94
7 AD-A 36 185 PRELIMINARY DEST ON OF AN ALTERNATIVE FUELS COMBINED I/1 CCEPROPULSION PLANT FOR NAVAL SHIP APPLICATIONSCO) NAVAL POSTGRADUATE SCHOOL MONTEREY CA K S BURGAMY UNCASSIFIED dUN 81 F/G 13/10 NL EEEEIIEEEIIIIE EEIIEEIIIIIEEE EhIIEIhEIhIhhE EIIIIIIIIIIII EIIEEEEIIIIIIE ****IIIIII*-I

I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

7 AD-A 36 185 PRELIMINARY DEST ON OF AN ALTERNATIVE FUELS COMBINED

I/1CCEPROPULSION PLANT FOR NAVAL SHIP APPLICATIONSCO)

NAVAL POSTGRADUATE SCHOOL MONTEREY CA K S BURGAMYUNCASSIFIED dUN 81 F/G 13/10 NL

EEEEIIEEEIIIIEEEIIEEIIIIIEEEEhIIEIhEIhIhhEEIIIIIIIIIIIIEIIEEEEIIIIIIE****IIIIII*-I

Page 2: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

L-25 11111.6

Page 3: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

UNCLAS_ ___

SCCUSHT? CLAISIVICATOW OF THIS PAGE e11114 04WO Eno~.E

REPOR DOCMEITATION PAGE 1 %lPLD-T'%.RUCTCNS

T REPORT NUMNUEPV ACCESSION 060 1 RCEN9''S CATALO.. N B

4~~~~ TIL fadYfef)3'PE OF00' PIENI~ OVEMEDPILLrIAW' DES I&N OF AN ALTETNA= FUELSGMMINED CYCIE P1UPUSICN PILNT FOR NAVAL SHIP i____________APPLICAIS r. PEorFORmiNr ONG. RFEoR NuudUell

7.~ AUYNOR.1;) 9 OTAT11 RM

BURGAM'f, KIRK S.

FORMING ORG6NSIZATIO'4 MAME ANO A00011131 10. POQGRA ELEMEN' nojl(:? -aso

SCNIBRDE, MA 02139 WOKiNUES

I ICONTl'RlILING OFFICE MAMIE AND ADDRESS J2 111OOT A'1

NAVAL P(STADLAT SCOL IIs. NUMUERp oP PAGES

MNM='IRE, CA 93940 88I& toOkilTORIPIG AGENCY NAME 6 AODRESSOI1(t d5f.,mdra frm Cinmii1i1114 0*11C4) 1II. SECURIYC AS .'II 1at

I UN~lASSo. DECLASSilt:1CATIO0N 3OSNGRAOiNtGJ SCHEDULE

16. OiSymeguylON STATEMENT (ad the@ Xepot)

4 ?~PPROVED FOR PUBUIC PELEASE; DISTPIBEYICt UNL= =E

7 OISTRODUTION STATIEMEN' (01 the 0*ttowt anutegd In Stritc 70, It dlifen Nam Report)

'a SUPPLEMENTARY NOTES

It cCY PIONDS (Cs"lm" are evywos aide to nocaosgW one Itg~Eity aw biock Nmnw)

PP1RPUIIq~ DESIGNALVTV E =I~S Pr.CPTJLSICN kl-

20. ANSTRACT (Comols.. - PoirseOsde It moceseVdr A" 1~1100, er oe& OW11140)

AaMTO

DO JA)1473 EDITION OF I NOVa IS O* 0SOLSTE NC;S/N '3 I02-014-660183 12 21 010 19C0T L~oi~ino msPo we a&lwa~

Page 4: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Siu rvC64SVIC*YION Oe Twit saoarV% ntie goes"*

ABSTRACT

AOreliminary desi;- of a Coal burn4r-g 25,000H? n~aval ship opu.sicr. plant was ccmplaeted. The system ccn-si'sts of a combined Closed Brayton cycle and bottComing Rankinecycle. Coal Combtustion cap-ability is achieved by siga?ressu-ized ?luidiz-ed- Bed (?FB)J heaTcer. A thermodynamicanalysis and volum.,e estimate was conducted for various 3raytoncycle coiworessor pressure ratios ( c

The res"' ts show that' a m-aximum thiermcdyr.-izefficiency ( n>j ) Is achieved in 6he range of 7~=5 toa~Total voum on the ozher h.-and Iaas a minizium arcun~d .and cli-bs steeply above -.hat. A tade-off exissbe'eeff-I ci ercy and volume xith a good design r-ange of Tc = to 5.The design po.Int was ultimately chosen at Th7 . Swivh a r

The design of a modern coal burning co-mb-ined cycleofferi~g high efficiency at both rat.ed and Dart load is with in-the reach of present- technology. Heat exchangers and turo-machi-nery design are well within the state of the art; and ?F3

tecnolgy is expected to come on 1ine within the next few years.

Acceonion For

NTIS V I)717 ''

ju.

Distriv.:

Dist L4~

DD ForD 1473 tNLS

5/ 00il14-4601 SECURITIF c,.AGNPegAvgeue or vS PA62~mf Date atepoi..

Page 5: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

fr public release:

-r.n iary Lesi. . 0-

Arn ,!-.erna-.4ver F-el.s Combined Cycle Prclu.scr Zanr,-

:'c- avaJ. Thinp At,-l.ica-- ons

by

Kirk Stever. 3ur-,a=y

3.-S -,n Naval. Arch.3 -JS. Naval. Academy

1:973;

%CC!AN S-NGN.7zZ

and

at the

MASS AC".MULSTTS !NST:TUTt! C:-' c-c CG

May 1-8

(Dc K.irk Steven Bursg--,y 1981

The au'thor hereby grants to A:4 .T. :errnissi-n -.o re-producea-nd to ditiuecopies of' thiA.s thesis documen-t inwhols c.4n iar-..

S ign~ature of AkuthorZepartmrent, of,'Ccean nierz

Car ifl~d by~ 4c~~c~. 4 sa.j A. -ouglas Carm~crae-,

Thesis: Suzerviscr

Accepted bcy_4ri....ouglas Carn.ichael

Chairman, deoartmental 3graduate Committee7ev.r-snt of Cc~an -Zngineering

War-ren A. =.-nsenc.-,:halrman, :etar-men-a. Co=Ittee on ." raduate tds:etartment o1' '4chanical. Engineering

Page 6: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

?RE1:14:'NARY DES' "3 F.I

ALTERNATI'ES FJELS CCMBINED CYCLE PRCULSICN PLANT

FOR NAVAL SHI? APPLCATIONS

by

KIRK STEVEN SI.RGAMY

Submitted to the Department of Ccean Engineeringon May 1, 1981 in partial fulfillment

of the recuirements for the Ze.--ees of CceanEngineer and Mfaster of Science in

Mechanical Engineering

ABSTRACT

A preliminary design of a coal burning 25,0CCH? naval ship propulsio. plant was completed. The system con-sists of a combined Closed Brayton cycle and bottoming Rarinecycle. Coal combustion capability is achieved by using aPressurized Fluidized Bed (?FB) heaTer. A thermodynamicanalysis and volume estimate was conducted for various Braytcncycle compressor pressure ratios ( 7T).

The results show that a maxLmum thermodynamicefficiency ( > ) is achieved in the range of ,7c = 5 to 6.Total volume on the other hand has a m.nLmum --r c un d 5T =and climbs steeply above -hat. A trade-off exists betwaeenefficiency and volume with a good design range of -Tc = 4 to 5.The design point was ultimately chosen at ," = 1.5 with a 7e=.48.

The design of a modern coal burning combined cycleoffering high efficiency at both rated and part load is withinthe reach of present technology. Heat exchangers and turbo-machinerj design are well within the state of the art and ?Btechnology is expected to come on line within the next few years.

Thesis Supervisor: A. Douglas Carmichael

Title: Professor of Power Engineering

2

L-

Page 7: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

ACKCWLZLDGE.EITS

The author wishes to uhank ?rofessor A. Zouglas Carmichael

for his guidance, recommendations, and helpful discussions

during the repara-tion of this thesis.

:n addition, : would like to thark, my wMife and tyizt,

ardy f-r her understa-nding and moral support not only in tins

work, but throughout my three years of graduate study.

_

Page 8: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

TABLZ C? CONTM-NTS

ABSTIRACT . . . . . . . . . . . . . . . . . . . . . . 2

T . .. ..... . ............ .

H. eater cycle . . .................. .. .. .. .

2. Rankine Cyc2.e . .. .. .................... 2,0

::. VCU 1 . ................................. . . .. .. . 2-

A. .urbomach.. . er .... .................. 23a. 'u rb in e............................23

~. COmZressor . . . .. .... ... ... ... ........ .

2. '-:ea tExchangers . . ............ . .. .. ...... 2a. AeKenerar.. o .. ..................

~.Recuperato...... ... . .. .. .. .... 2c. Cooler. .. . ............ .3!0

d H ea te r . . .. . . . . . . . . . . . . . 32e. 4~aste Heat Bo;iler .. ....... . . . .3A. -ondenser o . . 6 . . . . . . . . 36

V. DESIN CF A 25,000 H? ?WTT . . . . . . . . . . 3 9

2. Assumtions . . . . . . . . . . .. . . . 4

4. System Sel.ection...... . 46

V. APPLZCATIQNS . . . . . . . . . .5 2

Vi. CONCLUSIONS AND C. . .......... 55

...

Page 9: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

TA3LZ- CF CiNT (cr-nV'd

APENI A Ljsting of Computer 'r~am . . . . . . .

B. Output of Computer 'Program .. . . . . . . 70/

Page 10: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

:. ':TRCDUCT:oN

1. ?,ur~cse.i'ncreasing prices and decreasing supplies of

fuel oil has created a need for highly efficient shim pro-

oulsicn systems capable of utiLizin fuels other than oll.

The purpose of this thesis is .o perform a preliminary design

of a combined cycle propulsion plant equipped with a multi-

fuels ccmbustor capable of burning coal or oil.

2. System Descriction. The system investigated is a closed

regenerative Braytcr. Cycle combined with a bottoming -aik-n'

cycle. :iorking fluids for the cycles are air and -mater

res-ec :ively. The heater for the 3rayton cycle is a pressur-

ized fl u ;zed bed (r) The heater cycle is essentially an

o~oen regererative Brayton cycle. This thesis was conducted

considering the heater only Ln its coal burning mode of opera-

tion. Work done by the 3raytcn and Rankine cycles will drive

a common shaft through a double reduction type gear. An enthaloy-

enthropy diagram is shown on Figure 1.

3. Scoce.

a. Objectives. The objectives of this thesis are to:

(1) Perform a thermodynamic analysis of the system

for various closed Brayton cycle pressure ratios utilizing

6

Page 11: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

C;Iosed Bray-tor O-Yc2.e

Rankine Olyc2.e

4s

Page 12: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

realistic values for coponent efficienci.es and .osses.

(2) Estimate major component volumes and thus obtain

a tota.l volume for set of paa,meters listed in (! above.

(3) Select a set of parameters for design based

upon the above results.

(-) Discuss the technizal feasibiliaj nd imol'_cations

of the design as a means for naval ship propulsion.

b. Des4i-n Zriteria.

() The system parameters selected or desi- were

those which gave the lowest total vcl'x-e within an acceota.-ie

range of thermal efficiency.

(2) An acceptable range of thermal efficien-cv is

defined as *-', of the maximum efficiency.

m -imitatio3ns t o Szoe.

( ) o component or system testing was carried out.

(2) The system was designed with the aid of a

computer uti.izing performance parameters of currently avail-

able equipment.

(3) The concept of pressurized fluidized bed (?F3)

combustion has not been proven in a shipboard envirornment.

The thesis was conducted based on the assumDtion that a ?F7 -2

system would be nut to sea In the near future.

A

Page 13: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

:I. T ,:YrCZY.AMIC A:ATVSIS

.The raytin Cycle

a. .Iorkin~g c.cle. This -s a closed 3rayton cycle

utilizir.g air as the working fluid. Air was chosen since

this is proposed for surface ship application and would tus

eliminate the need for carrying a reserve supply of gzas ifsomething like Helium or C2 were used

Advantages of a closed -ycle over an open cycle aze

-he following.

~, Compressor suction oressure is no !onige_ _

to ambient. 3y increasing the working pressure of the cyc

a significant reduction in engine size can be achieved foz

smecified output.

(2) :-7igher workin- pressures also increases the :cea-

transfer capacity of the working fluid thus resulting in

smller, more effective heat exchan.-rs.

(3) The use of a high pressure f-'uil gives the added

advantage of regulating the cycle pressure level by va-ing

the inventory of gas in the loop. "f this is done _n a manner

which kept the maximum temperature and speed constant, the

turbomachinery vector diagrams would remain essentially ur.-

changed. The result is little or no change in compressor or

turbine efficiencies with varying load, thus mnaintaining high

part load e"f"iiency.

A Temperature - entropy (T-s) diagram of the working

cycle is shown in Figure 2.

9

... .-I -' .: + , .. . m . ..

Page 14: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Io

4- -

- -- -\

,7

Figure 2.

'o0oint : compressor suction, cooler discharge2: compressor discharge, regen inlet cold)3: regen outlet (cold), heater inlet

heater outlet, turbine inlet5: turbine outlet, regen inlet (hot)6: regen outlet (hot), WH3 inlet7: H.3 outlet, cooler inlet

43: heat input from heater cycle

heat released to Rankine cycle

:: heat released to sea water cooler

A h6

Page 15: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

The analysis was conducted by assuming values f:r-

, , -.cmiresscr ZOIOT-00C effjeC-y) e

polytropi.-c effIciency), 2. 'regeneratcr ef-ec-.iven9ess;, and

J~jP to~ta pressure drop).

The soecific heat was assumed -,o vary with :.emeraZe

accordi.ng to -.he following relation:

-z in TU- bm

The fo2..:wminz are -ieflned.

com~pressor preszure ratio i.'?

* - .t;bL.e press-ure ra-tio P?/?

) 5' total nressure droo arountd closed 3r-zytocn 1:o-

. Iz - power (net) -from closed 3rayton cycle

- mass flow of wo-rkinz fluid in- 31raY-._n cycle

71 0- emp in R a' roint i

- ernthaloy at point I

- gas constant- pressure abs. at zoint i

- specific vol-uzne- regenerator effectiveness

The basic procedure was to determine T 20 7 1T5 6

a; id Afor various pressure ratios(Td

nPU

Page 16: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

;..eter iat ion*:;f T' ref. I.Cor)

Small st age ,o2ytropic efficien~cy is

(CC

3inc '7ta j e~o~ frcs is 'n

12,-

71can th''-en be determi.ned I teratively.

Z)e -erninatiOn o '

Ifl a maunner sirilax to the compressor above,

(.. X.7 R 1)

1I4

Page 17: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Iner en-e, 1 , s becomes

in" 759:75 0 - /- k " -T - -!2 2ani~ i 3 79x'0 )(. )'( .33-X ' '-I -2

-12 , 3 3)(:'.103xl0 k -

R j 74

.- can -hen be determined iteratively.

Deterninatian o T, and :

' a T car. be frcm a-n assumed _eenera.r

effectiveness ( R) using the follcwing rela:ion:

-'"- 3 - -2

13

Page 18: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

b. 'eater rcle. This is an open 3rayton cycle also using

ccmbustian air -as the working fluid. The heater itself 's

a pressurized fluidlzed bed u-tiizing coal as fuel. '-s

diagram of the heater cycle is shown Ln .igu: r 3.

.,ajor compcnents of the cycle consist of a heater, -e-

cuperator and turbine driven compresscr. The turbine is

powered by exhaust gases leaving the recucerator.

The analysis was conducted by assuming alues of T..,

T-,, 13 c- ) and (eauivalence -atio). oth the

exhaust products and combustion air were assuned to be oerfect

gases wih specific heats varying in accordarnce with the re-

lation given In *.(a)

The following are defined:

7 , heater -- .,ressor nressure ratio ? /7 ,

7- heater turbine pressure ratio (?,h/?6,

)T - 5 total pressure drop around heater boo

mass flow of air in heater cyclea

m, mass flow of fuel in heater cycle

(F/A - stoichiometric fuel - air ratio of fuel used

7H1 - Lower Heating Value of fuel used

T -;h - absolute temp at point ih

h. - enthalpy at point i h

SH - efficiency of the heater cycle

- recuperator effectiveness

14

Page 19: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

=~L-i7

ambi.ent 1

ocint lh: compressor inl-et2h: comporessor outlet, recup inc'et (cold,Ih: recup outlet (cold), heater inlet

4:max air temp in heater-5 h: heater outlet, recup inlet hot)6h: recup outlet (hot) , turb4-e inlet7h: turbine exhaust

'*: heat released to working cycle

..eat in 'M Z

15

Page 20: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Assume the heater cycIe to be a control volume .'>.

as shown in Figure 4.

a 1 h a 7

lza inl th .n.s 1eI3

I I

I I

l eaving the C'1 r.-.ut %e e ua. "-. eite*

workL cycle thus,

= "rA (h,. - )3 *S ~a 4'h 5h

-erforning a heat balance on 'the 0.7. vires us

" rha h7h a ' h.

Therefore,

4,4

iV

Page 21: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Assume the heater cycle to be a control volume *'..'

as shown in Figure 4.

I 7

rn A'iVe

I I

I t.V. II I

hl." ' h,..

Fi~ure ' .

a leavin.g the .7. nut be ecua. t nrn thE~~~a to "- " en'ering ..

work ni cycle thus,

• a 4h

Perorr.ing a heat balance on "he C.V. -ives us

a + mh7h m (LHV) m ahlh.

Therefore,

16

Page 22: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

prma'ower balance betseen the 'a bn n co,=ressoz

'1(no net work),

c h2 h'

7--

II\~A/ -7h~) -

-I 'A ~ -+

~-,

*~~ ~ ~ ~ .- o \/ J lI j~l~ 1 )l

Page 23: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

there fore,

PC r L' ' _ 1 '] ' ' j' L" ) "- -J"U

?or mi..,urn volume heat exchangers we want the -r~es

/?/- zompa~ible with :he a'cve ecr..

,~~7 %! p..r, .

./0 d j g

\ O "s.F. /

i "~ ] - -- , , , - - -'- /' "\ - " .,,-Ilk / /' , i .

-ex-' '2 . T Ib%-+ - j-

L' .f Tk ,.',c , ,

? /Th : a arnd sO1VL-g :or T , oh ves

,Tch

13I

Page 24: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

By substitution

Thus an ~ car. be found through kncwn cr assume:d

q uan ttias.

e t rm ina ion af 5

wvhere +~

'C

- ( (I.rs

2 an4 caT b e found once .1,-' da-tarmi4ed. A s s um.e

thatm

5h + 100

h .3

Page 25: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

2. The ":an.k -4-e Cyc2.e. This is a o ri'gsteam zycle -:-a

recovers heat from -,he clo~sed 3:ray-.cn cycl.e th'a-t acu-4 o-.her-

wise be discharged overboard through the cooler. The r'ela-

tively hot bas leavin- '"he reg-enerator is ire-ccoc.ec -: -."-e

hiaste :-ieat Boiler (.41-EB) before being sentz to th',e cool.er whizh :

bri-ngs the 4,ernera'Ure 4cwn to cor~nressor :nlet conc,.:crns.

A T-3 diaegram of tR ankine c,,cle- is shown In F'igure5

Fi gr e -5.

20

Page 26: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

:a.,or components of the cycle a re the ' ci, Jenser,

steam turbine, and feed pumz. it is assumed that *=z feed

pump Is driven with power .rm the turbine.

The analysis was conducted by assuming values of .S

, T, ]?..s) pum isentZropic effiiency) D > , (turbine isen-

r--ojic efficiency), and ? .H3 (was-.e heat boiler efficiency.

The followinz are defined:

- enthalpy a- ,o~nt is

- absolute temp at ooint is

- pinch point on Brayton side

-Fsaturation point on steam side

Smass flow -.a-. (4 /

x - qualit of steam e::ing turbine

- absolute pressure a: point is

; - power (net) from the steam cycle

- thermal efficiency of the combined cycle

- mass flow of steam Ln iankine cycle

Rankine cycle parameters wmere chosen for maximum work.

The Procedure was as follows:

(1) Compute T from the relation

T =T -AT

(2) Assume a value for T . 1 < 462.30

21

Page 27: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

*~fz:rci the reJlat-or.

'VtD

0 b t a nh~ crm s te an tab es.

(3)cmnpute h. f:r~ the relaticn

b~ bta in x tbIn e e xit) .- 'z steamn ta*---s

7) C-omzute h -! rcm t.he relation

-3 -

(5) -Cmu te a '-i-. the relation

(141 compute T 7 frm the rel.ation

(12' Calculate 114 from the relati;on,

22

Page 28: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

,.Turbo mac h ;ne ry. An a.-alytical prcced-ire -- r- -.e

volume desig- off -urbomachinery was develcped bcy lee r:

''.The following equa-cions and m.a-.hemat_-ca.. ex~ress_-cns

sumrzarize that portior. of the nrocedure wnrcn- a-re a:Dlicat:7e

to compressor and turbine designs In tis thesis. Tolume

ozbta_4ned y see's --ecd nelcsthe- e of casin-g -, e

a.-d outlet p1 enlms, and bearin a zs e mtIy s

a. T ur b .e F :r 9e- vcr teax bldin and3r. a,-ial ex t S a e S

wam~assumed throu-ghou-t thea analysis3.

'-he flowin ae efin-

S.F. -factor cf afety

_t max. al.c~b~t~sneed

f~wcoaffici :ent at ti:-

A t:ratio at ini.et

A -~u-t.Zratio at exi_4t

2 - clearance factoXr

- speci .fic volume at'ne

- max ti* radius

- plytropic coefficient

K - isentropic expon~ent

- density off blade material.

X - stress concer.taticn factor at root

a - ampi. ication factor

- correction factor for ta:er

23

Page 29: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

x. ~-'r : .t.-n~ to 'st c --x aI3

-nczrna2.:zed. moren- of" in-ertia

* -l v ol2.e of -'urbi-e

The voi--e was cormu.ed byassurni-.z va- 3., s U-0'K:

r_ , an.d a'~ are C 0 0u ec from ;e f oIw r -3a S:

:a -t f -r, t ,

.vher- A and ar maei eedn cstt.Th olw,

z Z-

z / - -- ~.2 :

Page 30: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

'- ."-- -" --

The axial chord for a stage s ern by .F-r a

.arge number c f s-.ages, summa ":on on a . f3- t"e woe ine

can be approximated by ar. i-.egral-

h.vl er e

, .-,' ,\ I' - '

This inaegral can be evaluated numerically thus,

!i,~i 7Z- "

b. Comressor. An aproach simi-'ar to that. of the

turbine was used for the axiaI conmpressor. Axial exit stages

were assumed in the analysis.

The volume was computed by assuming values for SF, U,

-L' K, .a < , a, x., K, , Q, and 7' (blade material

yield stress).

25

Page 31: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

,n n, and -are computed form -!e fcllowing relations.

71

SIL

, = ! . 2- i

- / / € , q . ,.

hen~ calcu1ate The follwin~g:

/ - r ,' % - -" --\ -/

- -i

26

• -- , ,** -_-_

Page 32: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

As .t. the trbi:ne define

/44

where

\7/ -

This integral can be evalua-ed -,' -er.Cal1 h

Vol- .

2. Heat Exchangers. The volumes of the Regenerator, Re-

cuperator, Cooler, and Heater were computed using the .e:!,.cd

of minimum vol."me desin developed by Lee (ref. I. i

essence Lee found that the optimal diameter ratio (_/ I "r

these heat exchangers car. be established as a s.mpl reatio.n

to the pressure ratio (7 c ) of the cycle. The results of the

optimally distributed pressure drops ( - ) as reported by

Lee were also studied. ?arametric eauations -e:ating pressure

drop to pressure ratio were developed and used in this analysis.

No consideration has been made on computing the volume of the

shell, headers, or other appendages. Lee's relations were

developed from basic heat transfer and pressure drop relation-

ships.

27

Page 33: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

6. "e-enerator. The regenerator is assumed -o te a

counter flow shell and tube heat exchanger. igh ress -e

is inside the -ubes as is the case for current desizr rac-

tices.

The followi..n are defined:

, pressure drop across the regenerator(both steams)

- diameter ratio for regeneratcr

enthalohy difference across the interior"-stream of Reg.

D - tube inside diameter

- .log mean temp. difference of hot and colds treams

r - ?randlt numb err

- density

- dynamic viscosity

- thermal ccnduct4ivitv

Values for -- /eand Reg can be estimated from

the following relations:

-r(c re - !- s

.135 - .0234T for.1 .18Z,, y.ieg " ' -R

=.5 57 .0033T71SiReg-. o.3

28

I ---.-. - ' .--

Page 34: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

to-

,,sc- t refers to uantities in~side "he t' ":es

whereas subscript 2 refers to ::uantities cutside the u'zes.

Ae. can be computed as follows:'Reg

,.4fr - - , .+1 . "- '

where7"a ' , - --

The volme can then be ccmputed as fo-7.cs:

iol A~e -

V. e g R . /

. ecueratcr. 71e recu-erator .s si -. Llar in desig.

to the regenerator c"nl.y it refers to the heater cycle.

The followine axe defined:

S ressure drop across the recuperazor(both streams)

~D/R-- - diameter ratio for recuperator

/_x - ~ pressure drop across the heater side-P( outside tubes)

- p pressure drop across the ?F3SF3 -- "

-e :nthalpy difference across the interior

s9ream of recup.

29

Page 35: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Values f'-, and'- can be es .4i-"ated fr,m -he

IA \ )R e' c efollowi-g relations

,--r'; - C '7- -: ' - -

Zu'Zscrints : and 2 ref er to quarntitles 4.- sie and cuts ".e

the tubes respectively. "e .s cxruted as follows:

4F , 4 - - - - 4

, . --..- "- --

where 7 and Y'are as previously defined.

Then compute the volume

0.4:

,ec 'ec \P/Rec

c. Cooler. The cooler is assumed to be a shell and tube

neat excharger with the gas inside the tubes and salt water

outside.

The following are defined:

ir - pressure droz across the ccoler (air side)

'3)Clr - diameter ratio for ccoler- enthalpy difference across the interior

stream of cooler

- sp. vol. of working fluid at JHB exit

30

,*.

Page 36: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

-- :i,p3 - mressure dron across the ;'B ,ar S

-' % oressure drop across the heater

(inside tubes)

-polytropic ccol.n water _up -""c ency

- sp. vol. of cooling water

Values for -C1r and are es-naed from :!e

S. .- = 2- ':-. , -2 -T-

Subscripts 1 and 2 rae-r to cuantities inside and cu-t:3Ie

the tubes res.ectively. -?s ccmpued as follows:

W.ere 7- , are as previously defined and

01a woma

# / • I \ /

31

Page 37: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

The volume is th",us

d. H-atar. The heater is assumed t3 be a shlell and

tube heat excharnger wi.th -te wcrkc:ng -ras th-e tbsand

combustion gas out.

The follow:.nz are defir.-ed:

- diameter ratio f'or :leater

h~ - enthaphy differen~ce across t he 4-teric.s3t-eam of heater

Valu'~es o _ ar'd (2h) aze

astinated, from th',e following- relations:

where

Subscripts 1 and 2 ref'er to quantities inside and outside

32

Page 38: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

the -,bes respectively. Czrpute A,-_ as f lid-as:

7 - - .I 1 ^7 : - '

kq r -) -

'hree, ~ are as previxsly de-fe

a . .. ast, '.-eat Boil.er. 7he boller Is azzuxned -.o be -3

ornce thz-roug ' cross -cowrie:rf ow t-ype, as shcwn in F-ur .

ih oressurz -s insIde 7he :-'bes "thus 3a:- r.~rs~-

mus a 4 e greater than the workin~g pressure of the czlsed

3rayton zycl..

gas ou~

-water _

gas inl

Figure 6

33

Page 39: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Bo ;Ier volume is es -imated us ing heat trZansf ar re:.atiors

and volumes frcrn sim-Iar U.S. Na-vy "CG'S (Ccmbined -az "'une

ar.d S te am) d eisign s ( r 9f , ).

The fadllowing~ are defined:

1 s - ave. s-,ecL±-'ic heat on steam sid

- ave. s-ecific heat an air- side

- Number Transfer 1Thi-ts

- number of passes

H :eat trnfraxea

- overall h e at transf-er c oe fffizen~

- total volume

?romn a DT'SRC0 (:;ad 4Taylcr Na-.al Shin Researchi and

Developoment Center) stu~dy (ref.U4) -he flwigrslatiors

are obt ained:

V 7'~ '-

73

Page 40: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

For similar desi.s assume - v

N NTU

T I I

The erm V_. c be evaluaed from kncwn a'.:a

on previous designs to give

/H = :1 ., * * .'rn

3ut it should be n.oted that the above equaticn ass-ues

c -- ns c,-.,n ;,H and to iar ;-.wer. "- as= tefo~re ",l

ther f'r3I a ea t.I-sf-'ser

A < , < ,

thus

Correcting the above equation for power gives

1 1N3 .001?7~I NIT~3

As stated previously Vol ,

35

Page 41: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Correc-ting agair for rssure drcp yields

.HB 045 , TJ

C:,4IN in BTI7/s - 0?

Z in 2bm/z

-. .%der.ser. The :ordenser is assumed -o be a shee,.

and tube crossflow heat exchanger with salt water =.side -te

:ubes and steam ou'-side.

T.e following axe defined.

S - inside tube diameter

- number of -,bes

length of tubes'2 -ravitational acceleration constan*

- pressure drop on the salt water side

- friction factor

tc - density of coolirg water

Vc - velocity of cooling water

Ac - cross sect. free flow area on water side

36

Page 42: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

flocw rate of cool.4ng water

- ~'ea:f~o xtcondenser

-w x; s-ecLf.c heat of' cooling wa-ter

-tamo. diffarence acros ...e cool.Ing water s :de

X - steam aual.ityi er-teriflg condenser

- enthazy diff'erence b-etwmeen sat. 1i~~~andsat. Steam

-maSS s ow of' st.eam ent.er4n cond-enser

'rom basic h-eat transf'er ralationsh--ps

wh~ere

therefore,

where-

I-1

Page 43: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

For simi.ar - 4esig-ns assume ., .

Th au .-il I- '--.ak I- a be ealute frm nor

dat on simiiou r d esigns ref ton =sae

7 27.3 r-Xcond-

] L .bm/s

Page 44: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

:v. Es :ZN CF A 25C,00 E A;

A zroposed design of a 25,0CC H-? ca-ie ob

:yc2.e- was ccrnm1eted. :oa.IA comnbustion -; aczom;1isbhed .;ln

a Cressur-zed fluidi aed b-e d ( .?"S' 'esig.- -arameters were

eventually onnafter invss :iaat -4 n , e effect of ca~n

zressure ratio0s, 0Vary -Ing D -n the -raytor. :ycle, '~

r. re g e nr a t z af a c tiv e n es3z diern I e s s cr '.e; te.r

(T.-.d st.eamr c=-4nsing :amp. , T. and va-ria-ions yo

wo r~ pr9s s ure s.? an d s a t,-a t io n 7ress..r-e 77_,

a. The lud: d3ed. Th e -or e ssur I ade d I oz a d d

op era -as a -- a mr e ss 1z-e o f ~c .Oa mo s hrs. S ?s ue I Z

atindby 3-n exhiaus-t drjv-,en co-mressor. :o0r proper con-

bustion in-c-mini air must be :reheated byv -.h, recumerator tc

at least 7VCC-:. hebed material is :rim-ariy li-mest.on.e *v

series toc cazpt,.re sulfer in the coal anrd th-us iize2-

emissi4ons. bed temperatur.e of 1?0CO is generally -used t

keep NOc e missions at 3zn acceptable level.

The '61uid bed itselfl is about 4 f"t. deep. ?reneated

combust ion air enters the bed via a perforated bed plate urnder-

neath tae bed. Pressure drop across the bed Is assumed to be

The ?F3 is used to heat the working fluid inthe closed

Brayton cycle. The wmorking fluid leaves the regenerator and

Page 45: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

en'ters th ubes -.~he ?F'3. T'-- work,--~2Ui

hea~red co.' nvection from the as iaigthe bed sn -' t- en

ductead zo tubes submeroed in the fluid bCed for :'i'nal heain

to the -nAu,*--4,-e ir. t eL-, (T4) (?Jgue 7)

e xhaust

workinhg u iT

Fluid bed

4

- -- - - or-kinz "'u-d out

g-id plate

Fizure 2

6k~

Page 46: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

.-AssurD1:ions. The ccnpu:er program was ru:n w -7t -:re

-'ollowlng nu -,-alues :

I - ; ,

..1

I.8

-,, OR

40.0 1T,_ 2060.0 0?.

= 540.0 R

. -35.0 R

200 .0 nsi (want a-: least 0 :si grea:erthan W?"

250CC ?zP

-!h335.0 . O

T , 760 °' (limited by acid corrosion In the(h turbine)

Ii~iP , : .89

: .90 (115 excess air)

in addition it was assumed that scoop injection could be

used for both the cooler and ccndenser at speeds greater than

10 knots, therefore power requirements for salt water circulating

k4

Page 47: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

pumps were exc'.uded i.n the cal :'aa-.4ons.

. esults. The computer output 4s provided n *zpencix

3."a *.,e that the saturation pressure f c:r oressre ra_-cs -f

Z and 3 were below the 20 psia specification. This is due

to the fact -hat the low pressure stream leaving the regener-

ator is a- a temperature below the saturation temp. at Z.Cosia.

A plot of L vs. 7 and "O otal vs. 7, 4S shown in 7Lgure

Note that.-. the volume increases sharply abcve

due largely to the rapid g-owth in the waste heat tciler.

Maximum ' - occurs at a-round - 6. To investi-ate t-he

effecto and Vo, the program was ru n for. , .36, .0e, .10, and . m bereen 1-!, of and

The results jlotted on ig"ure 9 show that .:.an

gains in e,,:arn be realized 'with very litt.le increase i- "

for the rarae of 4-6 :ressure ratio. The effect of changing

- (regenerator effectiveness) in this range with a -

.05 was further investigated.

The results listed in Table 1 show no increase in effi-

ciency as ER is reduced. Furthermore, volume increases shar ply

as a greater percentage of the work is being done by the Rankine

cycle as E. decreases.

Thus for greatest efficiency with minimum volume, cycle operat-ior

should be at the highest- practicable.

42

Page 48: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

II

I '

I /

.4141 6

/

Figure S.

3

Page 49: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

.426r "

?! _-re ?,

/-- 1

I .. .

4, - .

Page 50: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Table :

R t .

.Z8 44c2 335

.20 .23 6

.02 .70 7Ci08

4 .. o . 64 io83432 435 0

5 .30 .464 1083

.50 ,",7 3741

.33 .475 :o

6 .80 .471 396

.50 .456 3508

.88 .473 1450

7 .80 .471 1750

.50 .46o -35

45

I ii n

Page 51: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

To in.ves-tigate -.he eff±ect of charges in T, (-;m:resscr

Inlet :.emD. runs *.er e nade orn 4 differ en-. tem:era tur-es and

the results shown 4-n F'igare 10. As expected 3fl~ec' 4e-

creased with increasi.ng T~ wit1.h very lit t .. e chang:e Ln the ange

cf interes-t 4-. T 7 olume or the othAer hard decreased

sightly f'or 7- less than 3.5 but Lincreased siggilficantly

abo-ve that. Thus f or best e'fficiency and lea2st vo-ze T.

snould ce *,ejt as close to cooling water ":em:erat ure as -csze

were i nvesti gated. :;-creases In pc~n reszsu.re :nay rr

additicrna. volume of 3ray:o. cycl.e ccnponen. yet at hesame

time allcw a decrease in ankin-e cycle steam pressurxe (rsca.2.

40-R :ressure differ-en--'a betwmeen boil.er streams'. This i

4r tuease cycle efficiency yet furt- her increase volume.

These resul ts ares bo-rn out in- i-gar e 1U.

d . . -7stem Zelection. in accord4ance wiv,-n the desi

rI ter ia te highest th'ermal effi-ciency con~sidered is 0, 3

(Figure 1U). Thus it I.s desired to select the =!ant with m-n-n

.mum vlweat - .82

Figure U1 shows that only those alternatives with Brayton

cycle wo pn resa-ures of 7Cpsi and O0Cpsi meet the ef4i:enc y

requiremen~t. Cf these two the lOOpsi case has minimum vclume

at desired efficiency.

iowever, the problem Ioes not end here. :f one looks at,

j 46

Page 52: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

T o

Lv70.

3...

477

Page 53: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

.421 '1o

"IT0 c 6

/ 7'48

Page 54: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

the steam c:uality leaving the turbine at -he 7- = , .'?

I00 'si point i is of the order of s,,-°. This is a itt -a

lower than normally desired for design,. n fact, -he steam

cuality of all alternatives thus far considered wit.h i.- e

range of interest is low. If . steam Cualit-y of Order .37

desired the current desigr pt. can change in one of 3 ways

as follows:

12 Raise s team c ondensing temo .

4- :ower minim m satura::on pressure i 9

3) or a comnbinaticn c:f the above two

Through .trial and error it was found that case I gave the

grea:est benefit with the least _enalty. 7 orputer r,.ns were

made in the 4-5 1,- range with the steam condensing temp

raised to 56o4 for both the 70 and 1COCsi alternatives. The

risults show a substanti-a- increase in qua , s l dcrease

4n efficiency and very little cnange , total volume (Table 2)

(psi)Vol- fti.ICrkinK Pressure c / t x .(

70 4.5 .180 .364 948.3

70 5.0 .482 .871 1i40.6

100 5.0 .479 .362 956.5

Table 2.

The 70 psi designs have better steam quality and 0, than

the best 100 psi case. n addition, at 4.5 7_ the volume is

lower. 3etween the to 70 psi cases above a trade-off exists

betmeen 2 t and Vol. Assume that volume compearable to the case

49

.,,

Page 55: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

of 7 5,.i =00 Zsi, T. = 5"O0OR discussed :=bc-e '7ig'-re

1!' 45 4eSired. :f thi S She case T.*er. th-e n~ew -Js4,- 7o:n-

~s at a Bray-.on cycle working pressure of 70 -s-i,

05

Page 56: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

;CRK :I G PRE''S ,77 Z - 70-,, ,- ==.'S = :.RCP ,

.YASS F?:2- mL2/S I = 0, 3

S TA6 T E- -IT ... --~ R. .. 1,3:7"

20

3. , 3 -- 9 ~57<7

**x4, , - - - -'Z ' -

" U3:'E 5.5 EF'?C9

-- Z -R -29.7 F c

.coc63,c:2 .. .03

3 A 7R

0.0

RC Y .97

c:,LP:CNCENT 2? P..E H IA- - : C 7?)

AIR T.... ?R s In" --" 7

.31.3i :75 1. CWF .3,91 S

RA ,,r __C,/ )A = RA IOR3 -=2.=Stir ?CW--3/S) = 5 69

IH 535.0

iS~~ 5. 0.9

257 1 5'.0 5H 4809.8

5H 503.9

7T 760.0 0

up .13 .- 50TR3.:N K. .1(0.7 :-T(P)O z S

iEATER ,019 .4b 3c3 31."

,"G NLr ,t. ;z5SL S : 2

STE AM " ' L311/5 5= 6FLO, l RATO .0275

S TAT TE ,t1P( -EG R) ? i S I, P Sl

is 560 .0 0.92S 575.-0 12-0.0SF. 8 01.2 12 0.0

913.0 120.04S 0.0O. 9 ;uL o.

CO0MPO NZN T 7COL( I'UT FT)BC ::174 .507.9'T :IM , 32 -d ,rE(:V)=0 88

Page 57: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

The a; 7)..ication of thIs system -.a N.avy ships fna3 7rar./

~1aC-9.On of which is-- th.e fact 7hat. nei-.ner :osed

Brayton -cr 2oinbined cycl.es have been previcusly used. However,

thers is a corsiderable effort at this ti.-:ne to ge- tZC3AS

C ombin.-ed -7-zT--bne and *S tea=) sys tens cr. *--ard Nary sn:zs

-These zystams are all ' i ni -ed to bunng oi:uls Te o a -3d

3rayton ncin'icycle when ecui-tted wi'th a i-ucshte

offers -.. e add-ional -of bu..~n th*e- c*._=s :r

M o s re a'd IIy ava 4ai .a f ,;e I

..~a~tages of theI2cs ed 3raytor. comabined cycle ara:

1: The 3rayton zycle opera-tes a-. tarntperatu~rs suzs,:an-

ia.'below -zhe material _Lmit than. -;n --he czan cyc:C gas

turbirnes resultin,-g in cheaper, more reliable, and lon~ger lf

cornponent.s.

lo ~w oressure steam systems are %,iell orover., and have

sigificanty less water chemistry problems than higher -ressure

olnes .

1) As load decreases and fuel flow is cut bCack, the co--

trol valves (Figure 12) bet~ween the compressor outlet and cooler

inlet can be opened as necessary (keeping max. tempo and speed

constant) so as to ensure that th1,e vector diagrams of all sec-

ti;ons of the turbomachineryi blading- remain unchanged. Turt ine

and cornmressor efficiencies will remain essential~y the same

producing high ~)~at partO. load. 77hi-s recUires use of a CR?

5 2

Page 58: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

.....~,.4

KT

-i 'II K

I-I

-~L±77t'.

-I

53

------n---- -' -- __

Page 59: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

k Cntroilable reversible oitch) ropeller to man'.a-n oonstan:

shaft speed a-. .art loads.

Disadvarntages of the Closed Brayton c om b i ned cyc-e are:

I 'Higher overall sysTem weight and volume due to the

addit.i. al hea-t exchangers and iping recuired f r the -losed

3:-aytor. cycle.

2) A complex, integrated control system is required to

coordi-nate control of the combined cycle, fuel flow, and CRY

a: part loads.

3) Fluidized bed combustion is no: a fully developed

engineering concept. Land based proto-jpes have been buil.t

and operated with limited but increasing levels of success. A

shipboard proeo-ye .is perhaps 3 years in the fut"ur w pth cro-

duction of a marinized version at least 10 years away.

7) -' coal is to be used as the -- Jinary fuel9, it sho.uld

be noted that it has a lower heatLng value per ton than oil.

The result is a larger potentially more expensive (greater

acquiii..in cost) shim for the same military- missicn.

5) Reaction time with coal fired fluidized bed combustors

to load changes are generally slower than that for oil heater-

necessitating in a separate fuel oil system for rapid increases

in load.

54

Page 60: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

C: I CNL U 31aIS A ND REC : 01 DMA kT "IS

The Closed Brayton combined cycle offes an att:rac:ive

alternative system for many shipboard applications. As wi::h

the first Arab oil embargo, subsequent cut-offs ;f Arab oll

could result in decreased steaming days and a lower overall

read-ness of the U.S. Navy's defense posture.

-f our ships could have the cv-icn cf urning ..-e 7.cs

readily av.ai.able fuel, this reduction in readiness can e

avoided by switchin.g to coal, a fuel source in gr.- abunanc. :

in the U.S.

?aram.ount in the engineer-.g of a zuccessf ul mult'i-fuels

.ropulsion plant is the deveopment of a -r--'e flzid bed

combustor. The desi-n of heat exchangers and other turbo-

machinery used in the combL'ned cycle are well within -he sta-e

3f "t+he art of present tec-nolo-'.

:t is thus that the author concludes the fo.lOwing:

) TIhe design of a modern coal burning combined cyce

within the reach of present tec.nology.

2) This combined cycle would offer high efficiency at

both rated load and part load due to the unique controlling

aspect of the Closed Brayton cycle.

3) .eight and volume of a Closed Brayton combined cycle

would be greater than that of an equivalently rated CCGAS type

system.

4) Coal offers the benefit of a readily available,

55

Page 61: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

relatively cheap fuel at the exnoense of in'creased size

a.d accul'sition cost due -.a lower 3TIUI heat value Per -:cn when

comoared ta ci-.

The author makes the loWi-g recomi.erndations:

1) Development of a land based test sit'e of a "lased

Brayton ccmbined cycle ecui~ned with a 1"lui-d tad b,,ea.e: srnould

~considered.

2) A ressurize- d f uid ize d b-ed sobso tat'

Ma~ne aonli-catiorns should be developed .

3)A shipboard prototype system should be Lnte. -raa-ed

or. a UJ.S. Navy 7,i to at-zemtt to quantitatively defin~e h

shioboard imipact of the system.

56

Page 62: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

References

1. AZS.! Steam Tables, 1.947.

2. 'Berman, .M,"FluidIzed 3ed Combustion Systems:-F r s sarnd Cutloo'", Power _ngineering, "oeber 1?9.

1*wromb4 .e-Cycle Using Gas :-.om Coal holds risfr!.ec--_4c -Gerera-tion", Power, June 1979.

4. Oiteli, F., ?ie-sch, A.and Soicer, N., "osed ;asTurbine SEngines for Futnure Mrn r o"Marine Technology, July 197.

.5. Txr,3L,....dMcais harricd'rna.is smachi~nery, ?ergamo. Press, CX:'ord, ~o

6. "o~r?~, .. ,.A -.oal Fire:d 'Fuid 3ed 3asZc; eneraticn System", Zombujon.=, June 7?.

7. CrhJ. and Teare, "r.Z., "Ezzirical. Mo.dels of Emissionsand Tnergy 'EffCiencies of Coal-Fired Fluidized BedPower FPa.nts", M..T. ergy laboratory. c.prtNo. 78-015, sent.197

3. Kavnagh, ~ay Lee, "Optimizaatio. of a Closed ryz-Yc2.e f-or Navi _-hip ConceptUa. sl" EjersThea-s i 4n ^I.caan Eg In er 4n-g, My 7 7?

9. Keenazn, josezn .. and Kaye, Joseph, rovac?rolertles of Air, few 'T 3rk, j rnn.e ana .)ons, 4>c.,

10. Lee, '.~I.ng-.Hon HIlary, "ContributiJon to the Cptimal Designof& Clozed Cycle :3as Turbine", ScD. Thesis In CcearnEngineering, January 1.978.

11. Mouench, R."K. and 'Knauss, D.T. and ?urnell, j.3., "A Studyof * haste-Heat Boiler Size and Performance of a C-,aceptual. Marine COGAS System", iCavil .1. Taylor NavalShip Research and Development Center, February 1950.

12. No -es of Clourse 13.221 , "Shi;p Power and ?ropulsion'" taughtby Or. .rk-o-auglas C armi -chael a t the M.T. Cepar -men tof Ocean En-g-ineering, ?all termn 1978.

1.3. Rohsencw, *J. and Choi, H. , Heat, 7,ass. and 'Momentum

57

Page 63: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

1'0. Rolan~d, Charl~es 3., "Coal as ar. Alt-e:rna-:;v.e Fue~j3aval 7essels', Z.--'eer's Thes--s -' Ccea.

15- uSubrou-.i-e f.r th h--odyrnam-c of~rte a: 2amand Ja.er', :*ASS0000-009-401.0, Naval 3r.4-

zier Centar, , h. C., 3

V6 'erme'-, Raphael " Combi-ned ^ycles for Ya-ine ?r'czl-sion. Aansiii~ d C,3ttiza .Z -on Aass':4aster's Thesis in. Ocea.n 1-ngineerIng. :.ay.7.

58

Page 64: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

APENDIX( A

The computer prozram :erfo.rs a thermodynamic analysis

and component vollume computation for various p~cf-ed

Brayton cycle compressor pressure ratios.

The program accepts as input -he following quantities.

- )polytropic compressor efficiency (_Braytcncycled,

-egerera-.or 9effectiveness

,-isetromic t efficiency (ar -inecycle)

Sotal ressure around 3rayton cycle

rt .ii; - efficiency of the waste heat boiler

- compressor inlet temp. "Brayton cycle)

-turbine inlet :ermp (Bray-ton cycle;,

- - steam condensing temp.

- min. temp diff. betseer. streams in .B(at ? and T6)

- min. saturation pressure in the Rankine cycle

Power - net power out of the combined cycle

"l - compressor inlet temp. (heater cycle'

T - turbine exit temp. (heater cycle)7h

-,polytropic compressor efficiency (heatercycle)

i(s) isentropic turbine efficiency (Rankinecycle)

59

-41

Page 65: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

-ecuivalence rat _c

- working press-are In -.,-e 3rayt-. cycl

Outzut Is as shown in Appendix B.

The main nrozram 'oerforms the thermodynam~ic analysis cf

thezl~ed raton cycle and -he Rarkine cycle. Functicrns per-

formed b-y the various sub"A,"_nc-._crns are as foillcws: J

z Slb r o ut.1ne :9 : zerforms a cr.da~ analysjs3

the hete:ycle.

2) Sbroutine :-Z computs4 for :*he regenera-.or, re-

cunera torz, coolIer anc 'ea~er.

Subroutine 0?? calculates -=:-or the zeenerator, re-

cuperator, cooler, heater and bzoiler.

4i) Sluroutine Y.RCL rin.-ds turbine volumes.

7 S -;routine '^2MVC7 14nds compressor 1%x. e s

2 Subroutine ?E-327* co.Mutes the -egenerazor volume.

7)Subroutine ?Uco-mrutes tlie recuperator -7olume.

) Subr o utI.-ea ZCC7LE cormutes the cooler volume.

9) S ubrou t 4 e COMMUSTC:B comDu4tes the heat-er vol ume.

10) 'SuWr o utIn-e IP2L'* computes the wMaste heat bolrvolum e.

1) 3 ubro utine "ONDVCL computes -.he condenser volume.

12) Subroutine STMT.A3 is a computerized version of the szeam

tables. Reproduced from ref. 15.

60

Page 66: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

0 1MENSION CR(3O) ,SATLIQ(3) 7??E'i(3 JP(2) R( I IREALREAL ~CHNPBMA~PM,,I, i.pR.EAL LHV,M,M1l,M2,NTUJCOMMOM /S74/PRESS,TZAP ,Q UAL, SATL:Q, STEAMCO MMCN HRN,4,3PZ3,,7S7H;A:ICOMMON 1/0'A/ JH0REG,DHOCLRD HDHTR,-HORECCOMMON /PRES/0PP\.4H8 ,,P?RcG,DPPC'. R,-PPcf-O PHI ,]PH2 , FH7COMMON /CCB/P4GJPRPPiE.CH,?LE

i 13 FORMAT (7F4.3,5F7 A6,12)

15 FORMAT(..,6.3F2F.)

SO TORMAT (1(>F6.2)

Do 200 t,PRCr T)

T22EX(P(Z/.247S)CALL. ITER (72,Z)

T5=EXP(Z/.2475'"'ALL ITER (T5,Z)!F(T2 .GT. TS) GO TO 3076 -T':) ER* (TS '12)T 3 =T2+ ER'( T- T2)GO 1 O 40

30 76=TS73=T2

40 LzTIj

!F(L2 .GT. '16) GO TO 50GO TO 60

50 L2=xT6-(t6-TI) /10.60 TPP(l)=L2

WRlO.

DO 70 Jul ,11TSF-TPP(lj')-OTT3S*T6-OTT-TSF-460CALL STNTAB (2,T,O.)PSF=PRESSHSF -SATL IQ (2)T-T3S-460CALL STITAB (7,PSF-,T)H.3SsSTEAM(2)S3SmSTEAM (3)TaTIS-460

61

Page 67: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

CALL S71TAB (2,7,3.)? 4S=PRE s SV S=SATL!Q(41S=SA.L!Q(2)SIS=SAtLlQ (3)CALI S-71TAB(9?,3SH4S SSEAt4(2)H4SZH3S-~IIT IS* (H3S-H4S IS)CALL S-iMTAB (8,?43,H4S);=QUALIt4S=STEAi'(2H2S YSN1SI SwL'(P SF-P4S)SZS=H IS+ (H2SlS-H3S) /NP I ST2SzT1S+15.

BNWHw(C2(T)~C?(T?(2)) )H3S-HiSF

CA LL I 7?2 (77,:Z)

IF( .E.) GO To 68!F(T7, .LT. TI) GO 70 75:F(PSF .L7. PMIN) GO TO 75IF(WR(j) .G7. WRI) GO TO 63F(X .GT. .37) O0 TO 75

58 A RI=WR(J )

70 CO I T INU EGO TO 76

75 :C(ABSCTPP(J)-T?P(j-l) ) L11% .1) GO TO 75LI=T?P(J)

GO TO 6076 4B=CP2(T4)-C?2(71)-C?2( TS)-C? 2(72)

Q:,N=C?2(T4)-CP2VT 3S7--(WB+WR(J )/Q :N

M S B*MBQB=4BQI4CALL HEATER (QB 71 H,-7H,,4C?i,4TH,PHI,T3,74'CALL DHD(PR)0 HOHT=O HOHTRK=1

777 CALL CPP(T6,T7 ,PR,OP,E?-.,T2,T3,JP0H,T-4H,T5-H,-T4,?R,P, B,MiA* MF K~)

G-1I.33

PZWP* (PR-OPPREG)V-1./ARHO(T4,P)VIINTUR3=0 .0CALL TURVOL- (M,M6,',TR,74,VMNTURB)G-21.39

ohm-.

Page 68: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

(-/ ,G-(- I ., -? 7PHP-&4. '7* (PRH-O PPREC)

,42MA+MFVHTRT'jR310 .0

CALL TURBVOL(,MVHT61HRR37TI7S/T2SP2P4S,'PSF

YSIYmTUR3=0.3CALL TURSVOL (,1~4,,3,ShU3

VMACOMP=0 . C'CALL COMPVCL (b.9, ?,lh2P

VHTRC0MPuO .0CALL CCM'P'ICL (M,!!A,1 ,PR4,'H7?C0ZYP)on.125VREIGEN=0 .0CALL REGE% (TZ,T3,T,6~ ,JB,?15PE2DCE3IE'/RECUPO .0CALL R.ECUP (27HTHTHH0P ZM 1 ZPS 1E'P

YCL RO. 0CALL COOLER -7,71,',P,D,.TP,MB,HCLR,PPCL.3,iCLR)DPPRGs0PPREGOPPRC=OPO!RErOP PH E=0PPHO HOHR-0 HDHTROP HE2=0 P H2

VHTR-O. 0CALL COMBUSTOR(3,4THTHPPR,, ,?H>A FIH 2

CALL WHBVOL (MB ,MS ,76,T7,MWHB,. 2S,H3S,OPPWHB,''HB)

CALL CONDVCL (MS,X,'IC2NO)VOL Ta VMNTURB*VHTRTU RB+VS TTUR3+VMCO!4P+ VHTRC OMP+ VIREGE N+VRE CU P

* VCL RVHTR+VW~H B+(C ONOlF(K .EQ. 1) GO TO 78F(VOLT .GT. V1OLI) GO TO 81IF(UDPPC'R-.OO2) .LT. 0.0) GO TO 81

78 KzK4.tVOLlaVOLTVl~mVCLR'I 2xVWH BGO TO 77

31 VOLTxVOLI'ICLR=V'J

Page 69: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

=2 RRMAT( .', '3RAY70N CYCLE: PRESSURE ~T3',~.21( .~:?R E U RE= X, '7(,'TTAL ? RE SS'R E DRC P= z 73 .2," .1 ''S :.

(lb/s='F62/OX'STATE 7 P 1 e2))'R :TE ( i,33' 71

'.R:TE(6,34) T234 0RMAT( lZX ,'2' ,5Al,'z I

AR41T7(6,35) 7335 OA(I,3'6,61

', .'-7E( 6 , 36) '7436 =-'RM AT 1 2X '.I' 6,X,5,1%j

'2.:TE.6,37) -.537 ;7 R MA T ( I X,1' F~ 6 .

~4RTE(6,38) '7638 Fl0RMAT(I2X,'6',5X,'rj.j2

39 FORMAT '-2,, '09' =6,F. 1)'ARITE(6,90) ~7

g0 FORMAV(L2, '7' 65X, -6 -1//5X, 'CCMPCONENT DP? DHD 1L~: tWRIT(S,1) PPREG,DHDREG,'REGEN, El

91 FORAT(7X, 'REEN , , X1 F43 .1, 2X, '~= 2WRITE (6,92) IMNTUJR ,.NT',

WRlTE(6,93) nPPCLR,DH0CL?,VCLR93 FRMAT(6X,'C00LE.R',4X,F4.34,F~z4.3,3X,F5.1)

4RITE (6 94) VMNMP'C

W4RITE(6,95) OpH1.95 ECRMAT(6X,'AT' ,4,F.4

ARITE(6,96) CIPO 4HB,14WH396 -CMT6,'OLR,4, 4., X'F= F 2/)

ARITE(6,10O) PRH,OPPH,A,'1F100 FORMAT(1X,'HE.ATE-R CYCLE: PRESSURE 1.T~ ,F.XX, "rOTAL

*PRESSURE DRCP=',E.2/'X,'AIR FL3W41bm,-'s,=',F6.2/'. FE:*FL3W (1 bn/s)='6 .2 /I'OX, 'STATE-- TE.'P d 9 R))

ARI7E(6,101) TIK101 FORMAT (12X, 'I h-5X,F6 .1)

WRITI(6,102) -2H102 PF3RMAT(12X,'2h' ,5X,F6.1)

WRITZ(6,103) T3H103 FORMAT(12X,'3h' ,5X,F6.1)

417IE(6,104) T4H104 r'ORMA7(.12X, '4h' ,5X,'F6.1)

WARITE(6,1Q5) TSH105 FORMAT(l 2X, S h' 5SX, F5. 1)

.RTE(6,106) T6H106 FORMAT(12X, 6'5~',5X,F6.1)

A4ITE(6,107) T7H107 DRA(2,7iXE./5,CMOEJ PP JfIO 'Lcj 'ti'

Page 70: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

'-H T3H-24) (75Hr-i211

',R:Tc_(6,110) 'PPREC,3HOREC,VREC'U?,EzR.110 FORMtAT(7X,'RECUP' ,4X, .F4.3,!X, F4 .3 , 77.1 , X, =

ARITE(6,111) 7HTRTURB ,:'TPH

~R17(5,12) PH2,0H0HTR,'lHTR

'AR17E(6 ,113) 'IH7RCOMP ,MCH

'ARITEc(6,l20) SS,:20 ~ A ROM X, 'RANKINJE CYCLE: SATU.;ATlCN F6SUR~ ,F.1X,

'STEAM1 FL~ ,s= .2,"-X,'~2 "AT:= Fg . ?/'1 TE* TZ F(deg ) PRESSURE(si)')' RTE(6,l2') Tis,?4S

21 "VA1*T2, '1' 5X,6.,3X,F6 .).,-R:TE-(6,:22) 72S,?SF

M2 FoP A(12x , 12 s I~,613,&AR" (6,123) TS1F,?SF

123 O~RMAT(lZX, 'SF ',sx, = ,.,3X,%z .1)4RITE6,12~) TS,?SF

124 RO0RMAT(I2X,'3s',5X,P6.5.,3X,F6.1L)WR:TV(6,125) 71'S,P4S,X

WRITE(6,128) '1\JHB12^8 FORMAT(5X,'OM~P0NEJT 'CL(cu )'6x3CL ', ,F.

W4RITE .(6 ,129) '/S7TTRS,MTlS

R:7--(6,13o ) iC,3130 PCRMAT(SX, 'C0N0ENSr'_ ,4X,F5.1/)

WRITE(6,135) N7135 FORMAT( '1' ,'SUMMARY:THERMAL E-z 53

136 FORMAT(9X,'HEATE'R EFF=',.c5.3,' (~~'F.,)SFCzMF*3600. //P'MRWRI TE(6 ,137) SrC,;IOL7,?WR

27 F0RMAT(9X,'SFC(bm/Phr)=',F5.3 1'9X,'IOL tCTAL(CU jt'F.*9X, 'POWER(HP)= ,F7.1)

RANKIN4E=WR (') /WB

'138 FORMAT(9X,'WORK FRAC BY STM CYCL E'F 5.3)200 CONTINUE

FUNCTION CP1(T)

RETIURNENDFUNCTION C?2(7)CP-27*-'.7E1 'r*)(.0E8T*)(.7E1* *4RETURN

65

LI

Page 71: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

FUNCT2Nll AMU(T7) 1

F"'N C T ' 0N AK 1~ ?'

4= .532 ;-E-

R ET7URNEND'N C 7:C.N APR (T,

C? = AM?(X?1IU=Ai%' J(T)X'K=AK( C!, ?)APR=C2wX,1U /X KRETUJR\NE ND

FAC7:C"N SC 1AT7ACS*.3-P= I24 '- 75E'*l 5 , '2- :

R E7 URN

E NO

SU8.'R0U7TNE T:TER (T,X)10 T=

7-EXP( 'Y+.2475 *LOG(T' -C?(T)';,'.2475)iF(ABS(T-71) .,.7. 1.- GO 70 20GO TO 10

20 RETURNIENDSUBROUTNME 17ER2(T,X'

:F(ABS(T-TI) .L7. 12E-2) GO TO0 20GO TO 10

20 RETURNEND

66

Page 72: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

SUBRCUT:NE AEATER sriJHN?,TH?:T,4IcEALCOMMON /HTH,,aH ,?RHLuiV-12900.'r = .0922,7H=AC ( T71 ) "T714

' N=A-( (>IwH )rH73HA)w9w..)

NIAMF/ (FAPH272H=O .0'16H=0.0

10 C?7'=AC?( /THTh:2.)

?RM(M/w*(4CHC? 7144

k= ( 1~FAwPHU I.,?. i .+C?C*T!',* (?RHw( c/'C-~Da +IFA*PHI) *C?Tr*T7 H*P R 4*-(C?T,'\J?)

-;H6=T7Hw(T7.N)v( .?1~?F (ABS TMll-TZ .LT. 1 GO TO' 2 0

:6F(ABS(76'd-rH6) LT. () 'G TO 207T2H76'H =T'H6GO TO 10

20 72H=TH2

r-3H=T2H+(i4+ IF,'MA)-(7--rH-76-H)ETIJR4

SUBROUTINE OHD(?P)COMMON! /0 IA/OHOREG,>iHOCL.R,Z-HOHT4 ,2HORECDHDREGx .55374.0933*PRIFiODHOREG .GT. .95) OHQREG*.95)HDCLR-.076*.O92*PRDHDHTlR= .2144 .O48*?PROHOREC- .65RETURNEND

SUBROUTINE OPP(6,77,?R,)P, ZR,T2,T3,3P94,THw4,TIH5 74,PRH,?'A,MAA

REAL ,AMFy1,COMMON ,'PRE S/CPPWHB,DPPREG,DP 0 CILR,DPPREC,DPH1,JPH2,DHDHT

67

Page 73: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

DTG.=T6 -7OP P4HB-FLOAT(W)w.202OPPREG- ( .125-.0284*PR) -OP/. 1:rF(DPPREG L~T. .01) DPPREG=.OA'

~F(2 .Q. 3) PPREGm0.Z

Thz(TH4+rH5)w -5

P2=14.7*(PRH-,)PPH)

M2-MA-t-MFXM,'U 1=AiU (2.iXI.'U2=AM4U (77)X(RH 01=ARHO( ,? 1XRH 02=ARHO (T '7 ? 2)

0 PH' =PH42*HDHT*3 /3OP PC L P=O P-0OP PW H -0 PP R E G-0 P HIOPPREC=oPPMi~oPH2 .l

SUBROUT:NE TjRBVOL dGM1TRTVl)R EA L ',N,.<(II ISrF4.0JT=850.

/IA=0.9Cz2 .0PI=3.14159RH4OM=I5.12A=9 .63E63--95.14ALHA=l .2Al122.5Xl= .307K 11=3.3 9E-3THE'lA=O.8

V8=SQRT(1.*Y(HI *UT.G * (. VA*2)

C2Z2*(A.B*T) /(SF*ALPHA)032**T*i..~w*2*~rG~1)/(SE*ALPHA)

H= (VAyB ) /20.

Yl1sVA00 100 J-1,21

68

Page 74: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

:PF(Xl -EQ. 0.0) GO TO 50SUM=SUM*(X1-X2) ,'2.

50 X I =X(2

:00 CONTINUET-=H*SUMVIOL=2.P *9 * 2WCL"!RETURNE M 0

SUBROUTD4E CO'MP'VOL (,', ? VLR E AL M1 , ki , K::.,1Sr'4.0' T=8 50.PH IT= 0.5

^.L=2.0P'13.14159RHOM=15.12ALPHAI. .2

Xl=.0SKUl=4.93E-57HETAzO .8SIGMA Y- 2 .S tE DRTzSQRT(M*V/(PHIT*UTP*(..-VA**92)))

C.2=-1*THETA*RHCM*IUT'**2/2.C3-2.*SIGMAY/(SF*ALPHA)

H(VB-V) /20SUMMO.0X1=o.0

0010JUl,21

MNCl*( (.-Yl) /(l.+Yl) )CHT. 4*3*~)/P:*v7225!*.t2

*(3.*Yl)*(PHIT*,+.49*YlW*2)Wr(PHIT*n+7225*Yl*w2)*w (-2))0D0- -2. *C2*Y I

IP(Xl .EQ. 0.0) GO TO 50SUM=Sum+(Xl.,x2) /2.

69

Page 75: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

Yl1=Y1+-H100 CONTINUE

R ETU RN

SUBROUTINE REGEM (T2J-3,T5,76,P,J,'-B,?R,JPPRE,DHCRE,'/CL)REAL MB7=T5/2+T'/2?I=P*PRSGC-M A -A 5 GM A( 7 ,P ITF(72 .EQ. T5) GO "70 990 T;-'= 3 -7 2aAMA 6803 9 )*.41 0254r0w11 -07.,DHI=C?2(75)-C?Z(T6)PI=3.14159A =P'./ S1 4 *AkA l' *.'' )" DH r . -

**w*2.4 1 ( I PR*( 2) -DH R EG*-.3) )x* 4 1,935.3V0L=AREa*0P9REG2*w( -46)

99 RETURNEND

SUBROUTINE RECUP(TTTH5,PPP,,A:FJRECLREAL MA,MFT=T5H/2.+76H/2.

P=14.7*PRH1S GMA24SIG aMA ( T , ?DTU4-T3H-T24I DH1=C?2(TSH )-C?2( j6'H)PI=3.141590HOREC .65CM-MA4MF

***2.41* (l. +HDRE*-(-.3) *PC**2)**Wl *35 .3V0LzAREC*0JPPREC**(- .41)RETURNEN D

SUBROUTINE COOLER (17,Ti,P,D,T,MB,HDC-R,DPPCLR,VICL)REAL 4PP,NTP?,MBIF(77 .LT. TI) GO TO 99TA-T7/2.+T1/ 2.S tflMAASIG4A( TA ,?TCI=530.TC2-540.0 -lM=-( Tl -C: I-T7+T C2 )/L OG ( TI-T Z1)(M -T C2)GAMA-(68O3.*O)**(-.41)*( .0254*0)**1.18*( .56*DTLM)**(-1.-lU)

70

Page 76: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

OH1=C2(T77 )-C?2(TI

r'M=TCI/2.+-C2/2.RK-AK(7A,?)/1.T-4R'MU=A*MU (TA) /6 .'E4

RPR=APR(TA,P) /6.4NPP= .30RRHO=ARHO(TA,P)/64.0-RSV-ARHO(T7 P? ),,64.0ALPNA=RK* RMU*w (-.. 3) 'RtM** 8*RPR-* 4

ACR9/.SG4'*Al!A(%6 -2326.2

99 RETUIRN

S USRCU T INE CCMBU STOCR ( T3 ,T4 74HI, TE~ H P R J 8>l ,?RH,A,2-F 10CLREAL MB ,MA,:-F ,MC OMMON /CCMB/0PPRG,0PPRC,DPPH E,JHOHR,JNE2T-T3 /2+T4!2P=WP*W(?R-oPpRG)SIG4A=AS I GMA(T, P0 TLM-(TS H-T3 -Tr H+4/,L OG T51- T3)(4H -T4)GAMMA-(6803.*O)*'w(-.41)*( .0254,r0)**1.1S*( .6DU~1(14OHI=CPZ(T4)-0'P2( 11)?t=3.14159TH- T4H /9, +TSH /2TRH-(1. -0PPHE)*?RHPHfl4.7* (PRH4-OP 'PRC)RK=AK(T,P) /AK(rH,PH)R1J=AM U (T ) /;lJ (T M,M=MA+MFRMUMB/MRPR-APR( T,P)/APR(TH,PH)ALHA=RK*RMU**(- .g)*RM**WSWRPR**.4

*(1.+ALPHA*OHDHR)**141*DHDHR**(4121)*35.3

V0LzAHTR*DPHE2*w(-.llI)RETUNEND

SUBROUT:NE WHBVOL (MB ,MSz,T6 ,T7 ,,N'HB ,H2S,HS ,JPPWHB ,VOL)REAL MB',MS,NVJHS ,'ITUTT6 /2+T7/2CP-ACP(T)CPS=2.0CRZMS*C?S/ (MB*CP)IF(CR .GT. 1.) GO TO 10CM~INXfMS*Cp S

71

Page 77: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

GO TO 201.0 CRa= 1. /CR

CMI lIzC?"M820 P S-4. 0

*05) )) )

ETU RN

SU3ROUTINE CONOVOL (.'S,X,ViOL)REAL MS'IOL=MS*X'c27-

72

Page 78: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

5SBROUTINE S7'hTAB ('4I,Xi,::):.ME!ISIQN tALQ3,TA(3,O~T27

COMM1ON /!STN/?RESS,TE>"P , '4UAL, SATL!.Q, S7EAM:ATA ICE~( ,13) / .22082221E+01, ~ 2W- .69573391E+03, .6046426'E-r01, .?1COCOOOCE-01, .5~~.2-,.--9S3682E+00,-.522799sa-oo0, .911l4895BE-0M, .i I-'1363 2 E -.0062S-849E+2O, .7259572CE+0O, .145 8 6 9E 2 .240 1:E-C3

.5524EC3, .2"00000OOE-01, - .74' 34CE-' ,5, .2232-* .654891.'E-04, .91349306E-04, .1.5679922E-02, .2 5C2253CE-ClI.3O7O69!gE+00, .216Z41443E+01, .A496061SE-02, .17926712E-03

DATA (C-EFZ'T(l),>= 31, 60) /.-;C041139E-1-.;2::2-669E-:

,.815368a4 C-02, .659267E-0M 2COCE2,.2~-E2

*.542515647--10, .4,-797-22E--07 ,-.301674, C5.335"897-#01 , .- 3010153E 03, .5 '97377-C!,

*.927 565,13E- J. 954706 r6E- 15-- .29C0-7 -Z--12, .353-1E- 292'S-1*.39 -26598E-08 -99 6131 2E-06,-.59157992E--3, -,~42 :C'20

DATA kClcEFFT(T),I= 51, 90) /.5E0OCOO03, .218480-16E-03~*-.1172Z2587E-21, .56553573E-19, *7265-7-.34'.2--

.2745550-5E12,- .-1333032EK0,- .31160233E-C6, -. 1 156Z5 IE0r3

.7'857180E-22, .33225;;06E-19, .3C07 5 51 E-I3 8,-.7Z3986::1 -5-.7067233E-14, .90114201-11 *8462-9, .371298%07

*,.1073d2O3E-04, .2176269IE-01, .25000000E+o3,-.73459129E-25.v 3CO2-3 *51Qc-0 2572926 -E- 3,-DAT A (COE~( 61 142) .0506309E-1.3, 3639-i

.15987770E-0, .81264440E-05, .17002539E-01, .4~5GCCCGE-CJ2

.55000000E03, .94743147E-13, .249714173E2.6, .283C 0288E1-!I

.12399614E02, .'2798551E+01,.54927377E-03, .25000000E'03

i17548001EE12, .23202424E-09, .36145967E-06, .12506461---03..015-0974E+01, .21948036E+03, .45000000E-03,.5000E'/

DATA (C0EFFT(I) ,I=121,450) /-.21134438E-20, .15327038E-13.6917S5E16-.18345822E-14,-.664174LS8E-12, .1458E63E-10

.59598410E-08, .4557591SE06, 12325099E-02, .714969797E+00

.49239634E-17, .152503SIE-13,- .d4068320E-12, .*0479899E-08*,-85g56496E;6, .14285709E02, .3675340SE-00, .1700COOOE+01

/.896109E+03, .15699797E'03,-.20213S42E-603,-.-1865017E0,Z,OATA (COEFFT~t),1-1514180) / .2.5040455E-'03,-.19050547E?-03

.11199490E+04, .1SOOOOOOE,:-14863585rE'06,-:i341a1819EO06

*.35122466E-iO4,-.14234083-E'04,-.6892S827 E-0O2, .206826E+0"*.30000000E-01, .13000000E-04, .7J0848990E-01, .. 6EO7788E-02

.52122736E+O3, *-.11682947E,-1, -.120015-88E-O-0, .2" I'991E 01*.1234094-4 .135r5136E-03,-.!5Q99314E-O03, .30OQC0O0E-01

.18OOOOO0E+01, .2-2291E+02, .18776649Et-03, .3208CE504E-02/

S-_-.-.--74 .17 3-

Page 79: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

OATA (COEFFT(lI)4=131,210) -.3 2 141408E-OL, . 124 49 1 3-0~,.1640083 E+O'4, .18716657E-02, .63973873E-02, .207' 981'-*,.1300000CE4-04, .1300000OE+01,-.64376980CE-J5, . 6 4138 C 3E -

.388924E*0, 1034060E-05, .7225001~-O3 --.91360,"--:6,.941697'E-0S,-.60892120E-02, . 192EO1 .3.O CI'B *i00000E+0l,-..33101208E-03, .2:5561916r+01, .51500291'':3

*,-.772366l8E-03, .367-5365CE+00,-.2545O1 21E+03, Z252-19707E-v"2*,- 1 427106E+01, .61477766E-,03, 10 0 ,QATA (C0EFFT(i >.211,237) / 0., Q0. 0, 0.03, 0l.,3.

w, 00,00,OOO0,0Q,0Q,0.,0.,O.,0.,0., 5000oooE-03~.14O0000QE+O1,-.l54782S59E-04, .19351556E-01, .2113309E-01~,.23329644E-04, .11l .93791El-02,-.: 3:392O8E+02, .5528602: E-05,.259299;--01, .55101150E-1

Y=Yi

L .N K=0PqE SS= XDELTA1=0 .0E7RROR>0O.OEIR0R2=0 .0FC (N-6) 1000,1000,1030

:0o0 IF (1) 1020,1020,10101010 L INK-1

4=11020 IF k'X-COEFFT(N)) 1040,1040,16201030 NI1040 GO TO (1015,013,c'9403G,1050 X.Z

Nz 21060 TEM1PzX

GO 1O 11901070 PqESS=a(-";)

GO TO 11501080 11=2

TOLER= .005GO TO 1100

1090 11-3

TDLER= .00000 51100 Hay1110 LINK=21120 l4a 11130 X*ALOG(PRESS)

PLOGKXGO TO 1190

1140 TV=-Z1150 XmTEY!P

jai

7".

Page 80: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

4-4411 c -o19

160 SA L:Q(0=-Z

:F (J3-)) 1190,119O, 11701170 IF (L'.IK) 1640,16a0,i3001180 H-X

S=YX=S

iF (X-COEFPt('.))20204 01200 Kx'21210 1~-(

ARG=X-COEFFT( I

00 1220 K=1,10

1220 2GO TO (100015,1016 15,40,

1230 TEMP=YGO TO 1300

1240 ER.RH-STrEAM( I2I F (A8S(ERR0R)-TULL.?) ;0,1250,1250

'250 IF (ERRORI) 1260,1260,12601250 ERR0R ERR0Rl-E~lR0R

1 F (ASS( ERRCR2.-CL'-::) 290 1290 ,12 701270 SLOPEsDELTA/7-R0RJ.1290 DELTA1~SLOPE~lERRGR

ERR0R1aERROR1290 T2E1~LA1300 IF (PRESS-COEFFT(l2) 1320,1320,13101310 IF (.OO199SS.91)RES321TP)132D,1320,15201320 T- .5S555S556*TEVP+255. 38223

Tt.OG-ALOG( 1TAII.0/TC3EFFT(222):,TAU*TAU*l36210 .06COEFFT(217) -EXP( COEFFT(222)+7.8791476-TLOG)COEFFT (221) *162460. *TAUCOEFFT(2 20) =126970. *TAUCOEFm(21)s=xP(l49 .27765-23.*TLOG)COEFFT(2 12) t. 39-COEFFT(2 171C0EFFT(Z11)-82.546-COEFlFT (221).OEFFT(2 10) u.21828*T-COEFF 220)COEFFT (209)-COEFFT(219)- .0003635*TCOEFFT(222)-(COEFFi,(222)+COEFFT(222)+1.O) *COEFFT(21))COEFFT(217 )uCOEFFT('212 )-C0EFF11(222)COEFFT(Z 14) sCOEFFT(2 17) /COEFFT(2 IZ)COEFFT (216 COEFT(211*r.EFFT 2-)4l23COEFFT(U2 1)COEFF T(2 15) -COEFWT (2 10) %.OEFFT(2 14)-.5*OEFFT(2 20)

75'

Page 81: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

COEFT(214)sCOEFFT1(209)*COEFT7i(24)*1.8481538wKC0EFF7(21L9)COErFT(22 1)2.50'vC0EFFT (211) -COEFFT (215-'COEFFT(220) -. 25*CEFT(210) -COEFFTZ 1.5)CCErFT( 219 )=.07 592307 7*COEFFT (209 ) -C0Er''F7T (214)COEFFT(213)=( .0037299965*T+14. 531913)YT#1-7906.313+472.2193w---h0G

'1330 Ps .068046190*PRESSPLOG=-ALOG(PRESS)COE=FT(213)-CCEF :T (212)*TAUCOEFFT(226)=C,.'EFFT(2 13) *

CQEFFT (224)=COEF7"(225) *CCEFI T(225)COEFFT (224)=C0VE-T (224)*rET22)CET(25C CEFFT(226) CEF(2)* ET(13oE=FT (22.3) 2P*TAU

STOEAMJ2((CET29 oFT24cE~(:' ~c

*COE--T (216) )WCOECF7'(226) CE T (217) )*P-CZJEF T ( 2 8) )'.043S55685'STEAM(3)=(((CJE*T(219) "C^EFT(2 2,1) -CklEFFT(,2 20) )wCEiT22)

*COEF-rT (22 1) ) wCOEF (225) +CEF7 T 222) )"RCCEFFT (213) )CCE k'22 3)*+4. 5 5504*PLOG) *(-.02419825)QUAL-1.0I=L INK+1GO TO (1640,1640,1340,'240,1340,1450),:-

1340 X=STEAMTIIF (H-X) 1350,1640,1360

1350 Y=S ATLTQQU:)QUAL= (H-Y) /(X -Y)X=1 .0-QUALSTEAM(1 )Z UAL*STE'AM(1 )+X*SAT-L:Q(1)STEAM(WAJ)=UAL *S tEAM(J J) +X*SATL Q(J JI STEAM( 11)2-HIF (LINK-2) 26a0,1640,1460

1360 la(II-1)*11+154J 21XmP LOG

1370 00 1380 K=209,219

1380 12+

Z-XCEFFT (2.)'CET(20SLOPECOEFFT(21)Z

ZUZ*Y+COEFFT (209)GO TO (1390,1430,1530,1540),J

76

Page 82: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

1390 L IM K3140If 't-t7P) :3C0,1300 ,1.400

GO TO 13001410 J=2

IF ("-Hi) 1420,1370,13701420 1=187

GO TO 13701430 DPOS=SLOPE

P.RESS=EXP( 2)PLO G= Z:F (1-227) 1520,152041440

:440 ',1

'3=3GO TO 1i20

140HD=H-ST EAM (Z)STEAM(3) zST EA;(3 ) 0I/(T V"+459. 69

1460 0S=S-STlEAlM(3)DELTA3.=STEAM(3 )-E-RRORllF (ERROR1) 1470,1490,1470

1470 IF (AS(OELTAI)-.000005) 15C0,1500,1480.480 DPDS=(PLOG-PLCG1)/DELTA!1490 PL0Gl=PLCG

ERROR1=STEAM( 3)3.300 PRESS=PRESS*(l.0+0S*DP0S)

1510 IF (ABS(OSI-.OOOCOS) 1.:40,1120,11201520 LINK=5

Y =S1=3.98J-3GO TO 1370

1530 TEMP=ZDTDS-SLOPEX=PLOGYCkl

J=4GO TO 1370

1540 DTDH-SLOPEGO TO 1300

1.550 TE!WVuTEW+QS*0DSIF (A8S(DH)-.00S) 1610,1560,11560

1560 LTZu0H-ERR0R2IF (ERROR2) 1570,1590,1570

1.570 'JF (A8SWEL'M2)-.005) 1600,1600,15803.580 OTO Ha(TEMAP -TEMP) /DEL TA2

77

Page 83: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

1590 TEP I =TE 'PERROR2=O 0

1600 TEMP-TEMP+0H n TD H1GO TO 1320

1610 IF (ABS(OS)-.300005) 1640,1500,15001520 WRITE (6,1630) 1,XI,YI1630 FORMAT (.3,2E-4.3,13H OUT OF RANGE)

ST CP1640 RETURN

END

78

_Yw

Page 84: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

3

79

~*1

Page 85: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

. cRK--.Gr FZSS .= 3" C T.A. L !F EZS 3 U ,E ' , . - .7 F

,.,,.,,. .---. 7

STATE T M(deg R" MA R Y :THR, 7 77:, D- 0 H -- -, =O . --.,-. -. _.- -

2 675.7 SFC(Lbm/M?-b }=.5723 68.3 '/:TrCTA2*.

2c6o. o2~~~~ 7C40.2 ¢,- ( ? = ) C

6 311 .2p ? 7e4.07 77-3

COpNENIT ?? :D O'CL cEG .078 .7L~ 15.5 =0.3

CCCR .CO .260 C Z9.1. .'--39 .3

"C't FRE3SCR 2 .3 EF ;= .

3Ac .oc.01

.....CY:E • RZSRL RAT:: = *.79

S TA TE Z T.( deg R

i h 535.02h B35.2

1h 727.-4h 0 58::h6ah 9 '5.711 740.0

COMPONENT DPP Z-M VCL(cu ft)RECUP .321 .650 2.6 E 0.96

TbJR3.NE 1. 1HEATE--R .012 6 67.

COMPRESSOR :6.0 EFF(?)=0.35

RAXKA.NE CYCLE SATURATCiN zRSSE= 46 ,7STEAM FLOW(Lbm/s)= 2.96FLOW RAT:C=o. o67

STATE T_.4( deg R) PRESSURE(psi)Is 540.0 0.;2s 555.0 56.7S? 749.0 56.73s 776.2 56.74s 54O.0 0.5 UA: - .44

CCMPON"NT VCL( cu ft)3OILER 162.3TURBINE i4. 3

CONDENSER 68.3

80

Page 86: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

.'RK-NG .?+R-SSR+E =!35.3

STAT T : (deg RZ S 3 -0, CF-=.-12

-- .. 0 '

z 769.8 SF0 ( Cbri/?-hr) ' I.-93 5 "CL -C-.8cu :, ; ,, 2060.0 = c j RP , =2 5C.

5 .,.43.0 6,RX FRAC : -,.-.

6 374. 7?? i4- 1 2

,.,c,+,. N-,., IT+ -,? i'm I+.~ \+,37T L7c3 :1 5? -? E0~.REGEN; .Z50 .3.37 tl E?0£

"-ATER .0CC4

A C Y C .026 -F ? .10

TCTAL ?RESSME =3

A:R (-(-MI/s) 40.99FUZ L FL0' (Lbm/s) 3.40

STATv T!? ( d eg R)-fl. 535.0

%I 335.2-1 1586.5h Lo-32.95h 6'•38.8

o 'h 5 45 -07h 760.0

COMPONE PP?- M- VCL(cu ft)

REClP .310 .650 2.2 EFF0.930.9 BFI(N)O Z09

,=AEj 022 .358 2s.6ZCCPRESSCR 12.7 EFF(?) O.- 5

RANKINE CYCL=- SATURAT10N ?RF!SSIRE = 128.0STA .T". (:bm/s) = 2.'-8FLOW RATIQ=O.008 6

STAT! TEIMP (deg R) ?RESSUR E(psi)Is 540.0 0.52s 555.0 128.0SF 806.2 123.03s 839.7 128.0

4s 0.0 0.5 UAL=0.319CoMPCNENT VOL( cu ft)

B0ILzR 88.3TR3 IXE 3.4 vFF(:S)=0.88CONDENSER 55.5

Page 87: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

3aAVTCI C'YOL ?RESSt.'--- RATC.CRE.21G ?RZS3U*.2 = 1 35 .

TC"'' PRSSULRE 7RCP=I0MASS .T¢ (~/)-3.

STAT.E TE",4P( deg a U:,*,k,.-L ru p ..... -.

1. 540.0 H--T0 T=.933 AT:=7c ""2 843.93 . 7CL TCTAL(' .

• 369 *.CRX F'3A0 =v_ z_:, ?" -2-C .C6"5 927.0

37 8?6. 3

7160.f

C.' c Z'=c .0TL 32 ,6EFF ? =.9

nEA. :,3 . OC3

2A --R 10~ Css c 3 ~

ITTAL ? R. S Z T Z7Rc4 3A:R FLCW'(Lbm/si'-39.59

FUEL F-C'i(Lbm/s)= 3.29

STAT .. E.. U, ( de g)Zh .35 .2

3h 1494.5

4h 4855.05 h 1353.8

7h 760.0COMPCNaNT DPP DIM VCTL( cu ft)

RECUP .299 .650 2.1 EF=O.92TURBINE 0.5 EFF(?)=0.89IrM ATER .033 .406 17.7

COMPR ,SCR 12.0 0 (?0,5

RANKx:ZE CYCLEZ SATURATION 31.ESSUR 199,9STEAM ?LCW(Lbm/s)= 3.19-LOW RAT'-C=0.0133

STATE TM- P(deg R) PRESSRZ (psi)Is 540.0 0.52s 555.0 199.9S8431.8 199.93s 892.0 199.94 540.0 0.5 ZUAL=C,.0

COMPONENT VOL(cu ft)Bo.L 119.0IJR B ZIM 5.1 .. (i 08

CONDENSER 70.5

82

Page 88: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

BRAY TON -0Y02 ?.-SS URZ R A:T .0:OING ? -SS'Z-E135 .0

T CTAL ? R _7S S M CaRC P .:D

1 540.0 T~~.3 :~~.o2 905.83 1 1i. VCL 2TAZ(Qlu ~t56

4 2,260. 0F li R:?25c0C-/5 . .. CR.K 3YA :ZTw~~.:6 9 72.:1

-,76.i7 C4.9-

0OPOT 2?7 P:D.0CCLE 070 .5

ICC?RES SC R 15.7 P?~)cG O 3

HEATER ICYCI2Z PR rS '. R T:0~ .79TOITAL -rissLR7 ZR0 P43

STATE T( deg R)1.11 335.0

2h 335.2.1h 1"27.4~4h -"798.9

6h' 945.^7h 760.0

c cMNI 0DI T -?P 7 CL~cu fRET? .289 .65:0 2.1 -EF?=0.90

TUR3BI ME 0.3 F??)0 . SEATER .044 .4.54 12.4

COMPRESSCR 11.5 EF?)=0.38:5RANK14"a CYCLE: SATURATION P.R--SSt.RE= 200.0STEAM F'LO'N(Lbm/s)= 5.21FLOWI RATI0=0.0245

S TATE tEYIMP(de-- R) ?RE-SSUR7(zsi)13 540.o 0.52s 555.0 200.0SF341.8 200.0

38 937.1 200.0540.0 0.5 QUAL=0.8Z6

WOZMPNMNT 7CL( cu tBCILZR 298.1TUR 3 11E 10.9 ?(S)0 .8a

C 0 NlE 1 4s E 117.4

83

Page 89: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

BRAYTCNi CY.S RESSL'2r RATI0 6.00'CRK ;G ?RZ SSUAzi35 .0Q

TOALPRESSURE- DRC?= .l,,ASS FLC0,.1Lbr/s)=19?.00

1 '40 .:o ?A TER ZF'=0 93 PH.9C2 959.4

3 1343.8 /C.I T 0TA Lcu f t 79.02060.0 P .

5 ~~ 196.2 ",7R FRAC 3Y ':E01i6 io11.8

'7 '35.-3

~A10 .900 0

KA T S . 0Y01Z PRESSURZ RAT!C~i .79TCTAL RSSR ZRP= - 3AR .7,C1W(:'m/s)38.l?FUEL~ FL %OW("rbm/ s )- 3. -17

STATE '"AP e~Rih ~5 35 .0

21- 335.23h .1375 .44h 4755.8

rh 1443.86h 94.0

7h, 760.0COM14PO0NENT DP? DrM VOL( cu

RECU.P .278 .650 2.1 E?08T UR BN 0.8 E??) =0 .89HEATER .055 .502 9.5

C 0MPRES S 0R 11.4 Z.FF(=)0 8 5IRANK:NE CYCLE: SATURATION ?RISMtRE 200.0STVAM FLOT'(.JbM/S)= 6.70FLCW RATLI0=0.0340

STATE TMP(deg R) PRESSURE (ps I)Is 540.0 0.5Zs 555.0 200.0SF 841.8 200.03s 976.8 200.04s540.0 0.5 QTALO.818

'COMPONENT VOL(cu -t)Bo =R 523.6TURBINErr 16.2 (I)O8CONDENSER 153.3

84

Page 90: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

BRAYTON CYCI2 .-FESSUR.I 2RATC0?.CoW 0 KNG -RSS!E35.TOTAZ ?RESSLURZ ZRC?=.10',ASS Fl1ow( Lbm/s) =1,37 .4~8

1 540.0 :-2HATER FC.32 07. 0 S~(L bm/H? hr) O..573 3C4.9 ICT. TCTAZ f 1ft)

2060.0 ?WR:P=50.5 134J5-5 '.ICRIv, 7RAC 3Y. ST",6 1047.06

876.37 825.2

C C.N-)CNE N T DP? Z:Z VcoL cu f t

.0:20 .9720 135.4

3C =R .0730 9

"aATSR CYCLZJ ?R11SL2 RATIC= 4.79TOTAL PIR SURT "RO ~3A . 0(bns 38.22FTJIW 7-.CW(%""bm/s)= 3.17

S TAT7E. TEY'C( de g R)ih 535.0

.1 1333.)4 h L.721 .2

5,h i1404.96h 945.0

00~ P~4E Z V? OL( cu ift)RrCZJp .26? .650 2.1 EFF-0 .87

T UR IDE 0.8 :2?)C.9'HEATER .o66 .550 7.7

CkC XP RES S R 11.4 EFF(?'=0.33

RANKINE CYCI2: SATURnA2:cIN RZ3SUR-E- 2CC0STEAM 7t.CW(Lbm/s)= 7.92?I.CW RATZO=0.0422

STATE TEMP(deg R) FREES StRE psis 540.0 0.523555.0 200.C

SP 841.8 200.03s 1012.6 200.04s540.0 0.5 QtTAL=0349

COM4PONENT 70CL(cu f't)BC:I-R 782.4~TMB3:NE 21.0 F(S).8CON183.6

85

Page 91: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

BRI'TON C'l: ?RZSSUTE RAT -0.IORKIN;IG ?R7SSURZ= 135.0TOTAL PRZSSU)LRE' 7 R CP .10MASS FL0O(Lbrm/s) = 131.22

STATE TEdPi(deg IR) : ,RY THEiR.MAL --F0.

2 1049.8 SFC ( Lbm/.? - CrO-5 93 12712.5 WO TCA- - ;'= 5O.

5 1302.9 0 R K FR AC BY-: ST 16 1080.2pp 876.87 816.3

:OPOEN ?? :liz VC Lm (cu f t,-GN .0-60 .950 13 .~ c?

.- ATR .oC 3 18

BCIAER .080 P0.'

,MATE.R CYCLE: PRE3SU2ZRA- c '..79TOTAL 'RESSURE ZRC?=-J.3AI'R P-LOW(Lbm/s)=38LL5

FUEL LO'd(L'.m/s)= 3.19STATE 7T74P( deg R)

lii 535.02h 835.21h 1298.24h 4692.55h 1372.56h 945.0

COMPONENT DP? DI-M VOL(cu f't)RECUP .256 .650 2.1 EICF u 860T UR 3INDE 0.8 1.7 F(p=0 .39HEATER .076 .598 6.5

CO0MPIR ZS-.O0R 11.5 ZF(?)=0.85IArNCINE CYCL:. SATURATIN ?RErSSUR2B200.0STEAM ,'LOW(Lbm/s)= 8.97FLOW RATIOO.0495

STATE TZMF(deg R) PRES-SUR-(psi'Is540.0 0.5Zs555.0 200:0

SF 841.8 200.03s 1045.2 200.0

4s540.0 0.5 tLA.L=O.259COMPONENT VCL(cu f t)

B30IL:ERI 1083.1TURBINE 25.5 --FF(IS)20.88

CONDENSER Z10.2

86

Page 92: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

BRAfTCi CYCL: ?RZSSL.RE RATIO 9.00WORK'NG PRESS1E5}5 .0TOTAL ?RESS=-LE DRO? = •10MASS FLVWI(bm/s)--7 6 .95

STATE TE,1P( deg R) ', 'N ARY :T -- rfa FL 1'C..51 -0.0 .:-ATER Z-770.933 P =0.9Q

2 1089.0 SFC(Lbm/4 -hr )=0.-c C

3124~5.0 701w TOT. SLWC u ; , I ,50.3S2060.0 PC? i(R (;)=25cC0. 0

1266.2 WORK ?.AC 3Y STM ,_0.1110.2

7? q76.87 308.2

,C "'00 N2ET n. T ZHDf 7C:(cu ft).E* 00 .950 12.7 EF.

.0io .9Cc4 197.5.",,,OO=dP.SS0? 45 .0 -FF(?)=C.23

00500

c MER .0 0 0,94

:-.ATER YC' . PRESSURE RATO • 79TOTAL ?vSSL'RE DRO? = .43AIR FLCW(Lbm/s)= 38.80

T TM , j" 61 3.22STATE TEiIP(deg R)

lh 535.02h 3z 35.2lh 1268.3L h 4668.25h 1345.06h 945 .07h 760.0

COMPONENT DPP DhD VCL( cu ft) I

RECUP .245 .650 2.2 EFF0.5TUR3..E o. -

HATER .087 .646 5.7COMPIR ESSOR 11.7 EFF(P) 0.35

RANKINE CYCLe: SATURATION PRESSURZ= 200.00

STEAM FLO(Lbm/s)= 9.90

FLOW RATIO0.0560

STATE TEMP(deg R) PRESSURE(psi)

Is 540.o 0.52s 555.0 200.0SF 841.8 200.0

3s 1075.2 200.04s 540.0 0.5 ;UAL=O.367

COMPONENIT 'ICL( cu ft)BOi-R 1439.0TURBINE 29.8 EFF(3S) -0.88

CCN)BNSEM 234.5

87

Page 93: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL

..AYTC N "Y'= '- ?RS S L ~AT 0 0 0..inRIG PRES S "R 1 35 .0TOTAL' 3IRTSS*JR ZRC?= - 0MASS .C(Lm)7.O

STATE yL.P ( de R S 1Th,,rdAR Y T:-ZIR~ C'?

2 1125.1 SCLm~rC~6

3 1221.2. VOL TCT'-lAL(cu~f~C.

5 12:4.2 IVCRX --FAC BY S:, 2Lc.

6 :138.-1PP 376.7

7 800.900 1P YZ T i? DIE 'OL(cu ft'

RG1 .C2.0 .950 12. 5 C.8

CZ0 ~ V .C .996 '.

CCMNP R.ESS 0R li.9 'Z7F p 0 ?

HEATER .0004 .9

B QIER .082.7=09

?aATER CycLE:*L RATIO= .70

TCTAIL PRESSUIRT DROP= .43AMR CfLms 39.22

ST-AT6E TSNIP( d eg R)I h 535.0

Zh 835.23h 12L-2.5

4h 4647.35 1322.2.

6h 945.07h 760.0

COINPONENT OPP DED VC -u

42CTJ? .235 .602.2 F .3

T IR BIN!rr 0.3 -F(P)ZO.89

IMATEM .098 .694 5.0COMFIRESSOR 2.1.9 IF 0 O.8 5

RANK(INE CYCLE3 SATtURAIOCN ?R!rSS'RZ= 199.9STEAM F.LCW(Lbm/s)= 10.76FLOW RATIO=O.061

8

STATE mTEMP(deg R) PR ES SLE(;i)Is 540.0 0.52s 555-0 199.9

SF841.7 4.99.93s 1103.1 2.99.9

4s 540.0 0.5 QUAIAC.3075

COAMPONE.NT VOL(cu ft )BO ILZER 18,30.6TUR 3INE 34.0 ?z)0 8

CONDENSER 257.1

Page 94: I/1 PRELIMINARY DEST ON OF AN ALTERNATIVE NAVAL