v e l o c i t y = 0.25-0.30 m/sec) s i n c e t h e a d u l t s of t h e commercially important spec ies should not be a f f ec t ed . Matsumoto, however, expected impingement of j u v e n i l e s and l a r v a l forms of some commercially important inshore spec ie s which inhab i t o f f shore su r face waters near the warm water i n t ake .

2. Assessment techniques

The a v a i l a b l e d a t a and l i terature are i n s u f f i c i e n t t o f u l l y eva lua te the d i r e c t and i n d i r e c t e f f e c t s of impingement on commercially important spec ies . Assessment of impingement e f f e c t s on f i s h e r i e s begins wi th t h e de te rmina t ion of spec ie s and abundance of organisms sub jec t t o impingement. Because micronekton are highly s u s c e p t i b l e t o impingement, ca tches by midwater t r awls could provide c l u e s t o spec ie s and numbers l i k e l y t o be impinged; however, t r a w l s a r e t y p i c a l l y f i s h e d a t 1.5 t o 2.0 m/sec, speeds which a r e about f i v e t o seven times the in t ake v e l o c i t y of an OTEC f a c i l i t y . Therefore , t h e number and species of organisms captured i n a trawl w i l l be g r e a t e r than those a c t u a l l y en t r a ined s i n c e the avoidance c a p a b i l i t i e s of t h e organisms r e l a t i v e t o t he OTEC in t akes a r e g r e a t e r than they a r e t o a trawl.

Although s e v e r a l d i f f e r e n t t r a w l s have been used i n t h e pas t t o sample midwater f i s h e s (Matsumoto 1961; King and Iversen 1962; Higgins 1970; Clarke 1973; Maynard e t a l . 19751, t h e most success i n captur ing micro- nekton has been achieved by the 10-f t Isaacs-Kidd midwater trawl (IKMT) and t h e anchovy No. 2 Cobb p e l a g i c trawl (CT).

The IKMT ( t h e more commonly used trawl of t h e two) was o r i g i n a l l y designed by Devereux and Winsett (1953). Although t h e n e t has remained the same wi th r e s p e c t t o des ign dimensions and mesh s i z e s , s l i g h t modi f ica t ions have been made, u sua l ly t o the cod end t o se rve t h e var ious needs of t he c o l l e c t o r s . King and Iversen (1962) used a cod end wi th 12.7 mm (1 /2 inch) mesh and made of No. 207 nylon l i n e d wi th coarse s i l k g r i t gauze o r f i n e meshed nylon n e t t i n g . I n a gene ra l assessment of mesopelagic micronekton Maynard e t a l . (1975) used a 1.0 m diameter plankton n e t of 0.333 mm Nitexl mesh f o r t he cod end as d id C la rke (1973).

I n a s tudy designed t o c o l l e c t j u v e n i l e tunas,

IReference t o t r a d e names does not imply endorsement by the Nat ional Marine F i s h e r i e s Serv ice , NOAA.

d

3

Although t h e IKMT i s p r e f e r r e d as a q u a n t i t a t i v e sampling t o o l over t h e CT, Matsumoto (1961) and Higgins (1970) found t h a t t he a b i l i t y of a l a r g e r trawl t o ca t ch j u v e n i l e forms of commercial spec ie s such as tuna was much g r e a t e r than t h a t of the 10-ft IKMT.

Both Matsumoto (1961) and Higgins (1970) modified l a r g e p e l a g i c nekton n e t s t o sample the micronekton. Matsumoto (1961) modified the B r i t i s h Columbia midwater trawl (BCMT) (Barraclough and Johnson 1956) with a cod end of 6.4 mm ( 1 / 4 inch) mesh, whereas Higgins (1970) used t h e BCMT as well as a modified CT, which was two-thirds the s i ze of t h e o r i g i n a l Cobb trawl (NcNeely e t a l . 1965). The CT i s used i n p re sen t assessment s t u d i e s of t h e mesopelagic fauna by the Southwest F i s h e r i e s Center Honolulu Laboratory (HL). The modified CT has a headrope and foo t rope 30.9 m long, a mouth opening of 96 m2, and a cod end which has an o u t e r po r t ion of 38-mm s t r e t c h e d mesh 24-thread (210-denier) nylon n e t t i n g , and an inne r l i n e r of 6 .3-m s t r e t c h e d mesh, 6-thread (210-denier) nylon n e t t i n g .

Sampling can be conducted using ho r i zon ta l tows a t t h e d e s i r e d depths , obl ique tows, o r s t e p obl ique tows. A ho r i zon ta l tow i s made by simply lowering the trawl t o the d e s i r e d dep th and towing h o r i z o n t a l l y f o r a predetermined time sub jec t t o t h e needs of t h e c o l l e c t o r s . To a t t a i n t h e d e s i r e d depths , time-depth r eco rde r s (TDR) can be used t o d e t e r n i n e dep th independent of w i r e angle; however, i f not a v a i l a b l e , e s t ima t ion of t h e amount of cab le r equ i r ed t o reach the d e s i r e d depth can be c a l c u l a t e d before the tow. Such c a l c u l a t i o n s of t rawl depth are based on measurements of wire ang le and wire ou t as descr ibed by Hida and King (1955). obl ique tows, t h e trawl i s lowered t o t h e d e s i r e d depths and hauled through the water column o r is towed from t he s u r f a c e t o the d e s i r e d depth and back t o the su r face . d e s i r e d dep th and towing it h o r i z o n t a l l y , then p rogres s ive ly r a i s i n g it t o t h e next d e s i r e d depth and cont inuing t h e haul t o t h e surface. Matsumoto (1961) found t h a t t h i s method r e s u l t e d i n a higher percentage of h a u l s containing j u v e n i l e tunas (57% ve r sus 25% as compared wi th h o r i z o n t a l tows).

On

The s t e p obl ique tow involves lowering t h e t r a w l t o t h e

No comparisons were made wi th obl ique tows.

Other accep tab le sampling g e a r f o r micronektonic organisms include some of t he m u l t i p l e n e t samplers, such as t h e m u l t i p l e opening-closing n e t and environmental sensing system (MOCNESS) (Wiebe e t a l , 19761, t h e Bedford I n s t i t u t e of Oceanography net and environmental sampling system (BIONESS) (Sameoto et a l . 19801, and t h e r e c t a n g u l a r midwater trawl (RMT) series (Baker e t a l . 1973). With these types of gea r , d i s c r e t e ver t ical samples can be obtained. Such d i s c r e t e depth information c o l l e c t e d on a d i e l b a s i s would be b e n e f i c i a l t o an assessment study.

B. Entrainment

1. Vital communities a f f e c t e d

I n entrainment , organisms small enough t o pass through the i n t a k e sc reens are drawn i n t o t h e system and exposed t o sudden temperature and p res su re changes as w e l l as mechanical damage. w i th est imated screen mesh s i z e of 0.95 t o 1.3 cm, marine organisms smaller

For a proposed OTEC p l a n t

4

than 3 t o 4 cm long, including phytoplankton, microplankton, zooplankton, ichthyoplankton and micronekton, w i l l be en t r a ined (Sands 1980). Sands p red ic t ed 100% m o r t a l i t y f o r organisms en t r a ined by an open-cycle p l a n t o r a t t h e cold water i n t a k e of a closed-cycle p l an t due t o the inne r p l a n t stresses. water i n t a k e of a closed-cycle p l an t was not determined, Sands a n t i c i p a t e d a s i g n i f i c a n t l y higher entrainment ra te a t the w a r m than a t t h e cold water intake. r e s u l t of t h e m o r t a l i t y of organisms en t r a ined a t t h e warm water intake.

Although percent m o r t a l i t y f o r en t r a ined organisms a t t h e warm

Any s i g n i f i c a n t impact due t o entrainment w i l l probably be a

Matsumoto (1983) suggested t h a t ichthyoplankton would be the major f i s h e r i e s - r e l a t e d organisms a f f e c t e d d i r e c t l y by entrainment ( i n p a r t i c u l a r a t t h e proposed Kahe Point s i t e ) . More s p e c i f i c a l l y , the larvae of tunas and b i l l f i s h e s and the p e l a g i c la rva l forms of snappers, groupers , and j a c k s r ep resen t the g r e a t e s t concern. Matsumoto (1983) a l s o suggested t h a t although eggs would be en t r a ined , tuna eggs are buoyant and would be found above t h e i n t a k e s a t o r near t he su r face . S tud ie s on var ious commercial bottom f i s h spec ie s conducted a t t h e HL i n d i c a t e t h a t eggs of t hese spec ie s are a l s o buoyant. Therefore , as concluded by Matsumoto (19831, t h e amount of eggs en t r a ined may be small and impact important commercial f i s h e r i e s l i t t l e , i f any.

2. Assessment techniques

Without an e x i s t i n g o p e r a t i o n a l f a c i l i t y t o monitor, assessment techniques are t r u l y l imi t ed . Baseline information w i l l be required and ob ta inab le before p l an t construct ion. P r e d i c t i v e models generated from a v a i l a b l e b i o l o g i c a l d a t a w i l l supply a r e l a t i v e assessment of t he p o t e n t i a l e f f e c t s of t h e r e s u l t a n t environmental stresses and eco log ica l pe r tu rba t ions . The models should r e f l e c t no t only the information regarding m o r t a l i t y ( l e t h a l ) e f f e c t s but should a l s o consider t h e s u b l e t h a l e f f e c t s (Rosenthal and Alderdice 1976).

The assessment of d i s t r i b u t i o n and abundance of ichthyoplankton which w i l l provide b a s e l i n e d a t a , involves sampling methods s imi la r t o those employed by King and Demond (1953), Matsumoto (19581, Strasburg (19601, Nakamura and Matsumoto (19671, and Miller (1979) i n t h e i r s t u d i e s on tuna larvae or t h e d i s c r e t e depth sampling methods descr ibed by Clarke (19691, Wiebe e t a l . (1976), and Sameoto e t a l . (1980). Most of t h e tuna l a r v a e were c o l l e c t e d i n 1-m, f i n e mesh plankton n e t s equipped with a flowmeter t o estimate t h e water s t r a i n e d . found i n King and Demond (1953). hau l s , l a s t e d from 15 t o 60 minutes; most were about 30 minutes.

A d e t a i l e d d e s c r i p t i o n of the gea r can be The tows, e i t h e r ob l ique o r s u r f a c e

The meter r i n g n e t s , however, have t h e i r disadvantages. Obstruct ions a t the mouth of t he n e t du r ing a tow from the b r i d l e s are bel ieved t o inc rease the p o t e n t i a l f o r avoidance of t h e n e t by organisms. des igns , i nc lud ing many of t he m u l t i p l e n e t samplers, have adopted ve r s ions of t he r e c t a n g u l a r net descr ibed i n Tucker (1951). any o b s t r u c t i o n i n f r o n t of t h e n e t mouth when f i s h i n g .

Newer

The design e l imina te s

5

8

Meter r i n g n e t s were a l s o inadequate f o r t h e needs of r e sea rche r s d e s i r i n g d i s c r e t e depth c o l l e c t i o n s s i n c e contamination from organisms captured dur ing t h e ascent or descent of t h e ne t was i n e v i t a b l e . Several v a r i a t i o n s of opening and c los ing n e t s were thus developed. Among these i s the opening-closing Tucker t r a w l (Clarke 1969) based on the r ec t angu la r n e t des ign by Tucker (1951).

The t r awl c o n s i s t s i n p a r t of a s e r i e s of ho r i zon ta l b a r s of which t h e top and bottom ba r s a r e f ixed . The b a r s between the f ixed s e t s l i d e along wires a t t ached t o the top and bottom ba r s t o open and c lose t h e n e t s a t des i r ed depths . The opening and c los ing t r i g g e r i n g mechanisms can be con- t r o l l e d wi th a c o u s t i c and t e l eme te r ing equipment o r mechanical messengers. The n e t w a s designed t o f i s h wi th the mouth a t 45" from t h e v e r t i c a l , forming a square t o the f r o n t and sampling an a r e a of 8 m2.

The MOCNESS is s i m i l a r i n p r i n c i p l e t o the Tucker t rawl but c a r r i e s n ine r ec t angu la r n e t s (1 x 1.4 m). environmental sensors t o measure conduct iv i ty , temperature , and depth. Sensors t o monitor water flow, n e t angle (from t h e v e r t i c a l ) , and the opening and c los ing of t he n e t s are a l s o included (Wiebe e t a l . 1976).

It i s f u r t h e r equipped wi th

The BIONESS adds one modi f ica t ion t o the MOCNESS and Tucker n e t arrangement. Rather than having n e t s and t h e i r c l o s i n g ba r s s tacked v e r t i c a l l y , making the f r o n t p r o f i l e much l a r g e r than t h e mouth opening of a s i n g l e n e t of t he sampler, t he n e t s and c los ing ba r s a r e arranged h o r i z o n t a l l y i n the BIONESS. This e l imina te s the highly v i s i b l e s t r u c t u r e s of t he frame and makes the f r o n t view inconspicuous and s t reaml ined f o r smoother water passage. Sensors f o r temperature , conduc t iv i ty , depth, i l l umina t ion , and water flow, among o t h e r s , a r e p a r t of t he BIONESS sampling system.

Other gear used i n a s ses s ing the abundance and spec ie s composition of ichthyoplankton a r e neuston and bongo ne t s . These were u t i l i z e d by Hi ro ta (1977) i n h i s s tudy of zooplankton a t t he Deep Ocean Mining Environmental Study area . Bongo n e t s a r e a l s o a v a i l a b l e i n opening-closing ve r s ions t o t ake d i s c r e t e depth samples.

3. Inner p l an t m o r t a l i t y

Entrained organisms a r e expected t o be sub jec t ed t o cons iderable stress inc luding sudden thermal and pressure changes, exposure t o a n t i f o u l i n g b ioc ides (probably c h l o r i n e ) , and mechanical damage r e s u l t i n g from abras ion and c o l l i s i o n wi th s t r u c t u r e s . Using d a t a from cool ing water in t akes of c o a s t a l power p l a n t s , Marcy (1975) found m o r t a l i t i e s of f i s h eggs and young passing through power p l a n t s t o be between 39 and 100%; t h e v a s t ma jo r i ty was near 100%. r e sea rch on environmental e f f e c t s of c o a s t a l marine power p l a n t ope ra t ions have provided gene ra l in format ion f o r use i n i n i t i a l eva lua t ion of p o t e n t i a l OTEC environmental problems. of a Connecticut nuc lea r power p l an t i nd ica t ed t h a t of t he near 100% m o r t a l i t y of n ine spec ie s of young f i s h , 80% of t h e m o r t a l i t y w a s due t o

As i nd ica t ed by Hoss and Pe te r s (1983),

A s tudy on t h e cool ing water system

6

mechanical damage, 20% was due t o thermal shock, and no measurable m o r t a l i t y due t o presence of bioc ide (Marcy 1973).

a. Thermal e f f e c t s on en t r a ined organisms

Although many s t u d i e s have been conducted on temperature e f f e c t s on f i s h l a r v a e and eggs, none are based on t r o p i c a l spec ie s such as those t h a t may be found a t OTEC s i t e s i n low l a t i t u d e regions. Therefore , once t h e major spec ie s a f f e c t e d by entrainment a t an OTEC f a c i l i t y are e s t a b l i s h e d , temperature to l e rances f o r those spec ie s must be determined t o o b t a i n e s t ima tes of m o r t a l i t y a t t r i b u t a b l e t o sudden temperature changes.

Two of t he methods f o r determining l e t h a l temperature f o r ectothermic animals have been descr ibed by Hutchison (1976) and Talmage and Opresko (1981). Hutchison's method measures r e s i s t a n c e times of f i s h t h a t were previous ly accl imated t o a wide range of temperatures i n the l abora to ry , These measurements a r e made f o r var ious cons tan t t e s t temperatures. I n t h i s method, t he organisms are ab rup t ly exposed t o test temperatures and the r e s u l t i n g measurements a r e subjec ted t o s t a t i s t i c a l treatment f o r de te rmina t ion of l e t h a l temperatures . A median t o l e r a n c e limit (TL50) , which i n d i c a t e s t he temperature a t which 50% of t h e f i s h su rv ive f o r a des igna ted per iod of t i m e , i s then ca l cu la t ed . This l e t h a l th reshold i s the upper (and s i m i l a r l y the lower) i n c i p i e n t l e t h a l temperature. From t h i s , one can determine the u l t i m a t e i n c i p i e n t l e t h a l temperature of t h e spec ies .

The o t h e r method t o determine l e t h a l temperatures c a l l e d the " c r i t i c a l thermal maximum ( o r minimum)" (CTM) (Fry 1971; Hutchison 1976; Talmage and Opresko 19811, i s the temperature a t which the animal d i e s or becomes v i s i b l y i n c a p a c i t a t e d while exposed t o a constant r a t e of change. The procedure al lows deep body temperature t o fo l low the t e s t temperatures without a s i g n i f i c a n t t i m e lag: The r a t e is u s u a l l y 1°C

b o E f f e c t s due t o p re s su re changes

Entrained organisms w i l l a l s o be subjec ted t o r ap id h y d r o s t a t i c pressure . Hoss and B lax te r (1981) sub jec t ed d i f f e r e n t series of p re s su re changes t o s imula te passage

every few minutes.

changes i n l a r v a l he r r ing t o a t a c o a s t a l power

p l a n t ' s cool ing water in take . p re s su re i n c r e a s e s followed by r a p i d decompression. and behavior were observed. Such s t u d i e s should be conducted f o r t he commercial t r o p i c a l spec ie s t h a t would be p o t e n t i a l l y a f f ec t ed .

The s tudy involved- acc l imat ion and r ap id Subsequent m o r t a l i t y

C a E f f e c t s due t o b ioc ides

I n a commercial OTEC p l a n t , t h e b ioc ide most l i k e l y t o be used w i l l be c h l o r i n e , which w i l l be r o u t i n e l y r e l eased i n t o the h e a t exchangers t o c o n t r o l b iofoul ing . Numerous s t u d i e s have been conducted on power p l a n t c h l o r i n a t i o n and i t s e f f e c t s upon e s t u a r i n e and marine systems; t hese have been summarized i n Hal l e t a l . (1981). en t r a ined f i s h e s , none of t he m o r t a l i t y could be a t t r i b u t e d t o t h e presence of ch lo r ine (Marcy 1973). When cons ider ing combined s t r e s s e s , however,

I n a s tudy on m o r t a l i t y of

I

Hoss e t a l . (1975) suggested a s y n e r g i s t i c i n t e r a c t i o n between c h l o r i n e and temperatures above ambient. This was based on the f i n d i n g s of an inc reased s e n s i t i v i t y of t h e tes t spec ie s t o c h l o r i n e with t h e e l eva ted temperature.

S tud ie s on c h l o r i n e t o x i c i t y on marine animals of d i r e c t a p p l i c a t i o n t o OTEC p l a n t s were conducted by Venkataramiah e t a l . (1981a, 1981b). They u t i l i z e d bioassays t o d e f i n e s u b l e t h a l , i n c i p i e n t l e t h a l , and l e t h a l concen t r a t ion ranges of c h l o r i n e , t h e 96-hour l e t h a l concen t r a t ion f o r 50% m o r t a l i t y (LCc,o), and the l e t h a l t i m e f o r 50% m o r t a l i t y ( 1 ~ 5 0 ) f o r each O f t h e test spec ie s (mul l e t , Muail cePhalus, and sargassum shrimp, La t r eu te s focorum). They a l s o s tud ied the e f f e c t of s i z e on t h e t e s t s p e c i e s ' LC50 and LT50. The s u b l e t h a l concen t r a t ion range was de f ined as t h e narrowest range i n which none of the organisms, subjected t o subsequently narrower concen t r a t ion ranges, d i ed due t o t o x i c i t y . The i n c i p i e n t l e t h a l Concentration range was def ined as the range i n which some of t h e animals (but not a l l ) d i e d , and l e t h a l concen t r a t ion range as t h a t i n which they a l l died. bioassays.

Continuous flow-through seawater systems welre used f o r t h e

S imi l a r s t u d i e s should be conducted on t h e commercial spec ie s (such as tuna l a r v a e ) t h a t are s u b j e c t t o entrainment t o provide e s t ima tes of i n n e r p l a n t m o r t a l i t y due t o b ioc ide presence.

d. E f f e c t s due t o mechanical damage

The m o r t a l i t y due t o mechanical damage r e p r e s e n t s dea ths of organisms from abras ions and c o l l i s i o n s r e s u l t i n g from turbulence and p res su re changes i n passage through t h e system. Marcy (1975) concluded t h a t mechanical damage was the h ighes t s i n g l e cause of entrainment m o r t a l i t y based on numerous power p l an t s t u d i e s .

The assessment of t h e e f f e c t s due t o mechanical damage a t a proposed OTEC f a c i l i t y , however, i s a d i f f i c u l t one. Pas t s t u d i e s a t c o a s t a l power p l a n t s have had t h e b e n e f i t of monitoring cool ing water i n t a k e s , so a d i r e c t count of dead ve r sus l i ve organisms a f t e r passage through the p l a n t was a v a i l a b l e . assessment.

Such d a t a w i l l not be a v a i l a b l e f o r an OTEC p recons t ruc t ion

One experimental method t h a t provided conse rva t ive estimates of m o r t a l i t y due t o mechanical stress f o r a given e n t r a i n e d f i s h s p e c i e s w a s desc r ibed by Morgan e t a l . (1973). s t r i p e d bass measured the m o r t a l i t y caused by the shear f i e l d s t h a t are c r e a t e d by water movement over t h e s u r f a c e of f i s h eggs and larvae. Shear f i e l d s were def ined as t h e v a r i a t i o n i n water v e l o c i t y w i t h r e s p e c t t o t i m e , expressed as u n i t b of f o r c e per u n i t area (dynes/cm2).

Entrainment e f f e c t s on suppor t ive food cha ins

Their experiments on wh i t e perch and

4.

One aspect of entrainment t h a t a l s o must be addressed is t h e e f f e c t entrainment w i l l have on support ing food cha ins of r e c r e a t i o n a l l y and commercially important f i s h e s . Feeding s t u d i e s have been conducted f o r many of H a w a i i ' s commercial f i s h spec ie s t h a t are a p t t o be a f f e c t e d ,

t

t

namely the pe l ag ic t.unas (Re in t j e s and King 1953; King and Ikehara 1956; Pversen 1962; Alverson 1963; Waldron and King 1963) and mahimahi (Palko e t a l . 1982).

The procedures f o r food s t u d i e s of f i s h e s i n genera l are similar. A review of food s tudy methods and t h e i r a p p l i c a t i o n i s descr ibed i n Hyslop (1980). In food s t u d i e s conducted a t JJL, stomach contents a r e s o r t e d i n t o i d e n t i f i a b l e groups and measurements of prey volume (water displacement method), prey length ( i f p o s s i b l e ) , and sometimes prey weight are taken. The numbers of prey items are a l s o recorded. I d e n t i f i c a t i o n methods of t he forage items inc lude the use of v e r t e b r a l counts and morphology, s c a l e s , and o t o l i t h s f o r f i s h e s , beaks and p ins f o r cephalopods, and e x o s k e l e t a l remains f o r c rus taceans . To determine t h e importance of t h e forage items t o the p reda to r , numerical , vo lumetr ic , and frequency of occurrence systems of ana lyses and methods have been used t o express t h e r e s u l t s . Pinkas e t a l . (1971) incorpora ted these t h r e e t r a d i t i o n a l methods of stomach ana lys i s i n the development of an index of r e l a t i v e importance (IRI). provided i n s i g h t t o the rankings of forage items wi th in the d i e t .

The I R I

To estimate the forage organisms t h a t would be en t r a ined involves t rawl ing t a r g e t e d a t micronekton (King and Iversen 1962; Blackburn and Laurs 19721, a procedure similar t o t h a t descr ibed e a r l i e r under impingement e f f e c t s .

It does not appear t h a t food cha ins of t h e commercial demersal f i s h e s such as snappers and groupers w i l l be d i r e c t l y a f f e c t e d by entrainment mor t a l i t y . Bottom f i s h food s t u d i e s i n Hawaii have revea led t h a t they f ed predominantly on benth ic organisms (Humphreys i n p re s s ; Seki i n prese a, i n p re s s b) . would possess enough swiming s t r e n g t h t o avoid entrainment. Since t h e benthos g e t s energy from t h e pe l ag ic environment, however, t h e r e may be i n d i r e c t e f f e c t s through the lower t roph ic l e v e l s .

Water column prey items, when taken, were gene ra l ly l a r g e and

C. Biota a t t r a c t i o n

1. Open-ocean p l a n t s h i p s

Assessing t h e p o t e n t i a l OTEC impact upon f i s h e r i e s due t o b i o t a a t t r a c t i o n r e q u i r e s two approaches, t h a t i s , a t t r a c t i o n due t o an open- ocean p l an t s h i p and t h a t r e s u l t i n g from f a c i l i t i e s cons t ruc ted on o r near t h e sho re l ine . The a t t r a c t i o n p r o p e r t i e s of an open-ocean p l a n t sh ip appears analogous t o those of organisms c o l l e c t i n g around f lo t sam and f i s h aggrega t ing devices (FAD's). F a c i l i t i e s near t h e sho re l ine i n which p ipes and foundat ions are placed i n shallow water or onshore w i l l act a s a r t i f i c i a l r e e f s (Sek i 1983).

Gooding and Magnuson (1967) and Matsumoto et a l . (1981) s tud ied a t t r a c t i o n of animals t o a r t i f i c i a l open-ocean s t r u c t u r e s . To d e s c r i b e faunal abundance and d i v e r s i t y , e s p e c i a l l y of t h e smal le r j u v e n i l e forms, d i r e c t obse rva t ions were the most usefu l . Observations were e i t h e r made by d i v e r s or from an observa t ion chamber of a r a f t . To monitor t h e commercial spec ie s a t t r ac t ' ed t o FAD's, Matsumoto e t a l . (1981) a l s o conducted

1

9

t r o l l i n g , recorded s i g h t i n g s of b i r d f l o c k s and f i s h schools , and scanned f o r subsurface f i s h schools u t i l i z i n g hydroacoust ics , commercial tuna pole-and-line boats v i s i t i n g t h e monitored FAD's were also used t o assess t h e e f f e c t i v e n e s s of t he s t r u c t u r e s as a t t r a c t a n t s .

Fish ca t ch d a t a from

F i sh ca t ch d a t a from t r o l l i n g ope ra t ions and from commercial boat d a t a w i l l provide c a t c h per u n i t e f f o r t ( C P U R ) which i s one of t he most cammonly used techniques f o r environmental monitoring. ca t ch divided by t h e e f f o r t exe r t ed t o o b t a i n t h a t catch. gene ra l ly be measured i n numbers o r weight, be i n terms of tows, hau l s , f i s h i n g t r i p s , number of v e s s e l s , o r number of ang le r s . commercial ca t ch d a t a , i s the d i f f e r e n c e i n g e a r and e f f o r t which makes a n a l y s i s d i f f i c u l t . However, CPUE from trolli.ing ope ra t ions and commercial ca t ch d a t a i s probably t h e most e f f e c t i v e method of monitoring migratory spec ie s a t a s p e c i f i c l o c a l i t y ,

The CPUE i s de f ined as t h e The c a t c h w i l l

The e f f o r t per u n i t t i m e can

The major disadvantage t o us ing t h i s method, p r imar i ly when using

2. Nearshore f a c i l i t i e s

Nearshore QTEC f a c i l i t i e s , e s p e c i a l l y the proposed tower design, w i l l a l s o r e q u i r e eva lua t ion of t h e a t t r a c t i o n of o f f s h o r e migratory commercial species . I n a d d i t i o n , a r t i f i c i a l reef e f f e c t s c r e a t e d by t h e s t r u c t u r e ' s presence must a l s o be assessed. This involves poss ib ly us ing bottom d r i f t f i s h i n g (bottom handl ine) and t r app ing t o assess t h e impacts on t h e commercial demersal spec ie s .

S tud ie s on inshore a r t i f i c i a l r e e f s have g e n e r a l l y u t i l i z e d f i s h t r a n s e c t s t o inventory spec ie s composition and estimate dens i ty . B r i e f l y , t h i s method involves the l ay ing down of a premeasured t r a n s e c t l i n e along which f i s h spec ie s on both s i d e s of t he l i n e are i d e n t i f i e d and counted (Brock 1954). determining s p e c i e s composition are hook and l i n e , throw n e t , and spear ing.

Other methods t h a t w i l l supplement t h e t r a n s e c t d a t a i n

Various spec ie s of tunas, squ ids , and carangids are t h e major commer- c i a l marine animals t h a t are caught by tlie use of n igh t l i g h t s and v a r i o u s types of f i s h i n g gea r including handl ines , d i p n e t s , po le and l i n e , and j i g g i n g machines. t h e Northwestern Hawaiian I s l a n d s conducted by t h e XLo n i g h t - l i g h t f i s h i n g was among t h e methods used i n a s s e s s i n g s p e c i e s composition and d e n s i t y of t h e resources . The l i g h t (a 1.500-W bulb) was i n i t i a l l y submerged t o 21.3 m ( t h e maximum amount of w i r e ou t ) . was r a i s e d and even tua l ly dimmed t o concen t r a t e t h e organisms, f a c i l i t a t i n g obse rva t ion and capture . The r a i s i n g and dimming of t he l i g h t s drew organisms f a r t h e r down i n t h e water column c l o s e r t o t h e surface.

I n a r e c e n t 5-year survey of t h e f i s h e r y r e sources i n

Af t e r about an hour, t h e l i g h t

The assessment of t he impact of OTEC f a c i l i t i e s on f i s h e r i e s without an e x i s t i n g o p e r a t i o n a l p l a n t w i l l have t o r e l y on t h e use of models based upon a v a i l a b l e b i o l o g i c a l d a t a . This r e p o r t d e s c r i b e s some of t h e techniques i n ob ta in ing the types of information r equ i r ed f o r t h e model development. With regards t o f i s h e r i e s , t h e e f f e c t s due t o organism

10

impingement, entrainment, and a t t r a c t i o n have been i d e n t i f i e d as t h e major areas of concern.

The organisms most l i k e l y t o be a f f e c t e d by impingement a t t h e in t akes would be the micronekton. The use of midwater trawls such a5 the IKMT, t h e CT, o r t h e RMT ser ies ( f o r d i s c r e t e depth sampling) could provide c l u e s t o the spec ie s and numbers of organisms l i k e l y t o be impinged.

Mult iple n e t samplers such as t h e MOCNESS, t h e BIONESS, and t h e Tucker trawl w i l l sample t h e e n t r a i n a b l e marine organisms smaller than 3 t o 4 cm i n length. For ichthyoplankton, u s ing these m u l t i p l e n e t s allow s e q u e n t i a l d i s c r e t e depth sampling, which i s most important. In pas t s t u d i e s meter r i n g n e t s , bongo n e t s , and neuston n e t s have a l s o been used t o sample ichthyoplankton.

The organisms en t r a ined w i l l be subjected t o t h e stresses of inner p l an t m o r t a l i t y . These include sudden thermal and p res su re changes, exposure t o a n t i f o u l i n g b ioc ides (probably c h l o r i n e ) , and mechanical damage r e s u l t i n g from abras ion and c o l l i s i o n wi th s t r u c t u r e s . Knowledge of s u b l e t h a l and l e t h a l l i m i t s when exposed t o t h e stresses f o r t h e p o t e n t i a l l y a f f e c t e d spec ie s i s needed, e s p e c i a l l y f o r t r o p i c a l spec ie s .

Assessment of t h e a t t r a c t i o n e f f e c t s on f i s h e r i e s involves addressing environments c r e a t e d by open-ocean and nearshore f a c i l i t i e s . Direct observat ions (by d i v e r s o r subsurface chambers), ca t ch resul ts from t r o l l i n g ope ra t ions , and commercial ca t ch d a t a have been used t o monitor open-ocean l o c a l i t i e s . s p e c i e s s e t t l i n g on a r t i f i c i a l r e e f s c rea t ed by nearshore f a c i l i t i e s can be obtained by c a t c h d a t a from bottom handl ining and t rapping. have taken r e s idence on inshore a r t i f i c i a l r e e f s have gene ra l ly been a s ses sed by us ing d i r e c t obse rva t ions on l i n e transects and catches from throw n e t s , spea r ing , and hook and l i n e s .

Abundance and d i v e r s i t y of commercial demersal

Fauna t h a t

Organisms a t t r a c t e d t o n i g h t l i g h t s can be captured wi th va r ious types of f i s h i n g gea r including handl ines , d i p n e t s , pole and l ines , and j i g g i n g machines.

These are some of t h e methods t h a t have been used t o sample i n e i t h e r analogous s i t u a t i o n s o r p o t e n t i a l l y impacted areas produced by t h e presence and ope ra t ions of a commercial OTEC f a c i l i t y . such sampling and experimental methodologies can be used i n developing p r e d i c t i v e models which i n t u r n can be app l i ed t o p l an t design s t r a t e g y t o minimize t h e environmental e f f e c t s . I

Information obtained from

LITERATURE CITED

Alverson, F. G. 1963. The food of yel lowfin and sk ip j ack tunas i n t h e e a s t e r n

P a c i f i c Ocean. ( I n Engl. and Span.) Inter-Am. Trop. Tuna Comm,, Bull. 7:293-396.

11

Baker, A. de C , , M. R. Clarke, and M. J. Harris. 1973. The N.I.O. Combination n e t (RMT 143) and f u r t h e r

developments of r ec t angu la r midwater trawls. J. Mar. Biol. ASSOC. U . K . 53:167-184.

Barraclougb, W. E., and W. W. Johnson. 1956, A new mid-water trawl f o r herr ing. Bul l , , Fish. Res. Board

Can, 104, 23 p.

Blackburn, M . , and R. M. Laura. 1972. D i s t r i b u t i o n of forage of sk ip j ack tuna (Euthvnnus pelamis) i n

the e a s t e r n t r o p i c a l Pac i f i c . U.S. Dep. Comer. , N O M Tech. Rep. NMFS SSRF-649. 16 p.

Brock, V. E. 1954. A prel iminary r e p o r t on a method of e s t ima t ing reef f i s h

popula t i o n s . J. Wildl . Manage . 18: 297-308 . Clarke, M, R.

1969. A new midwater t rawl f o r sampling d i s c r e t e depth horizons. J. Mar. Biol. Assoc. U.K. 49:945-960.

Clarke, T. A. 1973. Some aspec t s of t h e ecology of l a n t e r n f i s h e s (Myctophidae) i n

the P a c i f i c Ocean near Hawaii. Fish. Bull., U.S. 71:401-433.

Devereux, R. F., and R. C. Winsett. 1953. fsaace-f idd midwater trawl. F ina l Report. SI0 Ref . 53-3,

Oceanogr. Equip. Rep. 1, 21 pm

Fry, F. E. J. 1971. The e f f e c t of environmental f a c t o r s on t h e physiology of f i s h . - I n W. S. Hoar and D. J. Randall ( e d i t o r s ) , F i sh physiology, Vol. 6 , Enviroamental r e l a t i o n s and behavior , p. 1-98. Acad. Press, N.Y.

Gooding, R. M., and J. J. Magnuson. 1967, Ecologica l s i g n i f i c a n c e of a d r i f t i n g ob jec t t o pe l ag ic

f i s h e s . Pac. Sci . 21:486-497.

Hall, L, We, Jr., G, R. Helz, and D. To Burton. 1981. Power p l a n t ch lo r ina t ion . A b i o l o g i c a l and chemical

assessment. Electric Power Research I n s t i t u t e EPRI EA-1750, 237 p.

Hida, T, S o , and J. E. King. 1955. V e r t i c a l d i ' s t r i b u t i o n of zooplankton i n t h e c e n t r a l e q u a t o r i a l

P a c i f i c , July-August 1952, U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 144. 22 p.

Higgins, B. E. 1970. Juven i l e tunas c o l l e c t e d by midwater t r awl ing i n Hawaiian

waters, July-September 1967. Trans, Am. Fish. SOC. 99:60-69.

12

Hiro ta , J. 1977. DOMES zooplankton. Text. F ina l Report. Hawaii f n s t . Mar.

Biol . and Dep. Oceanogr., Univ. Hawaii, Honolulu, 247 p.

Hoss, D. E., and J. H. S. Blaxter . 1981, E f f e c t s of r ap id changes i n h y d r o s t a t i c p re s su re on t h e larvae

of A t l a n t i c he r r ing (Clupea harennus L.). Rapp. P.-V. Reun. Cons. I n t . Explor . Mer 17 8: 328-329.

Hoss, D, E., E. C. Clements, and D. R. Colby. 1977, Synerg i s t i c e f f e c t s of exposure t o temperature and ch lo r ine on

s u r v i v a l of young-of-the-year e s t u a r i n e f i s h e s . & F. J. Vernberg, A. Calabrese, F. P. Thurberg, and W. B. Vernberg ( e d i t o r s ) , Phys io logica l responses of marine b i o t a t o p o l l u t a n t s , p. 345-355, Acad. Press, N.Y.

8 0 8 s ~ D. E., and D. S. Pe te r s . 1983. Synthes is of p e r t i n e n t information on the p o t e n t i a l e f f e c t s of

e s t u a r i n e and c o a s t a l power p l a n t s on f i s h e r i e s wi th comments on how t h i s information might apply t o ocean thermal conversion (OTEC) opera t ion . Draf t r e p o r t t o Off ice of Ocean Minerals and Energy, NMFS Beaufort Laboratory, Beaufort , NC 28516, 105 p.

Hmphreys, R. Lo, Jr. I n press . Ciguatera and t h e feeding h a b i t s of t he g r e a t e r amberjack,

S e r i o l g dumer i l i , i n t he Hawaiian Archipelago. R. W. Crigg and K. Y. Tanoue ( e d i t o r s ) , Proceedings of t he Symposium on Resource I n v e s t i g a t i o n s i n the Northwestern Hawaiian I s l ands , May 25-27, 1983, Univers i ty of Hawaii, Honolulu, Hawaii, Sea Grant.

Hutchison, V. H. 1976. Fac to r s i n f luenc ing thermal to l e rances of i nd iv idua l

organisms. G. W. Esch and R. W. McFarlane ( e d i t o r s ) , Thermal ecology 11, p. 10-26. Proceeding of a symposium held a t Augusta, Georgia, A p r i l 2-5, 1975, CONF-750425. Natl. Tech. In f . S e n . , Sp r ing f i e ld , VA 22161.

HySlOp, E. J* 1980, Stomach contents a n a l y s i s - a review of methods and t h e i r

app l i ca t ion . J. F i sh Biol . 17:411-429.

Iversen, R. T. B. 1962. Food of a lbacore tuna, Thunnus germo (Lacepede) i n t h e c e n t r a l

and no r theas t e rn P a c i f i c . U.S. Fish Wildl. Serv., Fish. Bul l . 62 : 459-481.

King, 9. E., and J. Demond. 1953. Zooplankton abundance i n the c e n t r a l Pac i f i c . U.S. Fish

Wildl. Serv., Fish. Bu l l . 54:111-144.

13

King, J. E., and 1. I. Ikehara. 1956. Comparative s tudy of food of bigeye and ye l lowf in tuna i n t h e

c e n t r a l P a c i f i c . U.S. F ish Wildl. Serv., Fish. Bull. 57:61-85.

King, 3. E., and R. T. B. Iversen. 1962. Midwater t rawl ing f o r forage organisms i n t h e c e n t r a l Pac f i c

1951-1956. U.S. F i sh Wildl. Serv., Fish. Bul l . 62:271-321.

Marcy, B. C., 3r. 1973. Vu lne rab i l i t y and s u r v i v a l of young Connecticut River f i s h

en t r a ined a t a nuc lear power p l an t . J, Fish , Res. Board Can. 30: 1195-1203.

1975. Entrainment of organisms a t power p l a n t s , wi th emphasis on f i s h e s - an overview. In S. B. S a i l a ( e d i t o r ) , F i s h e r i e s and energy product ion: A symposium, p. 89-106. Lexington Books, D. C. Heath and Co., Lexington, Mass.

Matsumoto, W. M. 1958. Descr ip t ion and d i s t r i b u t i o n of l a rvae of four spec ie s of tuna

i n c e n t r a l P a c i f i c waters . U.S. F i sh Wildl. Serv., Fish. Bul l . 58 : 31-7 2.

1961. Co l l ec t ion and d e s c r i p t i o n s of j u v e n i l e tunas from t h e c e n t r a l P a c i f i c . Deep-sea Res. 8:279-285.

1983, P o t e n t i a l impact of OTEC ope ra t ions on f i s h e r i e s . Dra f t r e p o r t t o Off ice of Ocean Minerals and Energy. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96812.

Southwest Fish.

Matsumoto, W. M., T. K. Razama, and D. C. Aasted. 1981. Anchored f i s h aggrega t ing devices i n Hawaiian waters. Mar.

Fish. Rev. 43(9):1-13.

Maynard, S. D., P. V. Riggs, and J. F. Walters. 1975, Mesopelagic micronekton i n Hawaiian waters: f auna l

composition, s tanding s tock , and d i e l v e r t i c a l migrat ion. Fish. Bull., U.S. 73:726-736.

HcNeely, R. Lo, L. J. Johnson, and C. D. G i l l .

Commer. Fish. Rev. 27(10):10-17. 1965 . Const ruc t ion and ope ra t ion of t he "Cobb" pe lag ic trawl (1964) .

Mil l e r , J. M. 1979. Nearshore abundance of tuna (P i sces : Scombridae) l a rvae in t h e

Hawaiian I s lands . B u l l . Mar. Sci. 29:19-26.

Morgan, R. P., 11, R. E. Ulanowicz, V. J. Rasin, Jr., L. A. Noe, and G. B. Gray.

1973. E f f e c t s of water movement on eggs and l a r v a e of s t r i p e d bass and white perch. Maryland, NRI Ref. No. 73-111. 28 p.

Natl. Resour. I n s t . , Chesapeake Biol. Lab., Univ.

14

Nakamura, E. L., and W. p1. Matsumoto, 1967, D i s t r i b u t i o n of l a r v a l tunas i n Marquesan waters. U.S, F ish

R i l d l . Serv, , Fish. Bul l . 66:l-12.

Palko, B. J , , G. L, Beardsley, and W. J. Richards. 1982, Synopsis of the b i o l o g i c a l d a t a on dolphin-f ishes , CoryDhaena

hippurus Linnaeus and Corvphaena eau i se l i s . Linnaeus. U.S. Dep. Commer., NOAA Tech. Rep. NMFS Circ. 443, 28 p.

Pinkas, L., M. S, Oliphant , and I. L. K. Iverson. 1971, Food h a b i t s of a lbacore , b l u e f i n tuna, and boni to i n

C a l i f o r n i a waters . C a l i f . Dep. F ish Game, F i sh Bull. 152, 105 p,

Re in t j s s , J. W., and J p E. King, 1953. Food of ye l lowf in tuna i n the c e n t r a l P a c i f i c , U.S. F ish

Wildl. Serv. , Fish. Bull. 54:91-110.

Rosenthal, H., and D. F. Alderdice. 1976. Suble tha l e f f e c t s of environmental s t r e s s o r s , n a t u r a l and

p o l l u t i o n a l , on marine f i s h eggs and la rvae . J. Fish. Res. Board Can. 33:2047-2065.

Sameoto, D. D. , L. 0. Ja roszynski , and W. B. Fraser .

Can. J. Fish. Aquat. Sc i . 37:722-724. 1980, BIONESS, a new des ign i n m u l t i p l e n e t zooplankton samplers,

Sands, M. D. 1980, Ocean thermal energy conversion (OTEC) programmatic

environmental ana lys i s . U.S. Dep. Energy, LBL-10511 (Vol. 1) (DE81030222), v a r r pag. Avai lable Natl. Tech. In f . Serv. , S p r i n g f i e l d , VA 22161.

Seki , M. P. 1983. Summary of p e r t i n e n t information on t h e a t t r a c t i v e e f f e c t s of

a r t i f i c i a l s t r u c t u r e s i n t r o p i c a l and s u b t r o p i c a l waters . Southwest Fish. Cent. Honolulu Lab., Natl. Mar. Fish. Serv. , NOAA, Admin. Rep. H-83-12, 49 p.

I n p re s s a. The food and feeding h a b i t s of t h e grouper, EDineDhelus u r n u s Sea le 1901, i n t h e Northwestern Hawaiian I s l ands , .& R. W. Grigg and K. Y. Tanoue ( e d i t o r s ) , Proceedings of t h e Symposium on Resource I n v e s t i g a t i o n s i n the Northwestern Hawaiian I s l ands , May 25-27, 1983, Univers i ty of Hawaii, Honolulu, Hawaii. Sea Grant

I n p re s s b. The food and feeding h a b i t s of t he white t r e v a l l y , Pseudocaranx dentex (Bloch and Schneider 18011, i n the Northwestern Hawaiian I s l ands . R. W. Grigg and K. Y. Tanoue ( e d i t o r s ) , Proceedings of t h e Symposium on Resource I n v e s t i g a t i o n s i n t h e Northwestern Hawaiian I s l a n d s , May 25-27, 1983, Univers i ty of H a w a i i , Honolulu, Hawaii. Sea Grant.

15

Strasburg , D. W. 1960. Est imates of l a r v a l tuna abundance i n t h e c e n t r a l P a c i f i c .

U.S. Fish Wildl . Sem., Fish. B u l l . 60:231-255.

Su l l ivan , S. M., and M. D. Sands. 1980. A prel iminary eva lua t ion of impingement and entrainment by

ocean thermal energy conversion (OTEC) p l an t s . Presented a t t h e 7 t h Ocean Energy Conference, June 2-5, 1980 Washington, D.C. Lawrence Berkeley Lab., Univ. Ca l i f . , Ear th Sc i , Div. , LBL-11833, 14 p.

Talmage, S. S., and D. M. Opresko. 1981. L i t e r a t u r e review: Response of f i s h t o thermal d ischarges .

E l e c t r i c Power Research I n s t i t u t e , EPRI EA-1840, var . pag,

Tucker, G. H. 1951. Rela t ion of f i s h e s and o t h e r organisms t o t h e s c a t t e r i n g of

underwater sound. J . Mar. Res. 10:215-238.

[U.S. 1 National Oceanic and Atmospheric Adminis t ra t ion (NOAA) . 1981. F ina l environmental impact s ta tement f o r commercial ocean

thermal energy conversion (OTEC) l icens ing . NOAA, Off ice of Ocean Minerals and Energy, Wash. D.C., va r . pag.

Venkataramiah, A., G. J. Lakshmi, C. Best, G. Gunter, E. Hartwig, and P. Wilde.

198la. S tud ie s on t o x i c i t y of OTEC p l an t component8 on marine animals from t h e Gulf of Mexico. Lawrence Berkeley Lab., Univ. Ca l i f . , Ear th Sci . Div., LBL-13915. 114 p.

1981b. S tud ie s on t o x i c i t y of OTEC p l a n t components on Eucalanue Sp. from t h e Gulf of Mexico. Lawrence Berkeley Lab., Univ. Ca l i f . , Ear th Sc i . Div., LBL-13916, 53 p.

Waldron, K. D., and J. E. King. 1963. Food of sk ip j ack i n t h e c e n t r a l P a c i f i c . FA0 Fish. Rep. 6 ,

3 : 1431-1457

Wiebe, P. H., K. H. Burt, S. H. Boyd, and A. W. Morton. 1976. A m u l t i p l e opening/closing ne t and environmental sensing

system f o r sampling zooplankton. J . Mar. Res. 34:313-326.