7

i · PDF filea = 3e-10; %a,b,d from Kronig-Penny Model in m b = 3e-10; d = a + b; U0 = 10 ... To do this we will solve the given equation for m* for the first firth of the E-k

  • Upload
    dinhnhi

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: i · PDF filea = 3e-10; %a,b,d from Kronig-Penny Model in m b = 3e-10; d = a + b; U0 = 10 ... To do this we will solve the given equation for m* for the first firth of the E-k
Page 2: i · PDF filea = 3e-10; %a,b,d from Kronig-Penny Model in m b = 3e-10; d = a + b; U0 = 10 ... To do this we will solve the given equation for m* for the first firth of the E-k

l1..s.') ~(dW\ ,,\~ L\.\ 0 we,. CAV\ S6~ AV, eGG sh-o ,Ju('(.. \ ll<-c

CAAs 0 \\0e- v\Af~ C\\-c\~s Ke..- G-~ i -\\e.. \\~V\-\' G\(c.\£s Ale. As.

1- \f\ e-AD~ u \j\-\ ~ ce-\\ +""<Uv ~ Prle- I

~ ~ 1- -t ~- l- -::- L-\ {;\ S A;\OW\ C6 L ~

1 (\Cof'Ae.1 'S~e S

A"'o'\

1-\ - G- 1\ I\:\-dWlS \y COWl~\-e-'\~ G~\\<;'j

S\V\ce....6) - '"'

Q,::'- S.LebA ::: S,(QSX\O CWI

::.L\ -

\

- zz. ---- :.. Z.l L >(\0 GeJk(\~ ;'--V CM

~ c::~\ \s

Vc!\UWl.e-

~0,\ c;~ -L\;\~"e.- u..J\ \\ be. ~ CO\M~\cl-e-C6\\ S .

0 -'2>

A\Sd) (L~~ ~ "qL> . C\(}AI\S:' SOl.\3 A-; S -~ '3 II\() GvvJ

-

1

- \~SLa\\S'J - <6 - S 00

LGc - ;' \\ \-

- ~ . X\O -::>!.(;6.3

\fo\oW\e (1 cVy)~\

f", &~,1'6" ",-loW)"", ~-::. 4.~ t.j'IOZl(;.,:~~w6\jo\uW\es cc; (.,

f - o~~.s itd v~ I

L.\ !--\ 01., i-:\t~ws - t\:!t~""-S- .:..\-:;:-; =-C:~-ZZ.}(\DG-A,J..J~ - - 6 (1:.-:> ~I~dUme6-fi \!C)UViI<:'%,0.,;" ~ CW\3jI

I

C -tv .L\...j)(~OVV\S ~.. S 00>( \ 0 Z.<'-SI A1ow.s

y c')~ ~ ~ - - 0W\3

'V0 \ v 'M e"G-,A~ Q(r4 A,s

Page 3: i · PDF filea = 3e-10; %a,b,d from Kronig-Penny Model in m b = 3e-10; d = a + b; U0 = 10 ... To do this we will solve the given equation for m* for the first firth of the E-k

L\ ~c\) ~\OV'f\"\ AIo\e.. L.\..3 J

fO1 S-i.,

-t'¥\e- K 'M\V\\WV\ fO \ <;~ IS At \<';-X:..Z" \.~'6.S,OJ 0)CLW\t::' o-q~\{V\O

Yv\b =- O. \C\ W\6

rOC" 1;,<.. [100) VA\~ (et\JA\"'" 4.'60)7...

~-z.. L 7

1

- L 1..

E [,,-, ~ to" -\-Y, Q<7A,xJ -'- K'6 ,k"t =- 1C6 ,!{-. \ l'J': (1- .%'\\ (Z:X.I]'" I'.:'.dj \Z VV\L VV\ C- L "'-I +t . ~ VV\-l

-19

=. EGT I.OSJ,;\O J =- ECL ~SSeV

tA\<.iV'\~ The, ,eif-Q, ,S2N\CQ.

l~)-to6~~5S~\

f(OW\ S.0~

4.Z.'S'J <;~"- Q.y_~\e '-\."6 IV\ ""'" bOO\<" I a:Jc 11-\<.,. K.0~\.O&x\ol-'I

V ~\o"s h V,Q-" ~W\ 'rAb \<., 4. ~ \ oJ:; ?;:xJ k . ki\ ~ L1 J '-\ , \6'-' ;s-\ ~\-

, (0-< C,-~As ~ ¥Y\eJ.f0.0<'---+ W\ 0 '1.J. Q.t sa 0'" ~;;r~ (;,.'"0 x 10 "(

~I ~/v '\ '3, \

V'A 'II ::: '«\ It\VI -V!r- W\o..V\ ) ::. @ L\ 13 'M () . - - - -.\05>

C ' ~ ~tD, ~.~ p VV\ed(¥,.::'Co 3 [yA~- V¥\"t13 ::. \.02, vY\0

N\ ( ~h V1.-<YsV\JC6~ W\\t)\1 .\-VV\e\.1 J -:... Stt9 'Mo

@ 300 \<,: >J-z.,- ,,3 1'1

N ~ z \~ ¥'\S\\ =- 'L\~ SLJ<t,x lO IYvI~::' '--\" 3~"6 >(\ 0 % )~~~ ~-) ~..;:. z,vr V\

N IC\

. G <::. -=--L -<6\ >(\ 0 ../ ~.(, 6W"1

1~

Nv G-AAs-:. '6. \ ~ J( \ 0 ~W?\0\

NvSh ~ \ ~ () L x\ 0 ~'N\ 3

@ 50°'" n

I\Jc&AAE:.~ q --SS>< \0 /Gv.Rt.. Iq

N c:SA,-=- ~ .0 '-J .>(\ 0 .:-i~\"'\ I

I\J -.JG",A-&::- \ ...l-S)( \ 0 Ie","",3\,=1

N \j S:;,:;; [~\ C\)( \C IcW\S

@ 1i- ~NtG"A&;' b .Co3\'\0 \~VV\s

1} I~ / .3IV G SA, -:...S~G,11x \0 /6W\

\ S%. /

t\j \J G~ A'C:,:'"\- 0 ~ x \0 / C 'vv\~1\1 1'2,J\) V S~ =- \ . ~ Z-X \ 6 kW\2:>

Page 4: i · PDF filea = 3e-10; %a,b,d from Kronig-Penny Model in m b = 3e-10; d = a + b; U0 = 10 ... To do this we will solve the given equation for m* for the first firth of the E-k

Problem 4.14

Approach:

STEP 1: Using MATLAB (or some other mathematics software), build the E-k

relationship from 0 to π/d. This can be done using the following MATLAB script

(copy-paste into MATLAB for better readability):

%Problem 4-14 MATLAB Solution

%STEP 1

%-------DECLAIR CONSTANTS----------

%Physical Constants

hbar = 1.055e-34; %hbar in units of J.s

m0 = 9.109e-31; %mass of an electron in kg

eV = 1.602e-19; %Electron Volt in J

%Problem Specific Constants

a = 3e-10; %a,b,d from Kronig-Penny

Model in m

b = 3e-10;

d = a + b;

U0 = 10*eV; %Height of periodic potenial

square wave in J.

%------Determine the positive half of E1-------------

E = 0*eV; %Initialize E (first

iteration of while loop will be small for F(E)

dE = 0.00001*eV; %Set dE to a small

increment

F_E = 100; %Set to a number larger than

1 to initialize while loop

taken.

%Determine E1(0), i.e. the first point.

while abs(F_E)>1

E = E+dE;

Page 5: i · PDF filea = 3e-10; %a,b,d from Kronig-Penny Model in m b = 3e-10; d = a + b; U0 = 10 ... To do this we will solve the given equation for m* for the first firth of the E-k

F_E=cos(a*sqrt(2*m0*E/hbar^2))*cosh(b*sqrt(2*m0*(U0-

E)/hbar^2))+(U0-2*E)/(2*sqrt(E*(U0-E)))...

*sin(a*sqrt(2*m0*E/hbar^2))*sinh(b*sqrt(2*m0*(U0-E)/hbar^2));

end

E1(1) = E; %The first point of E1.

k(1) = acos(F_E)/d;

%Determine the rest of the E-k structure

n = 2; %index for E and k.

while abs(F_E)<1

E = E+dE;

F_E=cos(a*sqrt(2*m0*E/hbar^2))*cosh(b*sqrt(2*m0*(U0-

E)/hbar^2))+(U0-2*E)/(2*sqrt(E*(U0-E)))...

*sin(a*sqrt(2*m0*E/hbar^2))*sinh(b*sqrt(2*m0*(U0-E)/hbar^2));

E1(n) = E;

k(n) = acos(F_E)/d;

n = n+1;

end

plot(k,E1); %Plot the results.

xlabel('k in units of /m'); %Caption plot.

ylabel('E in units of J');

hold on; %hold on the plot.

Page 6: i · PDF filea = 3e-10; %a,b,d from Kronig-Penny Model in m b = 3e-10; d = a + b; U0 = 10 ... To do this we will solve the given equation for m* for the first firth of the E-k

Giving the following plot (see Figure 4.17(b)):

Step 2: Now, we want to determine a good value for the effective mass near the start

of E1. To do this we will solve the given equation for m* for the first firth of the E-k

curve, and then take the average. This is done by adding the following MATLAB

script (copy-paste into MATLAB for better readability):

%STEP 2

k_size = size(k); %Determine the size of k

k_size = k_size(2); %to find m_eff for 1/5 of

this

for i = 2:1:round(k_size/5) %for loop to find fits for

m*, note that we

%can't use the first point

%E1(1)-k(1), as it would

cause k=0,

%E1(i)-E1(1)=0.

Page 7: i · PDF filea = 3e-10; %a,b,d from Kronig-Penny Model in m b = 3e-10; d = a + b; U0 = 10 ... To do this we will solve the given equation for m* for the first firth of the E-k

m(i-1)= hbar^2*k(i)^2/(2*(E1(i)-E1(1)));

end

m_eff = mean(m); %The effective mass is taken

as the average

for i=1:1:k_size %Determine the parabolic fit

values for E

E_fit(i)=E1(1)+hbar^2*k(i)^2/(2*m_eff);

end

plot(k,E_fit,'k--'); %Plot these values on same

plot in dotted black.

title(['E-k using (4.37) vs. parabolic fit with m* =

',num2str(m_eff/m0), 'm0']); %title plot

This gives the following plot:

Thus m* = 8.35m0 = 7.6e-30kg