12
J Appl Ecol. 2019;56:733–744. wileyonlinelibrary.com/journal/jpe | 733 © 2018 The Authors. Journal of Applied Ecology © 2018 British Ecological Society Received: 15 January 2018 | Accepted: 23 October 2018 DOI: 10.1111/1365-2664.13308 RESEARCH ARTICLE Identifying the tree species compositions that maximize ecosystem functioning in European forests Lander Baeten 1 | Helge Bruelheide 2,3 | Fons van der Plas 4,5 | Stephan Kambach 2,3 | Sophia Ratcliffe 4,6 | Tommaso Jucker 7,8 | Eric Allan 9 | Evy Ampoorter 1 | Luc Barbaro 10 | Cristina C. Bastias 11 | Jürgen Bauhus 12 | Raquel Benavides 11 | Damien Bonal 13 | Olivier Bouriaud 14 | Filippo Bussotti 15 | Monique Carnol 16 | Bastien Castagneyrol 17,18 | Yohan Charbonnier 19 | Ewa Chećko 20 | David A. Coomes 7 | Jonas Dahlgren 21 | Seid Muhie Dawud 22 | Hans De Wandeler 23 | Timo Domisch 24 | Leena Finér 24 | Markus Fischer 9 | Mariangela Fotelli 25 | Arthur Gessler 26 | Charlotte Grossiord 27 | Virginie Guyot 17,18 | Stephan Hättenschwiler 28 | Hervé Jactel 17,18 | Bogdan Jaroszewicz 29 | François-Xavier Joly 28 | Julia Koricheva 30 | Aleksi Lehtonen 31 | Sandra Müller 32 | Bart Muys 23 | Diem Nguyen 33,34 | Martina Pollastrini 15 | Kalliopi Radoglou 35 | Karsten Raulund-Rasmussen 36 | Paloma Ruiz-Benito 37 | Federico Selvi 15 | Jan Stenlid 33 | Fernando Valladares 11 | Lars Vesterdal 36 | Kris Verheyen 1 | Christian Wirth 3,4,38 | Miguel A. Zavala 37 | Michael Scherer-Lorenzen 32 Abstract 1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the con- trasting performances of communities with different compositions. Evidence- based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximize functioning, rather than on diversity per se. 2. We used a dataset of 30 ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximize annual above-ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multi- functionality). Then, we quantified the species identity effects and strength of in- terspecific interactions to identify the “best” and “worst” species composition for multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst mixtures, using harmonized data from multiple national forest inventories. Correspondence Lander Baeten Email: [email protected] Funding information Seventh Framework Programme, Grant/ Award Number: 265171 Handling Editor: Akira Mori

Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

J Appl Ecol. 2019;56:733–744. wileyonlinelibrary.com/journal/jpe  | 733© 2018 The Authors. Journal of Applied Ecology © 2018 British Ecological Society

Received:15January2018  |  Accepted:23October2018DOI:10.1111/1365-2664.13308

R E S E A R C H A R T I C L E

Identifying the tree species compositions that maximize ecosystem functioning in European forests

Lander Baeten1  | Helge Bruelheide2,3 | Fons van der Plas4,5  |  Stephan Kambach2,3  | Sophia Ratcliffe4,6 | Tommaso Jucker7,8 | Eric Allan9 |  Evy Ampoorter1  | Luc Barbaro10 | Cristina C. Bastias11 | Jürgen Bauhus12 |  Raquel Benavides11  | Damien Bonal13 | Olivier Bouriaud14 | Filippo Bussotti15 |  Monique Carnol16 | Bastien Castagneyrol17,18 | Yohan Charbonnier19 | Ewa Chećko20 |  David A. Coomes7 | Jonas Dahlgren21 | Seid Muhie Dawud22 | Hans De Wandeler23 |  Timo Domisch24 | Leena Finér24 | Markus Fischer9 | Mariangela Fotelli25 |  Arthur Gessler26 | Charlotte Grossiord27  | Virginie Guyot17,18 |  Stephan Hättenschwiler28 | Hervé Jactel17,18 | Bogdan Jaroszewicz29 |  François-Xavier Joly28  | Julia Koricheva30  | Aleksi Lehtonen31 | Sandra Müller32 |  Bart Muys23 | Diem Nguyen33,34 | Martina Pollastrini15 | Kalliopi Radoglou35 |  Karsten Raulund-Rasmussen36 | Paloma Ruiz-Benito37 | Federico Selvi15 | Jan Stenlid33 |  Fernando Valladares11 | Lars Vesterdal36 | Kris Verheyen1 | Christian Wirth3,4,38 |  Miguel A. Zavala37 | Michael Scherer-Lorenzen32

Abstract1. Forestecosystemfunctioninggenerallybenefitsfromhighertreespeciesrichness,butvariationwithinrichnesslevelsistypicallylarge.Thisismostlyduetothecon-trasting performances of communities with different compositions. Evidence-basedunderstandingofcompositioneffectsonforestproductivity,aswellasonmultipleotherfunctionswillenableforestmanagerstofocusontheselectionofspeciesthatmaximizefunctioning,ratherthanondiversityperse.

2. Weusedadatasetof30ecosystemfunctionsmeasuredinstandswithdifferentspeciesrichnessandcompositioninsixEuropeanforesttypes.First,wequantifiedwhetherthecompositionsthatmaximizeannualabove-groundwoodproduction(productivity)generallyalsofulfilthemultipleotherecosystemfunctions(multi-functionality).Then,wequantifiedthespeciesidentityeffectsandstrengthofin-terspecificinteractionstoidentifythe“best”and“worst”speciescompositionformultifunctionality.Finally,weevaluatedthereal-worldfrequencyofoccurrenceofbest and worst mixtures, using harmonized data from multiple national forestinventories.

CorrespondenceLanderBaetenEmail:[email protected]

Funding informationSeventhFrameworkProgramme,Grant/AwardNumber:265171

HandlingEditor:AkiraMori

Page 2: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

734  |    Journal of Applied Ecology BAETEN ET Al.

1  | INTRODUC TION

During the last25years, awealthof studiesaimed toanswer thequestion:doesplantbiodiversitymatterforthefunctioningofeco-systemsandfor theirpotential todeliverservices tohumanity? Inessence, these studies showed that changes in species diversityusually result in changes inmultiple ecosystem processes, includ-ing those related to productivity, nutrient cycling, and stability,

aswell as to trophic interactions andassociatedbiodiversity (e.g.,Isbelletal.,2017;Schulze&Mooney,1993;Tilman,Isbell,&Cowles,2014).Thesegeneral patternsweremainlyderived fromcompari-sonsofmeanvaluesofecosystemfunctioningamongdifferentlev-elsofspeciesrichness.However,withineachlevelofrichness,thereis typicallyahighvariation in functioning,mostlydue todifferentspecies compositionprovidingdifferent levelsof functioning.Thiscompositionalvariationmayhavea similarorevengreater impact

1DepartmentofEnvironment,GhentUniversity,Gontrode,Belgium;2InstituteofBiology/GeobotanyandBotanicalGarden,MartinLutherUniversityHalle-Wittenberg,Halle,Germany;3GermanCentreforIntegrativeBiodiversityResearch(iDiv)Halle-Jena-Leipzig,Leipzig,Germany;4DepartmentofSystematicBotanyandFunctionalBiodiversity,UniversityofLeipzig,Leipzig,Germany;5SenckenbergGesellschaftfürNaturforschung,BiodiversityandClimateResearchCentre,Frankfurt,Germany;6NationalBiodiversityNetworkTrust,Nottingham,UK;7ForestEcologyandConservation,DepartmentofPlantSciences,UniversityofCambridge,Cambridge,UK;8CSIROLandandWater,Floreat,WesternAustralia,Australia;9InstituteofPlantSciences,UniversityofBern,Bern,Switzerland;10Dynafor,INRA-INPT,UniversitédeToulouse,Auzeville,France;11MNCN-CSIC,Madrid,Spain;12ChairofSilviculture,FacultyofEnvironmentandNaturalResources,UniversityofFreiburg,Freiburg,Germany;13UniveristédeLorraine,AgroParisTech,INRA,UMRSilva,Nancy,France; 14FacultyofForestry,StefancelMareUniversityofSuceava,Suceava,Romania;15LaboratoryofEnvironmentalandAppliedBotany,DepartmentofAgri-FoodandEnvironmentalScience(DISPAA),UniversityofFirenze,Firenze,Italy;16InBioS—PlantandMicrobialEcology,UniversityofLiège,Liège,Belgium;17INRA,UMR1202BIOGECO,Cestas,France;18UniversityBordeaux,BIOGECO,UMR1202,Pessac,France;19LPO,leBourg,Bourrou,France;20DepartmentofForestryandForestEcology,UniversityofWarmiaandMazury,Olsztyn,Poland;21DepartmentofForestResourceManagement,SwedishUniversityofAgriculturalSciences,Umeå,Sweden;22DepartmentofForestry,CollegeofAgriculture,WolloUniversity,Dessie,Ethiopia;23DepartmentofEarthandEnvironmentalSciences,UniversityofLeuven,Leuven,Belgium;24NaturalResourcesInstituteFinland(Luke),Joensuu,Finland;25ForestResearchInstituteofThessaloniki,GreekAgriculturalOrganization-Dimitra,Vassilika,Thessaloniki,Greece;26ResearchUnitForestDynamics,SwissFederalResearchInstituteWSL,Birmensdorf,Switzerland;27EarthandEnvironmentalSciencesDivision,LosAlamosNationalLaboratory,LosAlamos,NewMexico;28CentreofEvolutionaryandFunctionalEcology,CNRS—UniversityofMontpellier—UniversityPaul-ValéryMontpellier—EPHE,Montpellier,France;29BiałowieżaGeobotanicalStation,FacultyofBiology,UniversityofWarsaw,Białowieża,Poland;30SchoolofBiologicalSciences,RoyalHollowayUniversityofLondon,Egham,UK;31NaturalResourcesInstituteFinland(Luke),Helsinki,Finland;32DepartmentofGeobotany,FacultyofBiology,UniversityofFreiburg,Freiburg,Germany;33DepartmentofForestMycologyandPlantPathology,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden;34DepartmentofOrganismalBiology,UppsalaUniversity,Uppsala,Sweden;35DepartmentofForestryandManagementoftheEnvironmentandNaturalResources,DemocritusUniversityofThrace(DUTH),NeaOrestiada,Greece;36DepartmentofGeosciencesandNaturalResourceManagement,UniversityofCopenhagen,FrederiksbergC,Denmark;37GrupodeEcologíayRestauraciónForestal,DepartamentodeCienciasdelaVida,UniversidaddeAlcalá,Madrid,Spainand38Max-Planck-InstituteforBiogeochemistry,Jena,Germany

3. Themostproductivetreespeciescombinationsalsotendedtoexpressrelativelyhighmultifunctionality,althoughwefoundarelativelywiderangeofcompositionswith high- or low-averagemultifunctionality for the same level of productivity.Monoculturesweredistributedamongthehighestaswellasthelowestperform-ingcompositions.Thevariationinfunctioningbetweencompositionswasgener-allydrivenbydifferencesintheperformanceofthecomponentspeciesand,toalesserextent, byparticular interspecific interactions.Finally,we found that themostfrequentspeciescompositionsininventorydataweremonospecificstandsandthatthemostcommoncompositionsshowedbelow-averagemultifunctional-ityandproductivity.

4. Synthesis and applications.Speciesidentityandcompositioneffectsareessentialtothedevelopmentofhigh-performingproductionsystems,forinstanceinforestryandagriculture.Theythereforedeservegreatattentionintheanalysisanddesignoffunctionalbiodiversitystudiesiftheaimistoinformecosystemmanagement.Amanagement focus on tree productivity does not necessarily trade-off againstotherecosystemfunctions;highproductivityandmultifunctionalitycanbecom-binedwithaninformedselectionoftreespeciesandspeciescombinations.

K E Y W O R D S

ecosystemmultifunctionality,forestmanagement,forestry,FunDivEUROPE,overyielding,productivity,speciesinteractions,treespeciesmixtures

Page 3: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

     |  735Journal of Applied EcologyBAETEN ET Al.

on ecosystem functioning compared with variation in diversity(Hectoretal.,2011;Ratcliffeetal.,2017),butitisoftenoverlookedorevenconsideredtobeunwantednoise.Speciesdifferstronglyintheir functionaleffects,meaningthatcompositionscontainingdif-ferentspeciesprovidedifferentlevelsoffunction(“speciesidentityeffect”;Kirwanetal.,2009). Inaddition, functionaleffectsofmix-turesmaydifferfromtheexpectedeffectsoftheindividualspeciesmonoculturesduetointerspecificinteractions(“speciesinteractioneffect”),whichcanbesynergistic,neutral,orantagonisticdependingontheparticularspeciesinvolved.Ifwecanidentifywhichidentityandinteractioneffectsprovidehighestfunction,thenwecouldde-liberatelyselectcertainspeciescombinationsthatoptimizeoneormultipleecosystemfunctions(Storkeyetal.,2015).Inthiscontext,biodiversity–ecosystemfunctioningresearchcouldhelptodevelophigh-performingproductionsystems,forinstance,inmultifunctionallow-inputagriculture(Barotetal.,2017),incarbonplantings(Hulveyetal., 2013) and in the context of sustainable forestmanagement(Mori,Lertzman,&Gustafsson,2017).

By favouring different tree species throughmanagement (e.g.,selective thinning), foresters have been following this approachforcenturies.However,forestryhastraditionallyfocusedonwoodproduction as the main management goal, rather than on the si-multaneous provision ofmultiple ecosystem functions or services(ecosystemfunctionorservice“multifunctionality”;Manningetal.,2018).Itisoftenassumedthatafocusonwoodproductionwill,quasi automatically,fulfilallotherfunctionsaswell.Thisreasoningevenhas its own name in German forestry (the “Kielwassertheorie” or“waketheory”;Rupf,1961),wherehabitat,regulation,andrecreationfunctionsareassumedtobeboostedinthe“wake”ofusefunctions,thatis,woodproduction.Yet,thispremisehasbeenchallengedbystudiesshowingtrade-offsbetweendifferentfunctionsorservices.Forexample,a focusontreebiomassproductionwasfoundtobedetrimental for dead wood occurrence, bilberry production, andfoodforgameinborealandtemperateproductionforests(Gamfeldtetal., 2013). In general, species effects ondifferent functions arenotwellcorrelated,sothatno“super-species”fulfilsmanyfunctionsatthesametimeandunderallconditions(vanderPlasetal.,2016).In sum, there is a need for evidence-basedunderstandingof howdifferent tree species compositions promote multiple ecosystemfunctionsandservices, including,butnot restricted to,woodpro-duction. Such insightswill help tobridge thegapbetween funda-mentalbiodiversity-functioningtheoryandecosystemmanagementandcould,forinstance,betterinformforestmanagersaboutwhichtreesshouldbeplantedtogetherinordertomaximizeforestmulti-functionalitywithinstands.

Researchonbiodiversity–ecosystemfunctioningrelationships,aswellasontreespeciesmixtureeffectsinforestry(reviewedinPretzsch,Forrester,&Bauhus,2017), still often relieson single-site experiments or case studies, limiting our capacity for syn-thesisandgeneralizationacrossspatialandtemporalscales.TheFunDivEUROPE exploratory platform was established as a net-workof researchplots in sixEuropean forest types, selected todifferintreespeciesrichnessanddifferentspeciescompositions

(Baetenetal.,2013).Theplatformprovidedacommonhypothesis-drivendesign indifferentgeographical locations,usedstandard-ized methodology and measurement protocols and coordinateddata acquisition and management. Using data on 30 ecosystemfunctionsmeasuredinthisplatform,wecanperformanin-depthanalysis of tree composition effects on forest ecosystemmulti-functionality.Weaimto(i)assesstowhatdegreeamanagementfocusontreeproductivityalsoboostsotherecosystemfunctionsor whether there are trade-offs between production and otherfunctions;(ii)quantifytheindividualspecieseffectsandstrengthof interactions among particular species and species groups toidentify the “best” and “worst” species compositions for multi-functionality; and (iii) evaluate the frequency of occurrence ofbestandworstmixturesbasedonNationalForestInventories.Wehypothesizethat(i)treeproductivityisnotstronglypositivelyre-latedwithecosystemmultifunctionality,refutingthewaketheory;(ii) interspecific interactions can explain ecosystem functioningbetter than species identity effects alone, and that these inter-actionsarespeciesspecific;and(iii)treecompositionssupportinghigh ecosystem multifunctionality are rare in European forestsduetothehistoricalfocusonproductionforests.

2  | MATERIAL S AND METHODS

2.1 | FunDivEUROPE exploratory platform design

The FunDivEUROPE exploratory platform is a coordinated net-work of 209 forest plots in six European regions, covering agradient of different climates and forest types (see SupportingInformationAppendixS1).Itwasestablishedin2011tostudytheeffect of tree diversity on ecosystemmultifunctionality (http://project.fundiveurope.eu/).ThefieldsitesincludeborealforestsinFinland,hemi-borealforestsinPoland,beechforestsinGermany,mountainousbeechforestsinRomania,thermophilousdeciduousforestsinItaly,andMediterraneanmixedforestsinSpain.Ineachforesttype,plotswith locallydominantandeconomically impor-tanttreespecieswereselectedtocoverarangeinspeciesrichnessfrom1to3inboreal(numberofplots:28),1to4inmountainousbeech(28),beech(38),andMediterraneanmixed(36),and1to5inthermophilousdeciduous(36)andhemi-boreal(43)(SupportingInformation TableS1.1). Each richness level was replicated withdifferentspeciescompositions.Furthermore,thetreespecieshadsimilar abundances inmixtures (high evenness), all specieswererepresentedinallspeciesrichnesslevels,andnoneofthespecieswaspresentineveryplotsothatspeciesidentityanddiversityef-fectscouldbeseparated.Thestudyplotswerelocatedinmatureforestsstandsandsharedsimilarenvironmentalconditionswithinforesttypes(e.g.,geology,soiltype,topography),sothatcovaria-tionbetweenthesefactorsandspeciesrichnesslevelswasmini-mized.Thus,thediversitygradientmainlyresultedfromhistoricalmanagementor stochastic events.Moredetails about the studysites, the selectionprocedure, andplot-level information canbefoundinBaetenetal.(2013).

Page 4: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

736  |    Journal of Applied Ecology BAETEN ET Al.

2.2 | Ecosystem property and function measurements

Weusedplot-levelmeasurementsof30ecosystemproperties,func-tions,orserviceproxies,whichforsimplicitywerefertoas“func-tions”orpropertieshereafter (Supporting InformationTableS1.2).Theseincludethesetof26functionsanalysedinapreviousstudylooking at the relative importanceof compositionvs. diversity ef-fects (Ratcliffe etal., 2017). Four additional functions, represent-ingdiversitymeasurementsoffourtaxonomicgroups,wereaddedto thedataset: bat, bird, earthworm, andunderstoreyplantdiver-sity.As ameasureof treeproductivity,weused themean annualabove-groundwoodproductionestimatedfromwoodcores(Jucker,Bouriaud,Avacaritei,&Coomes,2014).Toaidintheinterpretation,thefunctionswereaprioriclassifiedintosixgroupsreflectingbasicecological processes (Supporting Information TableS1.2): nutrientandcarboncycling-relateddrivers(e.g.,earthwormbiomass,micro-bialbiomass),nutrientcycling-relatedprocesses(e.g.,litterdecompo-sition,nitrogenresorptionefficiency),primaryproduction(includingnot only tree productivity, but also photosynthetic efficiency andtreebiomass),regeneration(e.g.,treeseedlingregeneration,saplinggrowth),resistancetodisturbance(e.g.,resistancetodrought,resist-ancetoinsectdamage),andthevalueoftheforeststandsashabitatforotherspecies (e.g.,batandbirddiversity).Amajor strengthoftheFunDivEUROPEprojectwasthegeneralphilosophytomeasureallecosystemfunctionsinallplots,followingthesameprotocolbythesameobserversacrossthesixforesttypes.Measurementsarethusdirectlycomparableacrossplotsandshowhighcoverage;24functionsweremeasuredinatleast207ofthe209plots.Detailsonthemeasurementsofthevariousfunctionscanbefoundinprevioussynthesispapersof theFunDivEUROPEproject (e.g., vanderPlasetal.,2016;Ratcliffeetal.,2017).

2.3 | National forest inventory data

WithintheFunDivEUROPEproject,wecompiledharmonizedforestplotdatafromthenationalforestinventoriesofFinland,Sweden,Germany,Belgium (Wallonia), andSpain (fordetails seeRatcliffeetal., 2016).These inventories included three forest types fromtheexploratoryplatform:borealforest,beech(-dominated)forest,andMediterraneanmixedforest(whichcomprisedMediterraneanconiferous,broadleavedevergreen,andthermophilousdeciduousforest).Determinationof the forest typewasbasedon theEEATechnicalReport9 (Barbati,Corona,&Marchetti,2017). Ineachinventory, we used the twomost recent surveys and extractedbasalarea(BA,m²/ha)foralltreeswithadiameteratbreastheightofmorethan10cm.Plotswithsinglemeasurementsoranyindi-cationof harvest activities between surveyswereomitted fromthe dataset. For each of the remaining plots, we calculated theproportionalBApertreespecies.Treespeciesnameswereharmo-nizedfollowingtheAtlasFloraeEuropaeae.Inordertoidentifythespeciescompositionofaplot,weadoptedthefollowingapproach:onlyspecieswithaBAexceeding10%wereconsideredandonly

plots inwhich the summedproportionof all component speciesexceeded90%wereincluded.Plotsthatdidnotmeetthesecrite-riawerediscardedfromthedataset.ThisapproachisinagreementwiththeselectioncriteriaoftheFunDivEUROPEexploratoryplat-form.Furthermore,weonlyretainedtheplotswithcompositionsthatcouldbeassignedtooneofthethreeforesttypesmentionedabove.Nodistinctionwasmadebetweenplantedandspontane-ously regeneratedstands.Our finaldataset included64.8% (bo-real), 22.3% (beech), and 70.8% (Mediterranean mixed) of theavailableNFIplots.

2.4 | Data analyses

2.4.1 | Quantifying multifunctionality and its relationship with productivity across different species compositions

Wequantifiedthemultifunctionalityofeachtreespeciescomposi-tionwithamodel-basedapproach. Ineachplot,wehaveavalueforeachof the30functions.Theseestimatesweremodelledto-gether in a hierarchicalmeta-analyticmodelwith group-level ef-fects for plot identity (209 plots) and species composition (103compositions).We considered species combinations occurring inmultipleforesttypesasdifferentcompositions,becausethesamespecies combinationmay have different functioningwhen grow-ing on different soils or in different climates and we wanted toaccount for the fact that the same compositionmay behave dif-ferentlyamongforesttypes. Inaddition,compositionswithinthesame forest typewere related to each other because theyweremeasuredmorecloselytogetherintimeandspace.However,only8outof92uniquespeciescompositionsoccurredinmultipleforesttypes:sixwererepresentedintwoforesttypesandmonoculturesofPinus sylvestris and Picea abieswerepresent in threeand fourtypes,respectively.

The estimated effects of composition from the hierarchicalmodelwereusedhereasmeasureofmultifunctionalityforagiventreespeciescomposition.Theeffectquantifiesthedegreetowhichthe functioning of a particular composition deviates from the av-erage, takingall functions intoaccount.Positiveandnegativeval-uesexpressabove-averageandbelow-average functioningof thatspecies combination, respectively. An alternative single thresholdapproach (Byrnes etal., 2014) provided a very similarmeasure ofmultifunctionality; so,weexpectqualitativelysimilar resultswhenusing alternative measures (Supporting Information FigureS2.1).Themodel-basedapproachwaspreferredherebecause itdirectlyquantifiesthedependencyoffunctioningoncomposition(withouttheneedtoderiveametricfirst)andallowsustoextendtheanaly-sestodiversity-interactionmodels(seeSection2.4.2).AfullmodeldescriptionisgiveninSupportingInformationAppendixS2andad-ditionalsensitivityanalysesareprovidedinSupportingInformationAppendixS4(e.g.,reducingthenumberoffunctionstocalculatethemultifunctionalitymeasure,eitherrandomlyorbyecosystemfunc-tiongroup).

Page 5: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

     |  737Journal of Applied EcologyBAETEN ET Al.

Werelatedthemultifunctionalitytothemeanproductivityofeachcompositionwithalinearregressionmodel,totestwhetherselecting composition for high productivity also ensures highmultifunctionality. In this analysis, we quantified the measureofmultifunctionality after excluding productivity, that is, mul-tifunctionality was calculated with 29 functions. This analysiswasfirstperformedonthefulldatasetandthenforeachforesttypeseparately.Differencesinproductivityandmultifunctional-itybetweencompositionswithdifferentspeciesrichnessvalues(monoculturevs.mixed)ordifferent leafphenologies (pureev-ergreen,puredeciduous,ormixed)weretestedwithananalysisofvariance.

2.4.2 | Diversity- interaction models

To identify the individual species and pairs of species that in-creased functioning, we used a diversity-interaction modellingframework (Kirwanetal.,2009).This testshow theabundanceofindividualtreespecies,andtheinteractionsbetweenthem,af-fectecosystemfunctioning.Theapproachusesalinearmodeloftheformf= ID+DE+BA+ residual,wherefistheestimateoffunc-tioninginaplot,IDisthespeciesidentityeffects,DEisthediver-sityeffects,BA is theeffectofvariation inplot-levelbasalarea(averagecentredtozerowithinforesttypes),andaresidualistheerrorterm.Thespeciesidentityeffectsequaltheaveragemono-culture performances, weighted by the species’ relative abun-dances. The diversity effects result from species interactions,which causesmixture functioning to differ from that expectedfrom monoculture functioning. Kirwan etal. (2009) proposedalternative patterns of interactions based on different ecologi-calassumptions,correspondingtodifferentformulationsofthediversityeffectsterm.SeeSupportingInformationAppendixS2for a full model description and explanation of the alternativediversityterms.

Weconfrontedfivealternativemodelswiththedata.Afirstnullmodelassumesthatallspeciesidentityeffectsareequal(model0),while a second assumes thatmonoculture functioning differs andonly the relative abundances of the species influence function-ing in mixtures (identity-effect model; model 1). Three additionalmodelscombinetheidentityeffectwithdifferentdiversityeffects,corresponding to the alternative types of species interactions: apairwise interactionseffect (model2), an additive species-specificcontributionseffect (model3),orafunctional-groupeffect (model4).The importanceofthedifferenttypesof interactionswasthenexploredbycomparing themodelsdiffering in theirecological as-sumptions(Kirwanetal.,2009).WeusedAICvaluesandlikelihoodratioteststocomparemodels.First,wefittedthealternativemodelsforeachecosystemfunctionandforesttypeseparately.Second,wemodelled the 30 functions together, using a similarmeta-analyticmodel described above (Quantifying multifunctionality), replacingthe composition effect with the identity and diversity effects ofthediversity-interactionmodels.Thevaluesforeachfunctionwere normalizedbeforemodelling.

2.4.3 | Relationship between multifunctionality and frequency of occurrence of tree species compositions

We calculated the frequency of occurrence of all tree speciescompositions for each of the three forest types (boreal, beech,andMediterraneanmixedforest)fromthenationalforestinven-torydata.So,foreachofthecompositionsofthesethreeforesttypesstudiedintheexploratoryplatform,wehaveameasureoftheirfrequencyamongallothercompositionsinthesameforesttype.Wedrewgraphsrankingcompositionsbyfrequency,multi-functionality,andproductivitytoexplorewhethercompositionssupportinghighecosystemmultifunctionalitywererareinagivenforesttype.Weareawarethatthespeciescombinationsencoun-tered in the exploratoriesmay have different effects onmulti-functionality in the different contexts (e.g., climates, soil typesor stand development stages) encountered in the inventories(Ratcliffeetal.,2017).Nevertheless,ourassessmentprovidesanindicationofwhethercompositionslikelytopromotehighmulti-functionalityoccurmoreoftenintheinventoriesthanthosewithlowmultifunctionality.

3  | RESULTS

3.1 | Relationship between productivity and ecosystem multifunctionality

Across all plots, the multifunctionality (excluding productivity) oftreespeciescompositionswaspositively relatedto theirmeanpro-ductivity (Figure1;slope=0.028,p < 0.001,R²=0.22),althoughforagivenlevelofproductivitytherewasaconsiderablerangeinmul-tifunctionality between compositions.Within the forest types, theproductivity–multifunctionalityrelationshipwassignificantlypositiveinthreetypes(beech,thermophilousdeciduous,andMediterraneanmixed)andpositivebutnon-significantinthethreeothers(SupportingInformation FigureS3.1). Patterns at the level of individual ecosys-tem functionswere consistent: inbeech, thermophilousdeciduous,andMediterraneanmixedforest,themostproductivecompositionsalsohadabove-average(withinregion)valuesofthemajorityoftheotherfunctions(>20outof29functions),whereaslessthanhalfofthefunctionsexceededtheaverageintheleastproductivecompositions(Supporting InformationFiguresS3.2andS3.3).Monocultureswerenotconsistentlydifferentfrommixtures:theyweredistributedamongthehighest aswell as the lowestperforming compositions, both interms of productivity (F=0.62, p = 0.43) and multifunctionality(F=2.19,p = 0.14). Similarly, the leafphenology (evergreen,decidu-ous,ormixed)wasnotimportantinexplainingdifferencesinproduc-tivity(F=1.83,p = 0.17)ormultifunctionality(F=1.09,p = 0.34).

Sensitivity analyses showed that the tree productivity–multi-functionalityrelationshipdidnotchangewhenweclassifiedallspe-cies combinationsoccurring indifferent forest types as the same,for example, rather than considering Picea abies monocultures asbeingfourseparatecompositionsbecausetheyoccurredinfourfor-esttypes,weregroupedthemasasinglecomposition (Supporting

Page 6: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

738  |    Journal of Applied Ecology BAETEN ET Al.

Information FigureS4.1). While the productivity–multifunctional-ity relationship remained the same ifwe randomlyexcluded func-tionsfromourmultifunctionalitymeasure (Supporting InformationFigureS4.2), when we excluded particular ecosystem functiongroups then the strength of the relationship altered (SupportingInformationFigureS4.3).For instance,excludingall functionssup-portingprimaryproductionweakened theproductivity–multifunc-tionalityrelationship,however,itremainedsignificantlypositive.

3.2 | Identifying the best mixtures

Looking at individual functions, diversity-interaction models showedthat pairwise species interactions often influenced functioning, posi-tivelyaswellasanegatively(Figure2).Interactionsindicate,forparticu-larspeciespairs,whethergrowingthetwospeciesinamixtureincreasedor decreased functioning compared with growing them in separatemonocultures.Ecosystemfunctiongroupsdidnotshowconsistentpat-terns:production-relatedfunctionsweremoreoftenfoundtobenefitfrommixing(26positivevs.11negativeinteractioneffects)andpositive

interactionsalsooutnumberednegativeinteractionsinresistance-andregeneration-related functions (27 vs. 17 and 10 vs. 3, respectively).Interactions tended to be positive in thermophilous deciduous andMediterraneanmixedandnegativeinborealforest.Resultsfortheindi-vidualfunctionsareshowninSupportingInformationFigureS3.4.

When multifunctionality was modelled with all 30 functionstogether, including productivity, we often found tree species tohaveverydifferenteffectsonfunctioning (identity-effectsmodel;Supporting Information FigureS3.5). Furthermore, functioninglevels generally also increasedwith plot-level basal area.We alsolookedatvariation infunctioningacrossforesttypesforthesmallnumber of composition present inmultiple types.We found thatPicea abies had higher functioning, compared with the averagemonoculture, in hemi-boreal and mountainous beech forest, butbelow-averagefunctioninginborealandbeechforests(SupportingInformationFigureS3.5).Pinus sylvestrishadhigher(Mediterraneanmixed),lower(boreal),oraverage(hemi-boreal)monocultureperfor-mance.Incontrast,monoculturesofQuercus robur/petraeatendedtohaveconsistentlylowermultifunctionalitythanothermonocultures,acrossforesttypes(hemi-boreal,beech,thermophilousdeciduous).

Species interactions were important in explaining multi-functionality in all forest types except formountainousbeech(likelihood ratio tests of models with interaction effects vs.identity-effects models; p < 0.05). We found that mixing ev-ergreen and deciduous species reduced functioning in boreal(functional group vs. identity model; p = 0.029) but increasedfunctioning inhemi-boreal forest (p = 0.025). Inboreal forests,the negative effectwasmainly because of an antagonistic in-teraction between Picea abies and Betula pendula leading tolower multifunctionality than expected based on their mono-culture functioning. In beech, thermophilous deciduous andMediterraneanmixedforest,therewasnosuchfunctionalgroupeffect, as here the species interacted similarlywith all others,illustratingthatthemaineffectofmixingwasthecontrastbe-tween intra- and interspecific interactions (additive contribu-tionsvs.identitymodel;p < 0.05).

Thelistoftopfivecompositionsineachforesttypeintermsoftheir multifunctionality (Table1), reflected this: only 6 out of thetotal 28 best compositions listed in Table1 were monocultures.Someof thebestcompositions includedup to fourspeciesand insometypesnoneofthefivebestcompositionsweremonocultures(hemi-boreal and thermophilous deciduous). Finally, the composi-tionswiththehighestmultifunctionalitywerealsonotdominatedbypureevergreenordeciduouscompositionsand15outofthe22mul-tispeciescompositionsweremixturesofdeciduousandevergreenspecies.Thespeciescombinationswiththehighestmultifunctional-itywerealsoamongthemostproductiveones.

3.3 | Frequency of the best mixtures in forest inventory data

Thespeciescompositionsstudiedintheexploratoryplatformwerealsowellrepresentedinthenationalforestinventoriesofthethree

F IGURE  1 RelationshipbetweenthetreeproductivityandmultifunctionalityofdifferenttreespeciescompositionsacrosssixEuropeanforesttypes.Pointsshowtheperformanceofindividualcompositions(N=103):filledpointsrepresentmonoculturesandcolouringrepresentsfunctionalcompositionintermsofleafphenology(onlydeciduousspecies,onlyevergreenspecies,oramixtureofboth).Thefulllineshowsthefitofalinearmodel,withthedashedlinesdelimitingthe95%confidenceinterval.Productivitycorrespondstotheannualabove-groundwoodproductionandwasnormalizedwithinforesttypestoallowforacross-regionalcomparison;absolutemeanproductivityvaluesarepresentedinSupportingInformationFigureS3.1.Themultifunctionalityexpressesthedegreetowhichthefunctioningofaparticularcompositiondeviatesfromtheaverage,takingallfunctionsintoaccount(positivevaluesindicateabove-averageperformance).Forthisanalysis,theproductivitywasexcludedfromthemultifunctionalitymeasure

–0.1

0.0

0.1

–2 –1 0 1 2Normalized productivity

Mul

tifun

ctio

nalit

yAll deciduous

All evergreen

Deciduous−evergreen

Mixture

Mono

Page 7: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

     |  739Journal of Applied EcologyBAETEN ET Al.

studiedforest types (boreal,beech,andMediterraneanmixedfor-est)(Figure3).Inallthreetypes,themostwidelyoccurringtreespe-ciescompositionsweremonospecificstands.Furthermore,themostfrequentcompositionshadbelow-averagemultifunctionalityscores,thatis,belowzero.Especiallyinbeechforest,thecompositionswithabove-average multifunctionality were rare (frequency<1%). Wefoundessentiallythesamepatternwhenfocussingonproductivityratherthanmultifunctionality(SupportingInformationFigureS3.6):themostproductivecompositionswerenotthemostfrequentones.

4  | DISCUSSION

Despitetheimportanceofspeciescompositioninexplainingvari-ationinecosystemfunctioning(Hectoretal.,2011;Ratcliffeetal.,2017),speciesidentityeffectsaregenerallynotthefocusofbiodi-versityandecosystemfunctioningstudies,wheretheyareinsteadtreatedasanuisancevariabletobeaccountedfor.Here,weaimed

tounpackthevariationinfunctioningbetweencompositionsandtounderstandwhichparticularspeciesorspeciespairssustainedthehighestmultifunctionality.Our findings show that itmattersconsiderablywhich particular combinations are promotedwithinagivenrichnesslevel.Thisiscriticalfromanappliedperspective,as forestmanagersaremuchmore likely to focusonspecies se-lection(e.g.,whenreplantingafteraregenerationcut)ratherthandiversityperse.

4.1 | Managing for productivity can also promote multifunctionality

Afundamentalmanagementgoalinforestryistoproducewood,andso,manystudieslookingatthefunctionalimportanceofmixingtreespecies focused on tree productivity. There is evidence that treespeciesdiversityincreasestheproductivityofforestsglobally(Liangetal.,2016;Piotto,2008).Inclosedcanopyforests,thisisprimarilyduetomoreefficientlightusewhenspecieswithcontrastingcanopy

F IGURE  2 Synthesisoftreespeciesinteractioneffectsonecosystemfunctioning(30functions)insixEuropeanforesttypes.Foreachfunction,pairwisespeciesinteractionmodelswerefittedtoquantifythedegreetowhichtreespeciesinteractionscausemixtureperformancetodifferfromthatexpectedfromthemonoculturespeciesperformances.Foreachspeciespair,thegraphshowsthetotalnumberofpositive(andnegative)effects,indicatingthenumberoftimesthespeciesmixtureisprovidingmore(orless)functioningthanthecorrespondingmonocultures(onlyeffectswithp < 0.1werecounted).Functionsweregroupedintoaprioriclassestoaidintheinterpretation;seemethodsandSupportingInformationTableS1.2.Forresultsforsinglefunctions,seeSupportingInformationFigureS3.4.Notethatthegraphcompareswithintreespeciescombinations(performanceofmixturesvs.themonoculturesoftwoparticularspecies)anddoesnotallowadirectcomparisonbetweencompositions,becausethespeciesidentityeffectswerenotaccountedforinthisanalysis.FullspeciesnamesaregivenbelowTable1

−6

−4

−2

0

2

4

6

Pic

ea:P

inus

Pin

us:B

etul

a

Pic

ea:B

etul

a

Num

ber o

f fun

ctio

ns

Bet

ula:

Car

pinu

s

Bet

ula:

Que

rcus

Pic

ea:B

etul

a

Pin

us:Q

uerc

us

Pic

ea:C

arpi

nus

Pic

ea:Q

uerc

us

Pin

us:B

etul

a

Pin

us:C

arpi

nus

Car

pinu

s:Q

uerc

us

Ace

r:Que

rcus

Pic

ea:Q

uerc

us

Fagu

s:Q

uerc

us

Pic

ea:F

agus

Frax

inus

:Que

rcus

Pic

ea:A

cer

Fagu

s:Fr

axin

us

Pic

ea:F

raxi

nus

Ace

r:Fag

us

Ace

r:Fra

xinu

s

−6

−4

−2

0

2

4

6

Abi

es:A

cer

Abi

es:F

agus

Ace

r:Fag

us

Pic

ea:A

cer

Abi

es:P

icea

Pic

ea:F

agus

Num

ber o

f fun

ctio

ns

Ost

rya:

Que

rcus

_il

Cas

tane

a:Q

uerc

us_c

e

Ost

rya:

Que

rcus

_rp

Que

rcus

_rp:

Que

rcus

_ce

Cas

tane

a:Q

uerc

us_i

l

Que

rcus

_ce:

Que

rcus

_il

Ost

rya:

Que

rcus

_ce

Cas

tane

a:Q

uerc

us_r

p

Cas

tane

a:O

stry

a

Pin

us_n

i:Que

rcus

_il

Que

rcus

_fa:

Que

rcus

_il

Pin

us_n

i:Que

rcus

_fa

Pin

us_s

y:Q

uerc

us_i

l

Pin

us_s

y:Q

uerc

us_f

a

Pin

us_s

y:P

inus

_ni

Boreal Hemi−boreal Beech

Mountainous beech Thermophilous deciduous Mediterranean mixed

Nutrient and C cycling related driver

Nutrient cycling related process

Primary production

Regeneration

Resistance to disturbance

Habitat for species

Page 8: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

740  |    Journal of Applied Ecology BAETEN ET Al.

traitsco-occur(Fichtneretal.,2017;Pretzsch,2014;Zhang,Chen,&Reich,2012).Theseinsightsproviderelevantinformationformakinginformedtreespecieschoices in forestrybut theydonot indicatewhetherselectingspecies tomaximizehighproductivityalsoben-efits multiple other functions.While trade-offs between produc-tivityandotherfunctionshavepreviouslybeenreported inborealforests(Gamfeldtetal.,2013),ourstudyevaluatedagreaternumberoffunctionsacrossabroadrangeofforesttypes,andshowedthatthemostproductivetreespeciescombinationsalsotendtoproviderelatively highmultifunctionality. In the context of recent discus-sions about the sensitivity of multifunctionality measures to thenumberandidentityoftheircomponentfunctions(e.g.,Gamfeldt&Roger,2017;Meyeretal.,2018),weshowedthatourfindingswererobust when randomly reducing the number of functions consid-ered.Deletingparticulargroupsoffunctionsdidchangethestrengthoftherelationshipbetweenproductivityandmultifunctionality,al-though itwasalwayspositive.Sincepreviousanalysesofourdatashowedfewtrade-offsbetweenarangeofmultifunctionalitymeas-uresreflectingalternativestakeholderobjectives(sensuAllanetal.,2015; van der Plas etal., 2018), changing our multifunctionalitymeasuretorepresentspecificmanagementscenario’sisalsounlikelytochangetheconclusions.

Rankingthespeciescompositionswithinforesttypes,basedoneitherproductivityormultifunctionality,resultedinasimilarsetofbestcompositions (Table1,Supporting InformationFigureS3.1).Anotablepatterntoemergefromouranalysis isthatforfourofthesix forest typeswe identifiedat leastone species that repeatedlyoccurred across the best compositions that characterize that par-ticular forest type (hemi-boreal:Picea abies, beech:Fraxinus excel-sior, thermophilousdeciduous:Quercus ilex and Quercus cerris, andMediterranean mixed: Pinus sylvestris) (Table1). In beech forests,

thecombinationF. excelsior–Acer pseudoplatanusevenappearedfourtimes inthistopfive.Atthesametime,mixturescontainingtheseparticularspecieswerenotalwaysthemostproductiveones.Thisinformation may already provide useful empirical evidence whendecidingamongseveralmanagementoptions,suchastheselection(orexclusion)ofspecieswhenplantingorregeneratingnewstands.

Wedonotproposetousetreeproductivityasanintegratedmea-sureofforestperformanceinageneralwaybecauseforthesamelevelofproductivitywefoundarelativelywiderangeofcompositionswithhigh or low average performance across functions. For instance, inMediterraneanmixedforest,monoculturesofPinus sylvestris and Pinus nigrahadnearlythesameproductivity,butvariedstronglyinmultifunc-tionality.Furthermore,themostproductivecompositionshadabove-average values formany, but certainly not all functions (SupportingInformationFiguresS3.2andS3.3).Therelativeimportanceoftheseexisting trade-offs between individual ecosystem functions need tobeevaluatedbasedonsocio-ecologicalperspectives,includingthede-siredmanagementgoalsandland-useschemes(Morietal.,2017),andinthisrespect,ourdatacanhelpinformthesedecisions.Thus,ourre-sultsshouldnotbeusedasageneralconfirmationofthe“waketheory”thatallforestfunctionsareautomaticallyfulfilledbyafocusontimberproductiononly.Rather,weconcludethatamanagementfocusonpro-ductivitydoesnotnecessarilytrade-offagainstotherecosystemfunc-tions and high productivity andmultifunctionality can be combinedwithaninformedselectionoftreespeciescombinations.

4.2 | The identity of co- occurring tree species matters

Wefound that thevariation in functioningbetweencompositionswasgenerallydrivenbyidentifyeffectsand,toa lesserextent,by

TABLE  1 Topfivespeciescompositionforeachforesttype,rankedaccordingtodecreasingmultifunctionality(fromthetopdown).Compositionswithanasteriskwerealsoidentifiedamongthebestfiveincaserankingwasdonebasedonproductivityonly.Underlinedspeciesareevergreentrees.Thenumberofdifferentcompositionsstudiedineachtypeisgiveninbrackets.Inborealforest,onlysevencompositionswerestudied,sothatonlythreeperformedaboveaverage

Boreal (7) Hemi- boreal (25) Beech (18)Mountainous beech (14)

Thermophilous deciduous (27)

Mediterranean mixed (12)

*P. abies *C. betulus, P. abies A. pseudoplatanus, F. sylvatica, F. excelsior

P. abies *C. sativa, O. carpinifolia, Q. cerris, Q. ilex

*P. nigra, P. sylvestris

B. pendula B. pendula, C. betulus, P. abies, Q. robur

A. pseudoplatanus, F. sylvatica, F. excelsior, Q. petraea

A. alba, A. pseudoplatanus, F. sylvatica, P. abies

*Q. cerris, Q. ilex *P. sylvestris, Q. faginea

*B. pendula, P. abies, P. sylvestris

*P. abies, P. sylvestris *F. excelsior *F. sylvatica, P. abies O. carpinifolia, Q. cerris, Q. ilex

*P. sylvestris

*C. betulus, P. abies, Q. robur

*A. pseudoplatanus, F. excelsior, Q. petraea

*A. alba *C. sativa, Q. cerris *P. nigra, P. sylvestris, Q. faginea

B. pendula, P. abies, P. sylvestris, Q. robur

*A. pseudoplatanus, F. sylvatica, F. excelsior, P. abies

A. pseudoplatanus, F. sylvatica

C. sativa, O. carpinifolia, Q. ilex, Q. petraea

*P. nigra, P. sylvestris, Q. faginea, Q. ilex

Notes.Fullspeciesnames.Coniferousspecies:Abies alba,Picea abies,Pinus nigra,Pinus sylvestris. Broadleaved species: Acer pseudoplatanus,Betula pen-dula,Carpinus betulus,Castanea sativa,Fagus sylvatica,Fraxinus excelsior,Ostrya carpinifolia,Quercus robur,Quercus petraea,Quercus cerris,Quercus faginea,Quercus ilex.

Page 9: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

     |  741Journal of Applied EcologyBAETEN ET Al.

F IGURE  3 Frequencyofoccurrenceofparticulartreespeciescompositionsinnationalforestinventorydataforborealforests,beechforest,andMediterraneanmixedforests.GreybarsindicatethecompositionsthatwerealsostudiedinthecorrespondingforesttypesintheFunDivEUROPEexploratoryplatform;thewhitebarsrepresentcompositionsthatwerenotincludedintheexploratoryplatform.Thecolouredcirclesindicatethedegreeofmultifunctionalityofthecompositionsbasedontheestimatesintheexploratoryplatform(soonlyforgreybars).Thismultifunctionalityexpressesthedegreetowhichthefunctioningofaparticularcompositiondeviatesfromtheaverage,takingall30functionsintoaccount(positivevaluesindicateabove-averageperformance).Thedottedlinesindicateathresholdfrequencyof0.01belowwhichrarecombinationsoftreespeciesarenotshown,unlesstheywerestudiedintheexploratoryplatform

Page 10: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

742  |    Journal of Applied Ecology BAETEN ET Al.

particularinterspecificinteractions.Intryingtoexplainwhatmakesupahigh-performingspeciescombination,welookedatdifferencesbetweenpuredeciduous,pureevergreen,andmixeddeciduous–ev-ergreenmixtures.While heterogeneityof canopy traits related tolightcaptureanduse,includingleafphenology,isoftenfoundtoin-creaseproductivity(Jucker,Bouriaud,Avacaritei,Dǎnilǎ,etal.,2014;Lu,Mohren,denOuden,Goudiaby,&Sterck,2016;Zhang,Chen,&Taylor, 2015), mixing species from these broad functional groupsdidnotalways increasemultifunctionality.Manyoftheecosystempropertiesincludedherearenotdirectlyrelatedtolightavailability(e.g.,nutrientcyclingrelateddriversorprocesses;Rothe&Binkley,2001)andour findings showthat themechanisms responsible foroveryieldingofmixtures(foranoverview,seeForrester&Bauhus,2016),donotnecessarilyincreaseotherfunctions.Moregenerally,whilestudiesonidentityeffectshavemostlylookedatcommunity-weightedmeansoftraitsasawayofgeneralizingresults (Ratcliffeetal.,2016),suchanapproachisnotthebestchoicewhensearch-ingforhigh-performingtreespeciescompositionsbecausewelacktheorylinkingtraitstomultifunctionality.Inaddition,manyspeciesinteractionsarenot related tocommonlymeasured traits (suchaspathogensorherbivory),anditwouldbedifficulttotranslatetrait-basedidentityeffectsintoconcretemanagementdecisionswithrealspecies.

Our studywas designed using a pool of regionally abundantandeconomicallyimportanttreespecies(Baetenetal.,2013)andthereforeprovidescomprehensivedataonmultifunctionalityval-uesinmanyrelevantspeciescombinations.Anextstepwouldbetoexplorewhenandwherespecificcombinationsofinterestprovidemaximummultifunctionality,sothatmanagerscanmakeinformeddecisions as towhich combinationsof species to favouron theirland.Thisrequiresdeterminingthevariation inmultifunctionalityforparticularspeciescompositionsacrossdifferentenvironments(e.g.,climates,soil types)andtryingtoexplaintheprincipalenvi-ronmentaldriversofthisvariation.Anothercomprehensiveanaly-sisinourstudyplotsshowedthattreediversityeffectsonvariousecosystem functions are highly context dependent: stronger di-versityeffectsonmultifunctionalitywerefoundinforesttypesindrierclimates,withlongergrowingseasons,andmorefunctionallydiverse tree speciespools (Ratcliffeetal.,2017).A similaranaly-sis of the context dependency of species composition effects isnotstraightforwardbecausecompositionsarenoteasilyreplicatedin very different environments and forest types, unlike diver-sity gradients that can be replicatedwith very different speciespools. Focusing on productivity, Pretzsch etal. (2010, 2013) al-readyshowedthatspecifictwo-speciescombinations(oak–beech,spruce–beech)changefromoveryielding,duetofacilitation,toun-deryielding, driven by competitive interference, along a gradientfrompoortorichsoilsacrosscentralEurope.Focusingonmultipleotherfunctions,hereweshowedthatforthesubsetofspeciesthatoccurredinmultipletypestheiridentityeffectsonmultifunction-alitytendedtovaryconsiderably.ThepresenceofPicea abies and Pinus sylvestris, for instance, increasedordecreasedmixtureper-formance,dependingontheforesttype.

This calls for a new generation of forestry-oriented scientificexperimentsorsilvicultural trials tailoredtostudyspecies identityand composition effects in different environments (e.g., Paquetteetal.,2018),especiallyfocusingonthedriversofthecontextdepen-dencyindiversityeffects(wateravailability,growingseasonlength;Ratcliffeetal.,2017).Compositionscanbenotonlyreplicatedwithinforesttypesunderdifferentsoilconditionsandlevelsofwatersup-ply, but also across different forest types to cover regional-scalegradientssuchasclimate(seeBruelheideetal.,2014foradiversity-orientedexample) .Ofcourse, thegeographicscopeofamultisiteexperimentwillnotbeglobalandshouldstaywithinthecurrentorpredicteddistributionalrangeofthespeciesinvolved(e.g.,Verheyenetal.,2013),asstudyingfunctioningwelloutsidethespeciesrangeisprobablynotrelevantforforesters.Settinguppracticaltrialsobvi-ouslyrequirestheinvolvementofforesters,policymakers,resourcemanagers,andconservationists.Theycanuseour identificationofthebestspeciescombinationsasagoodstartingpointtocarefullyselectcompositionsfromthelargepoolofavailablespecies.

4.3 | Low multifunctionality of the most common species compositions

By ranking tree species compositions of three forest types ac-cordingtohowoftentheyoccurredininventorydata,weshowedthat the most frequent compositions were monospecific standsand that themost frequentspeciescombinationsmostlyshowedbelow-average performance in terms of multifunctionality andproductivitybasedontheexploratoryplatformdata.Severalmix-tureswithhighperformancewereveryrareinthenationalinven-toriesorevenabsentfromourselection.Weshouldacknowledge,however,thattheinventorydataspanmuchlargerenvironmentalgradients than the exploratory platform and that the samemix-turemayperformdifferentlyunderdifferentenvironmentalcondi-tions.Compositionsshowingpoorperformanceintheexploratoryplatformmaythusperformbetterindifferentclimaticorsoilcon-ditions.Whilethismaylimitthegeneralityofanyconclusionsre-garding specificmixtures, the under-representation of numerousabove-averageperformingmixturesintoday’sforestsandthehighproportionofmonoculturesisaclearindicationthatthepotentialofmixingdifferenttreespecies inforeststandshasnotyethavebeenfullyrealizedinEurope.

ACKNOWLEDG EMENTS

TheideasdevelopedforthisstudycamefromaFunDivEUROPEsyn-thesisworkshopheldon20–23February2017inFreiburg,Germany.The FunDivEUROPE project received funding from the EuropeanUnion’s Seventh Programme (FP7/2007–2013) under grant agree-mentNo.265171.We thank the followingorganizationsandpeo-pleforaccesstotheForestInventorydata:MAGRAMA(Spain),theJohannHeinrich vonThünen-Institut (Germany),Hugues LecomtefromtheWalloonForestInventory(Wallonia),theNaturalResourcesInstitute Finland LUKE (Finland), and the Swedish University of

Page 11: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

     |  743Journal of Applied EcologyBAETEN ET Al.

Agricultural Sciences (Sweden). Two anonymous reviewers helpedtoimproveanearlierdraftofthispublication.

AUTHORS’ CONTRIBUTIONS

L.B., H.B., F.V.D.P., and M.S.L. conceived the ideas and analysedthedata;L.B.ledthewritingofthemanuscript,togetherwithH.B.,F.V.D.P., S.K., S.R., T.J., andM.S.L. All authors collected the data,contributed critically to the drafts, and gave final approval forpublication.

DATA ACCE SSIBILIT Y

Dataoftheecosystempropertyandfunctionmeasurementsareavail-able via Figshare https://doi.org/10.6084/m9.figshare.5368846.v1(Ratcliffeetal.,2017).

ORCID

Lander Baeten https://orcid.org/0000-0003-4262-9221

Fons Plas https://orcid.org/0000-0003-4680-543X

Stephan Kambach https://orcid.org/0000-0003-3585-5837

Evy Ampoorter https://orcid.org/0000-0001-7676-0290

Raquel Benavides https://orcid.org/0000-0003-2328-5371

Charlotte Grossiord https://orcid.org/0000-0002-9113-3671

François-Xavier Joly https://orcid.org/0000-0002-4453-865X

Julia Koricheva https://orcid.org/0000-0002-9033-0171

R E FE R E N C E S

Allan,E.,Manning,P.,Alt,F.,Binkenstein,J.,Blaser,S.,Blüthgen,N.,…Fischer,M.(2015).Landuseintensificationaltersecosystemmulti-functionalityvialossofbiodiversityandchangestofunctionalcom-position. Ecology Letters, 18(8), 834–843. https://doi.org/10.1111/ele.12469

Baeten, L., Verheyen, K.,Wirth, C., Bruelheide, H., Bussotti, F., Finér,L., … Scherer-Lorenzen, M. (2013). A novel comparative researchplatformdesigned todetermine the functional significanceof treespecies diversity in European forests.Perspectives in Plant Ecology, Evolution and Systematics,15(5),281–291.https://doi.org/10.1016/j.ppees.2013.07.002

Barbati,A.,Corona,P.,&Marchetti,M. (2017).Europeanforest types:Categories and types for sustainable forest management report-ing and policy, European Environment Agency, Technical ReportNo9/2006,111pp.

Barot,S.,Allard,V.,Cantarel,A.,Enjalbert,J.,Gauffreteau,A.,Goldringer,I.,…Porcher,E.(2017).Designingmixturesofvarietiesformultifunctionalagriculturewiththehelpofecology.Areview.Agronomy for Sustainable Development,37(2),13.https://doi.org/10.1007/s13593-017-0418-x

Bruelheide,H.,Nadrowski,K.,Assmann,T.,Bauhus,J.,Both,S.,Buscot,F.,…Schmid,B. (2014).Designing forestbiodiversityexperiments:Generalconsiderationsillustratedbyanewlargeexperimentinsub-tropicalChina.Methods in Ecology and Evolution,5(1),74–89.https://doi.org/10.1111/2041-210X.12126

Byrnes, J. E. K., Gamfeldt, L., Isbell, F., Lefcheck, J. S., Griffin, J. N.,Hector, A., … Duffy, J. E. (2014). Investigating the relationship

betweenbiodiversityandecosystemmultifunctionality:Challengesandsolutions.Methods in Ecology and Evolution,5,111–124.https://doi.org/10.1111/2041-210X.12143

Fichtner,A.,Härdtle,W.,Li,Y.,Bruelheide,H.,Kunz,M.,&vonOheimb,G. (2017). From competition to facilitation: How tree species re-spondtoneighbourhooddiversity.Ecology Letters,20(7),892–900.https://doi.org/10.1111/ele.12786

Forrester,D.I.,&Bauhus,J.(2016).Areviewofprocessesbehinddiver-sity—Productivity relationships in forests.Current Forestry Reports,2(1),45–61.https://doi.org/10.1007/s40725-016-0031-2

Gamfeldt,L.,&Roger,F. (2017).Revisiting thebiodiversity–ecosystemmultifunctionality relationship. Nature Ecology & Evolution, 1(7),0168.https://doi.org/10.1038/s41559-017-0168

Gamfeldt,L.,Snäll,T.,Bagchi,R.,Jonsson,M.,Gustafsson,L.,Kjellander,P., … Bengtsson, J. (2013). Higher levels of multiple ecosys-tem services are found in forests with more tree species.Nature Communications,4,1340.https://doi.org/10.1038/ncomms2328

Hector,A.,Bell,T.,Hautier,Y., Isbell,F.,Kéry,M.,Reich,P.B.,…Schmid,B.(2011).BUGSintheanalysisofbiodiversityexperiments:Speciesrichnessand composition are of similar importance for grassland productivity. PLoS ONE,6(3),e17434.https://doi.org/10.1371/journal.pone.0017434

Hulvey, K. B., Hobbs, R. J., Standish, R. J., Lindenmayer, D. B., Lach,L.,&Perring,M.P. (2013).Benefitsof treemixes in carbonplant-ings. Nature Climate Change, 3(10), 869. https://doi.org/10.1038/nclimate1862

Isbell, F., Gonzalez, A., Loreau, M., Cowles, J., Díaz, S., Hector, A., …Larigauderie, A. (2017). Linking the influence and dependence ofpeopleonbiodiversityacrossscales.Nature,546,65–72.https://doi.org/10.1038/nature22899

Jucker,T.,Bouriaud,O.,Avacaritei,D.,&Coomes,D.A.(2014).Stabilizingeffectsofdiversityonabovegroundwoodproductioninforesteco-systems: Linking patterns and processes. Ecology Letters, 17(12),1560–1569.https://doi.org/10.1111/ele.12382

Jucker,T.,Bouriaud,O.,Avacaritei,D.,Dǎnilǎ,I.,Duduman,G.,Valladares,F., & Coomes, D. A. (2014). Competition for light and water playcontrasting roles in driving diversity-productivity relationships inIberian forests. Journal of Ecology, 102(5), 1202–1213. https://doi.org/10.1111/1365-2745.12276

Kirwan, L., Connolly, J., Finn, J., Brophy, C., Lüscher, A., Nyfeler,D., & Sebastia, M.-T. (2009). Diversity-interaction modeling:Estimating contributions of species identities and interactionsto ecosystem function. Ecology, 90(8), 2032–2038. https://doi.org/10.1890/08-1684.1

Liang, J., Crowther, T.W., Picard, N.,Wiser, S., Zhou,M., Alberti, G.,… Reich, P. B. (2016). Positive biodiversity-productivity relation-ship predominant in global forests. Science, 354(6309), aaf8957. https://doi.org/10.1126/science.aaf8957

Lu, H.,Mohren, G.M. J., den Ouden, J., Goudiaby, V., & Sterck, F. J.(2016).Overyieldingoftemperatemixedforestsoccursinevergreen-deciduousbutnotindeciduous-deciduousspeciesmixturesovertimeintheNetherlands.Forest Ecology and Management,376(September),321–332.https://doi.org/10.1016/j.foreco.2016.06.032

Manning, P., Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G.,… Fischer, M. (2018). Redefining ecosystem multifunctionality.Nature Ecology & Evolution, 2(3), 427. https://doi.org/10.1038/s41559-017-0461-7

Meyer, S. T., Ptacnik, R., Hillebrand, H., Bessler, H., Buchmann, N.,Ebeling, A., … Klein, A. M. (2018). Biodiversity–multifunctionalityrelationships depend on identity and number of measured func-tions.Nature Ecology & Evolution,2(1),44.https://doi.org/10.1038/s41559-017-0391-4

Mori,A.S.,Lertzman,K.P.,&Gustafsson,L.(2017).Biodiversityandeco-systemservicesinforestecosystems:Aresearchagendaforappliedforest ecology. Journal of Applied Ecology,54(1), 12–27.https://doi.org/10.1111/1365-2664.12669

Page 12: Identifying the tree species compositions that maximize ... · work of research plots in six European forest types, selected to differ in tree species richness and different species

744  |    Journal of Applied Ecology BAETEN ET Al.

Paquette,A.,Hector,A.,Castagneyrol,B.,Vanhellemont,M.,Koricheva,J.,Scherer-Lorenzen,M.,&Verheyen,K.(2018).Amillionandmoretrees for science.Nature ecology & evolution,2(5), 763. https://doi.org/10.1038/s41559-018-0544-0

Piotto,D. (2008).Ameta-analysis comparing treegrowth inmonocul-tures andmixed plantations. Forest Ecology and Management,255,781–786.https://doi.org/10.1016/j.foreco.2007.09.065

Pretzsch, H. (2014). Canopy space filling and tree crown morphol-ogy in mixed-species stands compared with monocultures. Forest Ecology and Management, 327, 251–264. https://doi.org/10.1016/j.foreco.2014.04.027

Pretzsch,H.,Bielak,K.,Block,J.,Bruchwald,A.,Dieler,J.,Ehrhart,H.P.,…Zingg,A.(2013).Productivityofmixedversuspurestandsofoak(Quercus petraea (Matt.) Liebl. andQuercus robur L.) and Europeanbeech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research,132(2),263–280.https://doi.org/10.1007/s10342-012-0673-y

Pretzsch, H., Block, J., Dieler, J., Dong, P. H., Kohnle, U., Nagel, J., …Zingg, A. (2010). Comparison between the productivity of pureandmixedstandsofNorwayspruceandEuropeanbeechalonganecologicalgradient.Annals of Forest Science,67(7),712.https://doi.org/10.1051/forest/2010037

Pretzsch,H.,Forrester,D. I.,&Bauhus,J. (2017).Mixed-species forests. Berlin,Heidelberg:Springer.

Ratcliffe, S., Liebergesell, M., Ruiz-Benito, P., Madrigal González, J.,Muñoz Castañeda, J. M., Kändler, G., …Wirth, C. (2016). Modesof functional biodiversity control on tree productivity across theEuropeancontinent.Global Ecology and Biogeography,25,251–262.https://doi.org/10.1111/geb.12406

Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen,M.,Verheyen,K.,…Baeten, L. (2017).Biodiversity andecosystemfunctioningrelationsinEuropeanforestsdependonenvironmentalcontext.Ecology Letters,20(11),1414–1426.https://doi.org/10.1111/ele.12849

Rothe, A., & Binkley,D. (2001).Nutritional interactions inmixed spe-ciesforests:Asynthesis.Canadian Journal of Forest Research,31(11),1855–1870.https://doi.org/10.1139/x01-120

Rupf, H. (1961). Wald und Mensch im Geschehen der Gegenwart.Allgemeine Forstzeitschrift. Der Wald,16,545–546.

Schulze, E.-D., & Mooney, H. A. (1993). Biodiversity and ecosys-tem function. New York, NY: Springer-Verlag. https://doi.org/10.1007/978-3-642-58001-7

Storkey, J.,Ring,T.D.,Baddeley, J.,Collins,R.,Roderick,S., Jones,H.,& Watson, C. (2015). Engineering a plant community to deliver

multiple ecosystem services. Ecological Applications, 25(4), 1034–1043.https://doi.org/10.1890/14-1605.1

Tilman,D.,Isbell,F.,&Cowles,J.M.(2014).Biodiversityandecosystemfunctioning.Annual Review of Ecology, Evolution, and Systematics,45(1),471–493.https://doi.org/10.1146/annurev-ecolsys-120213-091917

vanderPlas,F.,Manning,P.,Allan,E.,Scherer-Lorenzen,M.,Verheyen,K.,Wirth, C.,… Fischer,M. (2016). Jack-of-all-trades effects drivebiodiversity-ecosystemmultifunctionalityrelationshipsinEuropeanforests.Nature Communications,7, 11109.https://doi.org/10.1038/ncomms11109

van der Plas, F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M.,Verheyen,K.,Wirth,C.,…Allan,E. (2018).Continentalmappingofforest ecosystem functions reveals a highbut unrealisedpotentialforforestmultifunctionality.Ecology letters,21(1),31–42.https://doi.org/10.1111/ele.12868

Verheyen, K., Ceunen, K., Ampoorter, E., Baeten, L., Bosman, B.,Branquart,E.,…Ponette,Q.(2013).Assessmentofthefunctionalroleof treediversity:Themulti-siteFORBIOexperiment.Plant Ecology and Evolution,146(1),26–35.https://doi.org/10.5091/plecevo

Zhang,Y.,Chen,H.Y.H.,&Reich,P.B. (2012).Forestproductivity in-creaseswithevenness,speciesrichnessandtraitvariation:Aglobalmeta-analysis. Journal of Ecology, 100(3), 742–749. https://doi.org/10.1111/j.1365-2745.2011.01944.x

Zhang,Y.,Chen,H.Y.H.,&Taylor,A.R.(2015).Abovegroundbiomassofunderstoreyvegetationhasanegligibleornegativeassociationwithoverstorey tree species diversity in natural forests.Global Ecology and Biogeography,25,141–150.

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:BaetenL,BruelheideH,vanderPlasF,etal.IdentifyingthetreespeciescompositionsthatmaximizeecosystemfunctioninginEuropeanforests.J Appl Ecol. 2019;56:733–744. https://doi.org/10.1111/1365-2664.13308