61
W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes 산화 공정 I. 산화 재분포 II. 산화막의 성질 응용 III. 실리콘과 산화막의 계면 & C-V 측정 IV. 게더링 1

I. II. III. & C-Vocw.sogang.ac.kr/rfile/2011/course10-spt/1산화... ·  · 2011-12-29W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes 산화 공정 I

Embed Size (px)

Citation preview

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    I. II. III. & C-V IV.

    1

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    I.

    1. 1) T < 200 :

    : ethylene glycol + KNO3 : SiO2 , Si + O2 : coverage, stoichiometric : PECVD, SiH4/N2O, TEOS

    2) 250 < T < 600 : SiH4, O2, N2 ~400 SiO2 for passivation doped SiO2 by B2H6 , PH3

    2

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3) 600 < T < 900

    TEOS (tetra-ethyl-orthosilicate) SiH4 SiCl4 + CO2

    Why TEOS ?

    4) 900 < T < 1200 : thermal oxidation

    Cl incorporated oxidation

    3

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2. 1)

    45 % silicon oxidation 100 % SiO2

    4

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2)

    5

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3)

    6

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    7

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3. mechanism 1)

    For steady state F1 = F2 = F3 F1 = hG (CG- CS ) -----------(1-1) hG : Henry Co = HPS, C* = HPG ------- (1-2) CG = PG /kT, CS = PS /kT -(1-3) F1 = h (C*-Co) (h = hG /HkT)

    PG

    PS

    8

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    F2 = D(Co - Ci )/Xo (Fick's law)

    D : O2 SiO2

    Ks :

    F3 = KsCi

    D = f (O2, T, )

    D ; small, Ci 0 and Co C*: diffusion controlled

    D ; large, : reaction controlled )hK1(CCC s*

    oi +=

    DXK

    hK1

    CCoss

    *

    i

    ++=

    DXK

    hK1

    C)DXK1(

    Coss

    *os

    o

    ++

    +=, - - - (1-4)

    9

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    : G

    ( F : flux of oxidant reaching the SiO2-Si interface)

    N :

    In oxide 2.31022 SiO2 molecules/cm3

    for dry oxidation

    N=2.31022 O2 molecules/cm3

    for wet oxidation

    N=22.31022 H2O molecules/cm3

    DXK

    hK1

    CKdt

    dXNFoss

    *so

    ++==

    dtdXG o= ------(1-5) ,

    10

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    Xo2 + AXo=B(t+) - - - - - - - - - - - - - - - - - - - (1-6) (1-6)

    1) 2)

    N2DCB,)h1K12D(A

    (0)XX,B

    AXX

    *

    s

    0i

    2i i

    =+=

    =+

    =

    1B4A

    t12A

    X 212

    o

    ++=

    constantgrowthlinear:AB,)t(

    ABXo +=

    constantgrowthparabolicBBtX 2o :,=

    >>>> t,B4At 2

    B4At 2

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) H2O O2 103

    Cl

    4HCl + O2 =2H2O+ 2Cl2 (A, B )

    Cl ( )

    12

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3)

    parabolic

    : Ea = 28.5 kcal/mol O2 Ea = 27 kcal/mol : Ea = 16.3 kcal/mol H2O Ea = 18.3kcal/mol

    13

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    linear

    14

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4.

    1) (m) =

    2) (DSiO2/DSi) DSiO2>>DSi m

    3) (B/D)

    Si

    SiO2

    15

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    16

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    17

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    18

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4) () : Boron

    P, As, Sb 10 Ga 20 B 0.3

    ]kT

    )eV(33.0exp[4.13meff =

    ]kT

    )eV(66.0exp[2.65)111(meff =

    ]kT

    )eV(66.0exp[0.104)100(meff =

    19

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    II.

    1.

    1)

    1) 10:1 BHF(NH4F : HF =10:1)

    2) TEOS Si(OC2H5)4 , tetra-ethyl-ortho-silicate, or

    equivalently tetra-ethoxy-silane.

    (g/) (/) (/sec)

    TEOS CVD CO2 CVD

    1.80 2.20

    2.09 2.15 2.30 2.24 2.20

    5.220.0 6 10 2 8 5 6

    6.8 9.0 2 5

    40 55 6 8

    10 20 10 15

    5 5

    20

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2)

    (1)

    :

    [111] > [100], T < 900 [111] [100], T > 900 linear growth rate parabolic growth rate

    : [111] > [100]

    21

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    (3)

    linear growth rate

    .

    (4) doping

    C(P)>11020 atoms/cm3

    silicon Ks .

    (5)

    B enhance .

    ( boron )

    NDC2B

    *

    =

    NC

    hKhK

    AB *

    s

    s

    +=

    22

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    1) 700 900 2) 35 ppm 1.751018 atoms/cm3, 2450 ppm 1.231020 atoms/cm3 doping .

    oxide thickness:

    0.7 m

    oxide thickness:

    0.2 m

    23

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    24

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    25

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3) , , , , ,

    (1) : UV-visible photospectrometer, ellipsometer,

    (2) ellipsometer

    : SiO2 (1.46) Si(3.75)

    (3) ,

    (4) (pinhole) ,

    26

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    (5) (etch rate)

    ( HF:HNO3:H2O = 15:10:100)

    27

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2.

    1) masking material

    2) (silicon )

    3) ( 1018 cm)

    4) doping source

    5) gate (gate capacitor) gate length/oxide thickness :

    1 m/250 , 0.5 m/150 , 0.2m/70 , 0.1 m/30

    6) field oxide

    28

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    III. & C-V 29

    1. C-V :

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    1) C-V parameter : SiO2, Si

    capacitor

    Si profile

    MOS capacitor threshold voltage

    2) C-V

    30

    Siox CC

    ,,d

    SiSi

    ox

    oxox X

    CT

    C ==A

    Sisd qN

    X 2=

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    - CFB : flat band capacitance

    - Cmax : maximum capacitance

    - VT : threshold voltage

    - Cmin : minimum capacitance

    - Xdmax : maximum depletion

    - deep depletion

    - C-V depending on frequency

    31

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3)

    Ene

    rgy

    s q(x) qp

    x

    Ec

    Ei EF Ev

    )()( xEExq if =

    32

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    max

    xdX

    AXqNQ da=

    AXqNQ da=

    xdX

    aqN

    ( )xaFSi

    dFaSi

    Fs

    d

    Si

    da

    Si

    dad

    dFs

    qNXXNq

    Xfor

    XqNwhenXqNXx

    X

    d

    42

    21

    21)(

    max2

    max

    max

    2

    max

    max

    max=+==

    ===

    = :

    F

    ASi

    d

    SiSi

    iFF

    qNX

    C

    EEq

    4(min)

    )(

    max

    ==

    =

    ( ) 1min 41 += SiAFoxox

    qNCCC

    4) Capacitance

    33

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    1

    2/1

    2

    1

    ,111

    +=

    +=

    +

    =

    SiAox

    ox

    FB

    Si

    D

    oxASiox

    ox

    FB

    qNqkTC

    CC

    LCNq

    kTxC

    2/1

    2

    =

    A

    SiD Nq

    kTL : Debye length

    ( )SUBFaSiox

    FFBT

    T

    oxoxox

    fMSFB

    AFSiox

    FFBoxdFFBT

    VqNC

    VV

    dxxTx

    CCQ

    V

    NC

    VCQVV

    ox

    +++=

    =

    ++=++=

    2212

    )(1

    4122

    0

    34

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    35

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    36

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    37

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    38

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2. C-V

    39

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    1) :

    : Na+, Li+, K+

    : 10101012 /cm2

    : , , , , Al, DI wafer

    40

    (Fixed Oxide Charge)

    (Interface Trapped Charge)

    (Mobile Oxide Charge)

    (Oxide Trapped Charge)

    Qf Qit Qm Qot

    Nf Nit Nm Not

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    (a) 300 , +

    (b) 300 ,

    41

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) HTB (high temperature bias) : 250350

    : (1 MV/cm10 MV/cm)

    : 5

    Note : C-V (+) stress

    2 C-V () stress

    3 C-V 30

    minority

    42

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3) Qm Nm

    Qm : gettering

    43

    oox

    oxmFB K

    TQV

    =

    ox

    ooxFBm T

    KVQ =

    )m(T1010.2V

    qTKV

    qQN

    ox

    10

    FBox

    ooxFB

    mm

    =

    == [/]

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4) Qf C-V Qf [100] < Qf [110] < Qf [111]

    .

    theory ()stress VFB : -VFB

    Qf : anneal (gas, , ) Qf : Si dangling bond

    44

    )m(T1010.2)V(

    qTK)V(

    qQ

    ox

    10

    MSFB

    o

    ox

    oxMSFB

    f

    +=

    +=

    (/)

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    45

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    46

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    5) C-V

    47

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    6) :

    48

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    49

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    7) Si band gap surface trap level (1) Si-O bond ,

    ,

    , .

    (2) Qit : 350500, N2 anneal

    450 H2(25%) + N2(75%) forming gas

    2Al + 3H2O = Al2O3 + 3H2

    H2 + 2Si = 2 Si-H

    50

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    8) Qot :

    e-beam evaporator X-ray

    Qot : . N2 515 anneal

    ;

    gettering

    radiation .

    N2/H2 anneal

    51

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    IV. (Gettering)

    1960

    heavy ion

    mobile ion

    1. Mobile ion

    1) PSG(phosphosilica glass)

    PSG high solubility

    50150 PSG layer

    PSG polarization

    PR poor adhesion

    PSG H2O H3PO4

    52

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) chlorine

    NaCl, KCl, LiCl

    HCl(1971) : ,

    TCE(1972) : trichloroethylene

    TCA(1980) : trichloroethane

    900 1100 0.51.0 % TCA

    , minority carrier ,

    ,

    53

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    54

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    55

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2. bulk

    1)

    (Cu, Ag, Pt)

    700 1019 phosphorus

    /cm3 1020 phosphorus /cm3 1000

    Cu dopant 10

    wafer phosphorus .

    BJT

    switching Pt doping minority carrier

    56

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) silicon defect

    scratch

    laser defect

    ion implantation

    Sirtl etcher[111] : 40 H2O + 20 HF + 15 mg Cr2O3

    Secco etcher[100] : 1 H2O + 2 HF + 44 mg K2CrO7 3) Cl gettering

    heavy metal Cl .

    0.5~1.0% TCA .

    defect TCA

    57

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    1) diode

    3. Gettering

    58

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) solubility of Cu in 3) NPN transistor phosphorus doped Si

    59

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4) NPN BJT hFE

    (a) (b)

    60

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    5) PNP transistor

    61

    Slide Number 1I. Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19II. Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28 III. & C-V Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51IV. (Gettering)Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Slide Number 58Slide Number 59Slide Number 60Slide Number 61