6
1 Topography T. Perron – 12.001 – April 2, 2010 We’ll spend a large fraction of the second half of the course discussing Earth’s surface. Today we’ll do two things: First, we’ll discuss the ways topography is commonly represented in maps, and how it interacts with geologic structures at depth. This will help prepare you for today’s lab, as well as the geologic mapping lab you will begin next week. Second, we’ll discuss first‐order controls on the shape of Earth’s surface, starting at the largest scales. I. Topographic maps This is mostly common sense and geometry, but it can be tricky to visualize. 1. Map projections: ways of representing a spherical surface in 2D Geographic/“Plate Carree”/Simple Cylindrical: convenient (x = lon, y = lat), but geometrically unfortunate [PPT] Most topo maps of small regions will be in Universal Transverse Mercator (UTM), or some variation thereon. o Mercator: projection onto cylinder parallel to rotation axis o UTM: projection onto cylinder perpendicular to rotation axis, rotated around Earth in 60 increments to make 60 slices (“zones”) [PPT] 2. Contour Maps Contour lines on maps o Need to plot 3D data on 2D surface. Contours are lines indicating constant value of “z” coordinate – can be elevation, or anything else o How do contours show: Slope: contour spacing reflects gradient of z Valleys: contours make Vs pointing upslope (up valley) Ridges: contours make Vs pointing downslope (down ridge) Peaks: concentric closed contours, with contour values increasing inward Sinks (local minima): concentric closed contours, with contour values decreasing inward. Usually marked with hatches. (Why the special notation, i.e., why are sinks uncommon?)

I. Topographic mapsweb.mit.edu/12.001/Archive2010/Lectures/Lect14_topography_notes.… · that is, they tend to evolve toward hydrostatic equilibrium unless acted on by other forces

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: I. Topographic mapsweb.mit.edu/12.001/Archive2010/Lectures/Lect14_topography_notes.… · that is, they tend to evolve toward hydrostatic equilibrium unless acted on by other forces

1

TopographyT.Perron–12.001–April2,2010

We’llspendalargefractionofthesecondhalfofthecoursediscussingEarth’ssurface.Todaywe’lldotwothings:First,we’lldiscussthewaystopographyiscommonlyrepresentedinmaps,andhowitinteractswithgeologicstructuresatdepth.Thiswillhelpprepareyoufortoday’slab,aswellasthegeologicmappinglabyouwillbeginnextweek.Second,we’lldiscussfirst‐ordercontrolsontheshapeofEarth’ssurface,startingatthelargestscales.I.TopographicmapsThisismostlycommonsenseandgeometry,butitcanbetrickytovisualize.1.Mapprojections:waysofrepresentingasphericalsurfacein2D

• Geographic/“PlateCarree”/SimpleCylindrical:convenient(x=lon,y=lat),butgeometricallyunfortunate[PPT]

• MosttopomapsofsmallregionswillbeinUniversalTransverseMercator(UTM),orsomevariationthereon.

o Mercator:projectionontocylinderparalleltorotationaxiso UTM:projectionontocylinderperpendiculartorotationaxis,rotated

aroundEarthin60incrementstomake60slices(“zones”)[PPT]2.ContourMaps

• Contourlinesonmapso Needtoplot3Ddataon2Dsurface.Contoursarelinesindicating

constantvalueof“z”coordinate–canbeelevation,oranythingelseo Howdocontoursshow:

Slope:contourspacingreflectsgradientofz Valleys:contoursmakeVspointingupslope(upvalley) Ridges:contoursmakeVspointingdownslope(downridge) Peaks:concentricclosedcontours,withcontourvalues

increasinginward Sinks(localminima):concentricclosedcontours,withcontour

valuesdecreasinginward.Usuallymarkedwithhatches.(Whythespecialnotation,i.e.,whyaresinksuncommon?)

Page 2: I. Topographic mapsweb.mit.edu/12.001/Archive2010/Lectures/Lect14_topography_notes.… · that is, they tend to evolve toward hydrostatic equilibrium unless acted on by other forces

2

• Drainageo Ingeneral,waterflowsdownslope,soflowpathsusuallyarenormal

tocontourso Riversgenerallyfollowvalleys.Riverpathscanbeidentifiedby

followingthechainofVsthatpointupslopeo Watersheds

Regionsthatalldraintoacommonpoint. Everypointonthemapfallswithinawatershed Drainagedividesaretheboundariesbetweenwatersheds.

Theyfollowridgelines,wheretheflowdiverges.SodrainagedividescanbeidentifiedbyfollowingthechainofVsthatpointdownslope,startingattheoutletofawatershedandmovingupslopeuntilthedividereachesapeak(localmaximum).

• Cross‐sectionso Canbeconstructedbydrawingatransectacrossacontourmapand

measuringhorizontalpositionwheretransectintersectseachcontour.o Thenwecandrawaplotofz(elevation)vs.x(horizontaldistance)o Verticalexaggeration

Theratioofthelengthofagivenunitonthezscaletothelengthofthesameunitonthexscale.

Topographyissubtle,soverticalexaggeration>1isoftenused,especiallyoverlongdistances.

Usuallyreportedas,e.g.,2:13.Geologiccross‐sections

• Howcanweinfertheorientationsofplanesfromthegeometryatwhichtheyintersectthesurface?

• RuleofVso Horizontalbedsfollowcontourlines[PPT:GrandCanyon]o Ifdippingbedintersectsvalley,itssurfaceoutcropwillmakeaVin

mapviewthatpointsinthedirectionofdip.[PPT:Blockmodels]o ThesharpertheV,theshallowerthedip(verticalbedsmakenoV)o Onlyexception:ifabedisveryshallowlydippingatananglelessthan

thevalleyslope,itwillmakeaVupstream,likeahorizontalbedwould• Apparentthicknessofbeds[PPT:Blockmodels]

o Themorenearlyparallelthebedistothesurface,thethickerthebedappears

o Themoreperpendicular,thethinnerthebedappears4.Howdowemeasuretopography?

• Levelingsurveys• Stereophotos• RADAR

o Altimetryo Interferometric

• Laseraltimetry

Page 3: I. Topographic mapsweb.mit.edu/12.001/Archive2010/Lectures/Lect14_topography_notes.… · that is, they tend to evolve toward hydrostatic equilibrium unless acted on by other forces

3

II.Large­scaletopography0.Tozerothorder,Earthisspherical.Why?

• Earthisheldtogetherbyitsowngravity• Overlongtimescales,Earthbehavesasafluid.Fluidsseektheirownlevel;

thatis,theytendtoevolvetowardhydrostaticequilibriumunlessactedonbyotherforces.

• Considerperturbationsintheshapeofaspherical,non‐rotatingbody.Theseperturbationswillinducepressuregradients,whichwilldriveflowthatrestoresthesphericalshape.

• Whethersphericalshapeisachieveddependsonpressuregradient,viscosity,

andtime.[PPT:Earthvs.Hyperion]o ViscositydependsonP,Tlargerbodiesdeformfasterevenfor

samepressuregradiento LargestirregularlyshapedmoonisHyperion(Saturn),R~150kmo Smallerones(Deimos,Phobos,asteroids,someKBOs)allirregular

1.Earthisalmostspherical.

• Oblatespheroidwithflattening(a‐c)/a=1/298.26• Ifa~6370km,thena‐c~21km• LargesttopofeaturesonEarth:

o Mt.Everest=8.8kmo MarianaTrench=‐11km

• SoEarth’sflatteningisitslargesttopographicfeature• WhyisEarthoblate?

o Theansweronceagainishydrostaticequilibrium,andthecontributionofrotationtointeriorpressures

o Atanypointintheinterior,Pnet=Pgravitation–Pcentrifugalo BecausePcentrifugalissmallerathigherlatitudes,arotatingsphere

developsapressuregradientthatdrivesflowtowardtheequator,andplanetsdeveloparotationalbulge.

o Thefirst‐ordermodelofEarth’sshapeisthereforeanellipsoid.[SKETCH:XSofellipsoid,showingequatorialradiusa>polarradiusc]

2.Earthisalumpyellipsoid

Page 4: I. Topographic mapsweb.mit.edu/12.001/Archive2010/Lectures/Lect14_topography_notes.… · that is, they tend to evolve toward hydrostatic equilibrium unless acted on by other forces

4

• Anotherwaytothinkaboutthisellipsoidalsurfaceisthatitisasurfaceofapproximatelyequalgravitationalpotential.Gravitationalpotentialisafieldwhosegradientisthegravitationalaccelerationvector,g(g=‐grad(potential)=GM/r2r_hat).

• Thisellipsoidofapproximatelyequalgravitationalpotentialisthe“referencegeoid”.

• IfwemeasureactualgravitationalpotentialovertheEarth’ssurface,therearedeviationsfromthereferencegeoid(“anomalies”)ofasmuchas100m.[PPT:Geoidanomalymap].Someoftheseanomalieshaveaknownexplanation:

o SubductingslabscreatepositiveanomaliesoverAndes,Indonesiao Remnantdepressionsfromicesheetscreatesnegativeanomalyover

HudsonBayo Someanomalies(negativeoverSouthernIndia)unexplained

• Anomaliesingravitationalacceleration(thegradientofthegeoid)highlightshort‐wavelengthfeaturesevenbetter.[PPT:GravityanomaliesfromGRACE]

3.Globaldistributionofelevations

• Earth’ssurfaceelevationsarebimodal[PPT:Shadedrelief,thenPDFandCDFofelevations].Thesedistributionsareknownasthe“hypsometry”.

• Meanelevations:o Continents:+0.8km(oftencalled“freeboard”)o Oceanbasins:‐3.8kmo Whatcontrolstheseelevations?Isostaticbalance:

Page 5: I. Topographic mapsweb.mit.edu/12.001/Archive2010/Lectures/Lect14_topography_notes.… · that is, they tend to evolve toward hydrostatic equilibrium unless acted on by other forces

5

o So,tofirst,order,bimodalelevationsreflectbimodalityof

compositionandcrustalthickness4.Isostasyandtopography

• Whateffectwillerosionofcontinentalcrusthaveonelevations?

Page 6: I. Topographic mapsweb.mit.edu/12.001/Archive2010/Lectures/Lect14_topography_notes.… · that is, they tend to evolve toward hydrostatic equilibrium unless acted on by other forces

6

• Lesson:non‐uniformerosioncancauseuplift• ThismaybeoneofthereasonswhymarginsofTibetanPlateauarehigher

thaninterior[PPT:Satelliteimageofplateau]5.Topographiceffectsofmantleprocesses

• Isostaticrebound:time‐dependentisostaticreponse.Mantleisviscoelastic.o Upliftinresponsetoremovaloficeloads[PPT:HudsonBay

shorelines]o Ongoingsubsidenceinresponsetosedimentdepositioninlargeriver

deltas,despiterecentchangesinload(e.g.Mississippi)• Flexure:Lithosphererespondstoloadsasanelasticshell

o Troughandforebulgearoundoceanislandso Differential“warping”ofglaciallakeshorelinesfollowingremovalof

icesheetloads• Dynamictopography:deflectionofEarth’ssurfaceduetoflowinupper

mantle(=topography–isostasy).Amplitudecanbeasmuchas1km–aslargeasfreeboard!

o Mitrovica:HudsonBayupliftislessthanexpectedforpostglacialrebound,presumablyb/cofdownwellingbeneathCanada

o UpwellingbeneatheastcoastofNorthAmericamayexplainwhyAppalachiansarestillhigh,despitelackoforogeniceventsforhundredsofMyr.