6
NONDESTRUCTIVE INSPECTION OF NIOBIUM TO IMPROVE SUPERCONDUCTIVITY. M. C. Oravecz and L. W. Kessler Sonoscan, Inc., 530 East Green Street, Bensenville, IL 60106 H. Padamsee Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853 ABSTRACT This paper demonstrates that the information needed to select the highest quality niobium is obtainable nondestructively. Performance improvements of parti- cle accelerators using RF superconductivity requires rapid nondestructive inspection of commercially pure niobium sheets in bulk for assurance of high purity, small grain size, freedom from critical defects and near 100% recrystallization. A total of 1.5 square meters of 3.0 and 1.5 mm thick niobium sheet vas scanned uith a Scanning Laser Acoustic Microscope (SLAM) using acoustic resolution of up to 25-50 microns. W e found -- acoustic attenuation in both niobium plates and velds depends on interstitial gas content; spatial variation in acoustic transmis- sion depends on grain size; ultrasonic evidence of inadequate recrystallization; internal delamina- tions; and that internal localized inclusions and voids are detectable. A principle SLAM advantage is its combination of high scan density and high scan rate (130 lines/mm and one square meter in 30 minutes at 60 MHz) making practical large quantity inspection (e.g. 100 tons proposed )- INTRODUCTION Since E. 0. Lawrence invented the cyclotron in 1930, new discoveries in elementary particle physics have been intimately tied to increases in particle energy. Significant increases in particle energy generally result from breakthroughs in particle accelerator technology. One technical development, powerful superconducting magnets, has stimulated the construction of very large proton accelerators, such as the proposed and highly publicized Superconducting Super Col lider / l/. Another technical development, superconducting RF cavities (SCRF c a v i t i e s ) , is hoped to provide similar stimulus to the construction of very large electron accelerators. There are two advantages of SCRF cavities compared to normally conducting copper cavities currently used -- much higher CW RF fields can be obtained and extremely low RF losses are exhibited. Studies have shown that in principle the application of SCRF cavities to very large electron accelerators is possible /2,3/, and the results from SCRF test cavities look promising /4,5/. This work was supported as Phase I of a Small Business Innovation Research Project under US. Dept. of Energy Contract No. DE-AC02-84ER80182. 0090-560718510000-0547 $1.00 0 1985 IEEE Currently niobium is the preferred superconductor for SCRF c a v i t i e s . Unfortunately, the impurities and structural defects found in commercial niobium limit its performance. The defects and impurities may be present in the raw material after manufacture, or they may be introduced during cavity fabrication processes such as electron beam welding or tungsten inert gas welding. The result of this is that the ultimate field strength that can be acheived is considerably below theoretical limits. For example, pure niobium should have a residual resistivity ratio (RRR) of about 30,000. This "figure of merit" is the ratio of electrical resistivity at room temperature to that at 4.2 degree K. Commercially available material has an RRR of about 30, or a factor of 1,000 poorer. Although purified material is better than this, microwave cavity performance is still at least a factor of 10 below uhat can be acheived. Occasionally in small structures, near theoretical performance has been acheived. The amount of material required for proposed accel- erators ranges from 100 to 2500 square meters. This makes the inspection task a challenge. Present methods for finding defects involve thermal sensor arrays which are mounted onto a semifinished device while operating at the proper superconducting temperature. Because of the resistivity increase in the neighborhood of a defect, there is a localized heating which can be observed. However, instrumen- ting a structure with thermal sensor arrays is complicated, unreliable and extremely time consuming for locating anything but gross defects and this poses a serious obstacle for making further advances in this field. Recent research has provided significant improvements in cavity performance. Purer niobium is non comercially available /U, post-production purification techniques have been developed /'I/, and improved inspection and diagnostic techniques have been developed /7,8/. Future improvements may be acheived through the use of new inspection tools, such as the Scanning Laser Acoustic Microscope (SLAM). The SLAM may prove useful since it can rapidly scan large areas, and it can detect interior and surface structural defects and variations in material properties larger than 50 microns. In studies relating to ceramic materials /9,10/, voids, porosity, inclusions, surface defects, cracks and delaminations have all been shown to project images with characteristic features, thereby enabling them 1985 ULTRASONICS SYMPOSIUM - 547

[IEEE IEEE 1985 Ultrasonics Symposium - San Francisco, CA, USA (1985.10.16-1985.10.18)] IEEE 1985 Ultrasonics Symposium - Nondestructive Inspection of Niobium to Improve Superconductivity

  • Upload
    h

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: [IEEE IEEE 1985 Ultrasonics Symposium - San Francisco, CA, USA (1985.10.16-1985.10.18)] IEEE 1985 Ultrasonics Symposium - Nondestructive Inspection of Niobium to Improve Superconductivity

NONDESTRUCTIVE INSPECTION OF NIOBIUM TO IMPROVE SUPERCONDUCTIVITY.

M. C. Oravecz and L. W. Kessler Sonoscan, Inc. , 530 East Green S t r e e t , B e n s e n v i l l e , I L 60106

H. Padamsee Labora to ry of Nuclear S t u d i e s , C o r n e l l U n i v e r s i t y , I thaca, NY 14853

ABSTRACT

T h i s paper demons t r a t e s t h a t t h e in fo rma t ion needed to select t h e h i g h e s t q u a l i t y niobium is o b t a i n a b l e n o n d e s t r u c t i v e l y . Performance improvements of p a r t i - c l e accelerators u s i n g RF s u p e r c o n d u c t i v i t y r e q u i r e s r a p i d n o n d e s t r u c t i v e i n s p e c t i o n o f commerc ia l ly pure niobium sheets i n b u l k f o r a s s u r a n c e of h igh p u r i t y , small g r a i n size, freedom from c r i t i c a l defects and n e a r 100% r e c r y s t a l l i z a t i o n . A t o t a l o f 1.5 s q u a r e meters o f 3.0 and 1.5 mm t h i c k n i o b i u m s h e e t v a s s c a n n e d u i t h a S c a n n i n g Laser A c o u s t i c M i c r o s c o p e (SLAM) u s i n g a c o u s t i c r e s o l u t i o n o f up t o 25-50 microns. We found -- a c o u s t i c a t t e n u a t i o n i n b o t h n i o b i u m p l a t e s and v e l d s d e p e n d s on i n t e r s t i t i a l gas con ten t ; s p a t i a l v a r i a t i o n i n a c o u s t i c transmis- s i o n depends on g r a i n size; u l t r a s o n i c e v i d e n c e of inadequa te r e c r y s t a l l i z a t i o n ; i n t e r n a l d e l a m i n a - t i o n s ; and t h a t i n t e r n a l l o c a l i z e d i n c l u s i o n s and v o i d s are d e t e c t a b l e . A p r i n c i p l e SLAM advan tage is i t s c o m b i n a t i o n o f h i g h s c a n d e n s i t y and h i g h s c a n r a t e (130 l i n e s / m m a n d o n e s q u a r e meter i n 30 minu tes a t 60 MHz) making p r a c t i c a l large q u a n t i t y i n s p e c t i o n (e.g. 100 t o n s p r o p o s e d ) -

INTRODUCTION

S ince E. 0. Lawrence i n v e n t e d t h e c y c l o t r o n i n 1930, new d i s c o v e r i e s i n e l emen ta ry p a r t i c l e phys i c s have been i n t i m a t e l y t i e d t o i n c r e a s e s i n p a r t i c l e e n e r g y . S i g n i f i c a n t i n c r e a s e s i n p a r t i c l e e n e r g y g e n e r a l l y r e s u l t from b r e a k t h r o u g h s i n p a r t i c l e accelerator technology. One t e c h n i c a l development , powerful supe rconduc t ing magnets, h a s s t i m u l a t e d the c o n s t r u c t i o n of v e r y large p ro ton accelerators, such a s t h e p r o p o s e d a n d h i g h l y p u b l i c i z e d S u p e r c o n d u c t i n g S u p e r C o l l i d e r / l / . A n o t h e r t e c h n i c a l development , supe rconduc t ing RF c a v i t i e s (SCRF c a v i t i e s ) , is h o p e d t o p r o v i d e s i m i l a r s t i m u l u s t o the c o n s t r u c t i o n o f v e r y large e l e c t r o n a c c e l e r a t o r s . T h e r e are two a d v a n t a g e s o f SCRF c a v i t i e s compared t o n o r m a l l y c o n d u c t i n g c o p p e r c a v i t i e s c u r r e n t l y used -- much h i g h e r CW RF f i e l d s c a n be o b t a i n e d and e x t r e m e l y low RF l o s s e s are e x h i b i t e d . S t u d i e s have shown t h a t i n p r i n c i p l e t h e a p p l i c a t i o n of SCRF c a v i t i e s t o v e r y large e l e c t r o n a c c e l e r a t o r s is p o s s i b l e /2 ,3/ , and t h e r e s u l t s from SCRF test c a v i t i e s l o o k promising /4 ,5 / .

T h i s work was s u p p o r t e d as P h a s e I of a Small B u s i n e s s I n n o v a t i o n Research P r o j e c t u n d e r U S . Dept. of Energy C o n t r a c t No. DE-AC02-84ER80182.

0090-560718510000-0547 $1.00 0 1985 IEEE

C u r r e n t l y n i o b i u m is t h e p r e f e r r e d s u p e r c o n d u c t o r f o r SCRF c a v i t i e s . U n f o r t u n a t e l y , t h e i m p u r i t i e s and s t r u c t u r a l d e f e c t s found i n commercial niobium l i m i t i t s p e r f o r m a n c e . T h e d e f e c t s and i m p u r i t i e s may b e p r e s e n t i n t h e raw m a t e r i a l a f t e r manufacture , or t h e y may be in t roduced d u r i n g c a v i t y f a b r i c a t i o n p r o c e s s e s such as e l e c t r o n beam we ld ing or t u n g s t e n i n e r t gas w e l d i n g . The r e s u l t o f t h i s is t h a t t h e u l t i m a t e f i e l d s t r e n g t h t h a t c a n be a c h e i v e d is c o n s i d e r a b l y below t h e o r e t i c a l l i m i t s . F o r e x a m p l e , p u r e n i o b i u m s h o u l d h a v e a r e s i d u a l r e s i s t i v i t y r a t i o ( R R R ) of a b o u t 30,000. T h i s " f i g u r e of mer i t " i s t h e r a t i o o f e l e c t r i c a l r e s i s t i v i t y a t room t e m p e r a t u r e t o t h a t a t 4.2 deg ree K. Commercial ly a v a i l a b l e ma te r i a l has a n R R R o f a b o u t 30, or a f a c t o r of 1,000 p o o r e r . A l t h o u g h p u r i f i e d mater ia l i s better t h a n t h i s , m i c r o w a v e c a v i t y p e r f o r m a n c e i s s t i l l a t l e a s t a f a c t o r of 10 b e l o w u h a t c a n be a c h e i v e d . O c c a s i o n a l l y i n smal l s t r u c t u r e s , n e a r theoretical performance h a s been ache ived .

The amount of material r e q u i r e d for proposed accel- erators r anges from 100 t o 2500 s q u a r e meters. This makes t h e i n s p e c t i o n t a s k a c h a l l e n g e . P r e s e n t methods for f i n d i n g d e f e c t s i n v o l v e thermal s e n s o r a r r a y s which are mounted o n t o a s e m i f i n i s h e d d e v i c e w h i l e o p e r a t i n g a t t h e p r o p e r s u p e r c o n d u c t i n g temperature . Because of t h e r e s i s t i v i t y i n c r e a s e i n t h e n e i g h b o r h o o d of a d e f e c t , t h e r e is a l o c a l i z e d h e a t i n g which can be obse rved . However, instrumen- t i n g a s t r u c t u r e w i t h t h e r m a l s e n s o r a r r a y s i s compl i ca t ed , u n r e l i a b l e and e x t r e m e l y time consuming f o r l o c a t i n g a n y t h i n g b u t gross defec ts and t h i s poses a s e r i o u s o b s t a c l e for making f u r t h e r advances i n t h i s f i e l d .

R e c e n t r e s e a r c h h a s p r o v i d e d s i g n i f i c a n t improvements i n c a v i t y pe r fo rmance . P u r e r n i o b i u m is non c o m e r c i a l l y a v a i l a b l e /U, post-product ion p u r i f i c a t i o n t e c h n i q u e s have been deve loped /'I/, and i m p r o v e d i n s p e c t i o n and d i a g n o s t i c t e c h n i q u e s have been d e v e l o p e d /7,8/. F u t u r e i m p r o v e m e n t s may be a c h e i v e d t h r o u g h t h e u s e o f new i n s p e c t i o n t o o l s , s u c h as t h e S c a n n i n g Laser A c o u s t i c M i c r o s c o p e (SLAM). The SLAM may p r o v e u s e f u l s i n c e i t c a n r a p i d l y s c a n large areas, and it can d e t e c t i n t e r i o r and s u r f a c e s t r u c t u r a l d e f e c t s and v a r i a t i o n s i n mater ia l p r o p e r t i e s l a rger t h a n 5 0 m i c r o n s . I n s t u d i e s r e l a t i n g t o ceramic materials /9,10/, v o i d s , p o r o s i t y , i n c l u s i o n s , s u r f a c e d e f e c t s , c r a c k s a n d d e l a m i n a t i o n s have a l l been shown t o p r o j e c t images wi th characterist ic f e a t u r e s , t h e r e b y e n a b l i n g them

1985 ULTRASONICS SYMPOSIUM - 547

Page 2: [IEEE IEEE 1985 Ultrasonics Symposium - San Francisco, CA, USA (1985.10.16-1985.10.18)] IEEE 1985 Ultrasonics Symposium - Nondestructive Inspection of Niobium to Improve Superconductivity

t o b e d i s t i n g u i s h e d i n t h e a c o u s t i c images. I n a s t u d y of t i t a n i u m , a c o u s t i c microscopy has been used t o per form m i c r o s t r u c t u r a l c h a r a c t e r i z a t i o n . Diffe- r e n t a l l o y s h a v e been d i s t i n g u i s h e d and gas contami- n a t i o n w i t h i n t h e metal has been obse rved / l l / .

INSTRUMENTATION

A c o u s t i c H i c r o s c o p y is t h e name g i v e n t o h i g h f r equency , 10 MHz t o 3 GHz u l t r a s o n i c v i s u a l i z a t i o n . Acous t i c mic roscopes can produce v e r y h igh r e s o l u - t i o n images. One t y p e of a c o u s t i c m i c r o s c o p e i s known a s a S c a n n i n g A c o u s t i c M i c r o s c o p e ( S A M ) , and i t r e q u i r e s abou t 10 seconds t o produce a n image o f 6 0 0 l i n e s . The o t h e r t y p e o f m i c r o s c o p e e m p l o y s a s c a n n i n g l a se r beam a s a p o i n t u l t r a s o n i c wave de tec tor and is known as t h e Scann ing Laser Acous t i c Microscope (SLAM). U i t h laser beam s c a n n i n g techno- l o g y a c o u s t i c images are produced v e r y r a p i d l y , and i n p a r t i c u l a r a t c o n v e n t i o n a l TV ra tes , v i z . 30 images p e r s e c o n d . C o m p a r e d t o t h e S A M , t h e i m p r o v e m e n t i n s p e e d is 300. The p r i n c i p l e of o p e r a t i o n o f SLAM is d e s c r i b e d i n t h e l i t e r a t u r e /12 , 13, 14/. As a p o i n t o f r e f e r e n c e , a t a 30 MHz o p e r a t i n g f r equency , each SLAM image c o v e r s a sample a r e a o f 1 s q u a r e cm. T h e r e f o r e , w i t h a n area s c a n - n i n g speed o f 30 s q u a r e cm p e r sec, to s c a n a s q u a r e me te r a r e a r e q u i r e s j u s t o v e r 5 m i n u t e s . I n a d d i t i o n t o s p e e d o f s c a n a d v a n t a g e s , t h e SLAM c a n d e t e c t d e f e c t s at t h e s u r f a c e , J u s t b e l o w t h e s u r f a c e , a n d deep w i t h i n t h e b u l k . On t h e o t h e r h a n d , t h e r e l a t i v e a d v a n t a g e s o f S A M a r e h i g h r e s o l u t i o n c a p a b i l i t y i n t h e s u r f a c e and n e a r s u r f a c e r e g i o n .

--

I n pe r fo rming t h e research d e s c r i b e d i n t h i s report, n i o b i u m u a s examined w i t h t h e v a r i o u s modes of o p e r a t i o n o f t h e SLAM u s i n g a w i d e r a n g e of t h e f r e q u e n c i e s e x i s t i n g p r i o r t o t h i s work (10, 24, 30, a n d 100 Hhz) a s w e l l as t h e 60 MHz c a p a b i l i t y d e v e l o p e d as p a r t of t h i s work. The higher f requen- cies are c a p a b l e o f h i g h e r r e s o l u t i o n . However, t h e h i g h e r f r e q u e n c i e s a r e a l s o a s s o c i a t e d w i t h i n c r e a s e d u l t r a s o n i c a t t e n u a t i o n , and v i s u a l i z a t i o n o f g r a i n s t r u c t u r e which produces background t e x t u r e i n t h e image. A l t e r n a t i v e l y , t h e l o w f r e q u e n c i e s h a v e t h e p e n e t r a t i n g power a n d t h e c a p a b i l i t y of c o v e r i n g larger areas of imaging pe r s c a n .

The v a r i o u s modes of t h e SLAM t h a t were employed are as f o l l o w s : The a m p l i t u d e mode produces images on a CRT w h e r e i n t h e g r e y s ca l e , or b r i g h t n e s s o f t h e d i s p l a y , co r re sponds t o t h e u l t r a s o u n d t r a n s m i s s i o n l e v e l t h r o u g h t h e s a m p l e a t t h e p o s i t i o n shown. T h i s mode may be d i s p l a y e d a t a s i n g l e a c o u s t i c f r e q u e n c y a n a l o g o u s t o m o n o c h r o m a t i c o p t i c a l i l l u m i n a t i o n i n an o p t i c a l microscope , or i n t e g r a t e d o v e r a r a n g e of a c o u s t i c f r e q u e n c i e s ( f r e q u e n c y S c a n ) w h i c h i s a n a l o g o u s t o w h i t e l i g h t o p t i c a l i l l u m i n a t i o n . The i n t e r f e r e n c e mode p r o d u c e s a c o u s t i c images which are c h a r a c t e r i z e d by a series o f v e r t i c a l f r i n g e s . T h e f r i n g e p o s i t i o n s a n d c u r v a t u r e , i f any, are i n d i c a t i v e of v a r i a t i o n s i n v e l o c i t y o f sound i n t h e sample .

SAMPLE EXAMINATION PROCEDURE

Data was o b t a i n e d u s i n g 30 n i o b i u m p l a t e s (9.25" x 9.25") from v a r i o u s m a n u f a c t u r e r s u i t h thicknesses of 0.125 a n d 0.062 i n c h a n d w i t h R R R v a l u e s o f

e i t h e r 20-30 , 100-150, or 165. I n a d d i t i o n t h e r e were s e v e r a l s p e c i a l l y p repa red p l a t e s and niobium c o u p o n s w i t h i m p l a n t e d f laws f o r s t u d y . Each n i o b i u m p l a t e was m a n u a l l y s c a n n e d u s i n g t h e SLAM o p e r a t i n g w i t h 30 MHz c o m p r e s s i o n a l w a v e s , 30 MHz s h e a r waves and 100 MHz compress iona l waves. 60 MHz was used t o examine s e l e c t e d samples . C o n s i d e r i n g t h e f i e l d or view size of 30 MHz, for example, is 12 mm by 9 mm, a c a r e f u l manual i n d e x i n g is r e q u i r e d t o examine a l l r o u g h l y 500 f i e l d s on each p l a t e . T h i s problem is e v e n more d i f f i c u l t a t 100 MHz u i t h i ts 3 x 2.3 mm f i e l d of v i ew.

When a flaw was found i t s p o s i t i o n was marked on t h e sample and a c o u s t i c micrographs were t a k e n t o docu- ment t h e flaw characterist ics. T y p i c a l d e f e c t s were e x a m i n e d u n d e r a n SEM w i t h b a c k s c a t t e r e d i m a g i n g and EDAX, m e t a l l o g r a p h y was performed t o d e t e r m i n e g r a i n s i z e a n d m e a s u r e m e n t s were made o f t h e R R R v a l u e . T h i s was i n a d d i t i o n t o o p t i c a l microscopy t h a t was done as needed.

I f s u f f i c i e n t a n a l y s i s c o u l d be made, t h e flaws were c a t e g o r i z e d a s c r i t i c a l or n o t c r i t i c a l w i t h r e s p e c t t o t h e i r a f f e c t o n s u p e r c o n d u c t i v i t y . Some f l a w s r e q u i r e f u r t h e r a n a l y s i s w i t h a l a s e r m i c r o p r o b e mass spectrometer t o f u l l y unde r s t and their n a t u r e . Based on t h e a n a l y s i s and t h e a c o u s t i c images o f t h e f l a w s , a n i d e n t i f y i n g c h a r a c t e r i s t i c ( s ) o f t h e a c o u s t i c image of each f l a w was found.

RESULTS

The basic r e s u l t s of o u r e x a m i n a t i o n of n i o b i u m u s i n g t h e SLAM are summarized below and i l l u s t r a t e d i n t h e accompanying f i g u r e s . A brief d e s c r i p t i o n o f each t y p e of mater ia l v a r i a t i o n or d e f e c t t y p e i s i n c l u d e d w i t h the f i g u r e .

We w i l l b r i e f l y d i s c u s s t h e d e f e c t s i n terms o f t h e i r e f f e c t s on s o u n d t r a n s m i s s i o n -- o v e r a l l c h a n g e s i n t h e a v e r a g e a c o u s t i c t r a n s m i s s i o n , s p a t i a l v a r i a t i o n s i n t r a n s m i s s i o n and r e g i o n s of no t r a n s m i s s i o n .

O v e r a l l change i n a c o u s t i c t r ansmiss ion -

An i m p o r t a n t p a r a m e t e r t o m o n i t o r t o o b t a i n h i g h q u a l i t y niobium is t h e i n t e r s t i t i a l c o n t e n t . T h i s is t y p i c a l l y measured by t h e RRR v a l u e . Unfortuna- t e l y c o r r e l a t i n g t h e a c o u s t i c p r o p e r t i e s o f t h e m a t e r i a l w i t h i t s R R R v a l u e is c o m p l i c a t e d by t h e t e n d e n c y o f l o w e r o x y g e n c o n t e n t s a m p l e s t o a l s o h a v e larger g r a i n s . However, we i d e n t i f i e d a sample w i t h R R R = 2 6 t h a t a l s o h a s a g r a i n s i z e (ASTM 4 - 6.5) c o m p a r a b l e t o t h e R R R - 100-150 m a t e r i a l , i.e. ASTM 3 - 6. T h i s p l a t e was f i r s t i d e n t i f i e d u i t h t h e SLAM by o b s e r v i n g a pronounced s c r a m b l i n g of t h e i n t e r f e r o g r a m f r i n g e s w i t h 30 MHz shear waves.

The a c o u s t i c i m a g e s of t h e two p l a t e s a p p e a r v e r y d i f f e r e n t ( F i g u r e 1 ) . There i s a s i g n i f i c a n t d i f f e r e n c e i n t h e image t e x t u r e ( c o n t r a s t ) a n d i n t h e o v e r a l l l e v e l o f a c o u s t i c t r ansmiss ion . The low R R R mate r i a l i s o n a v e r a g e more a t t e n u a t i n g . I n f a c t 100 MHz u l t r a s o u n d i n c i d e n t on t h e sample a t 10 degrees h a s d i f f i c u l t y p e n e t r a t i n g t h e l o w R R R p l a t e . T h i s e x p l a i n s t h e o v e r a l l l a c k o f d e t a i l i n t h e a c o u s t i c image.

548 - 1985 ULTRASONICS SYMPOSIUM

Page 3: [IEEE IEEE 1985 Ultrasonics Symposium - San Francisco, CA, USA (1985.10.16-1985.10.18)] IEEE 1985 Ultrasonics Symposium - Nondestructive Inspection of Niobium to Improve Superconductivity

Similar v a r i a t i o n s can be obse rved i n niobium we lds w i t h d i f f e r e n t l e v e l s o f gas c o n t e n t . F i g u r e 2 shows 30 HHz i n t e r f e r o g r a m s o f e l e c t r o n beam we lds p r o d u c e d u n d e r b o t h good a n d bad vacuum. The contaminated weld shows lower t r a n s m i s s i o n and less c o h e r e n c e i n t h e i n t e r f e r o g r a m f r i n g e s due t o i n c r e a s e d s c a t t e r i n g o f t h e t r a n s m i t t e d p l ane waves.

S p a t i a l T ransmiss ion V a r i a t i o n s -

The t r a n s m i s s i o n o f u l t r a s o u n d through a pol ycrys- t a l l i n e ma te r i a l is a l t e r e d by s c a t t e r i n g o f f t h e i n t e r g r a n u l a r i n t e r f a c e s . Impor t an t parameters i n t h i s s c a t t e r i n g i n c l u d e t h e u l t r a s o n i c a n i s o t r o p y of t h e i n d i v i d u a l g r a i n s , how r a n d o m l y o r i e n t e d t h e g r a i n s are and t h e c o n d i t i o n s a t t h e i n t e r g r a n u l a r boundary (e.g. i n t e r s t i t i a l C o n t a m i n a t i o n ) . (See r e f . I t )

We have found t h a t g r a i n s i z e s t r o n g l y e f f e c t s t h e s p a t i a l f r e q u e n c y of t h e t r a n s m i s s i o n v a r i a t i o n s . T h i s is i l l u s t r a t e d i n computer gene ra t ed p l o t s of t h e n o r m a l i z e d FFT c o e f f i c i e n t s v e r s u s s p a t i a l f r e q u e n c y f o r two s a m p l e s of t h e H e r a e u s n iob ium. The f i r s t p l o t ( F i g u r e 3 ) shows t y p i c a l s p a t i a l v a r i a t i o n s for a s t a n d a r d commercial p l a t e (ASTM 3-6 and R R R = 100-150). The s e c o n d p l o t ( F i g u r e 4 ) shows t y p i c a l v a r i a t i o n s f o r a similar p l a t e af ter i t h a s been a n n e a l e d an a d d i t i o n a l 4 h o u r s t o i n c r e a s e t h e g r a i n size t o abou t 1 mm.

T h e FFT p l o t s show c l e a r l y t h a t t h e t r a n s m i s s i o n v a r i a t i o n s o f t h e smal ler g r a i n e d s a m p l e h a v e a c h a r a c t e r i s t i c a l l y h i g h e r s p a t i a l f r e q u e n c y t h a n those of t h e larger g r a i n e d sample. These s p a t i a l f r equency v a r i a t i o n s a re e a s i l l y c h a r a c t e r i z e d by p e r f o r m i n g t h i s t y p e of h a r m o n i c a n a l y s i s . Also n o t e t h a t t h e t e x t u r e is i s o t r o p i c , t h a t is t h e r e i s no d i r e c t i o n a l i t y t o i t .

We h a v e a l r e a d y d e t e c t e d g r a i n s i z e v a r i a t i o n s w i t h i n two p l a t e s u s i n g t h e i n t e r f e r o g r a m f r i n g e s c r a m b l i n g e f f e c t mentioned above. However, w e feel t h a t t h e 30 HHz s h e a r mode is n o t t h e optimum c h o i c e f o r o v e r a l l i n s p e c t i o n .

S e v e r a l low R R R (20-30) niobium p l a t e s demonstrated an effect w e h a v e named "streaking." F igu re 5 shows two 30 Mhz shear wave i n t e r f e r o g r a m to demonstrate t h e effect, The i n t e r f e r o g r a m of t h e %ormaln p l a t e shows no d i r e c t i o n a l f e a t u r e s o t h e r t h a n the f r i n g e s t h e m s e l v e s , w h e r e a s t h e s t r e a k e d p l a t e has t h i n , d a r k l i n e s c r o s s i n g t h e i n t e r f e r o g r a m f r i n g e s a t a b o u t 45 d e g r e e s . These s t r e a k s a re a l s o S e e n i n ampl i tude micrographs.

Based on a n e x a m i n a t i o n of a n u n a n n e a l e d p l a t e ( F i g u r e 6), we feel t h a t t h e s t r e a k i n g effect may be d u e t o t h e l a c k of 100s r e c r y s t a l l i z a t i o n . The u n a n n e a l e d p l a t e showed a v e r y s i m i l a r p a t t e r n of u n i d i r e c t i o n a l d a r k streaks i n t h e r o l l i n g d i r e c t i o n as was s e e n i n many of t h e niobium p l a t e s . However, t h e effect was many t i m e s s t r o n g e r i n t h e unannealed p l a t e . We feel t h e a n n e a l e d , s t r e a k e d p l a t e s have r e t a i n e d some o f t h e p r e a n n e a l i n g s t r u c t u r e and are c o n c e r n e d t h a t t h i s may be r e l a t e d t o l o c a l i z e d r e g i o n s of higher i n t e r s t i t i a l c o n t e n t .

Regions o f no t r ansmiss ion -

A h i g h l y u s e f u l a s p e c t of u l t r a s o u n d is t h a t t h e t r a n s m i s s i o n o f t h e u l t r a s o u n d can be s i g n i f i c a n t l y a l t e r e d by s t r u c t u r e s w h i c h h a v e a c h a r a c t e r i s t i c l e n g t h much smal le r t h a n t h e w a v e l e n g t h of s o u n d i n c i d e n t on t h a t s t r u c t u r e . An e x t r e m e l y i m p o r t a n t e x a m p l e of t h i s is a sheet o f a i r i n a s o l i d body, i.e. a d e l a m i n a t i o n or voided r e g i o n i n a material. Theoretical c a l c u l a t i o n s p r e d i c t t h a t a 0.1 nm gap i n s t e e l would a l low o n l y abou t 10% t r a n s m i s s i o n of sound . However , t h e p r a c t i c a l l i m i t seems t o be s e v e r a l o r d e r s o f m a g n i t u d e g r e a t e r ( a b o u t 0.1 m i c r o n ) d u e t o f o r e i g n l a y e r s on t h e s u r f a c e , s u r f a c e t e x t u r e , e t c . A p r a c t i c a l e x a m p l e of t h i s is a disbond i n a s tee l can seam weld seen u s i n g t h e SLAM. Examination of a c r o s s - s e c t i o n o f a detected disbond has shown a gap t h i c k n e s s o f abou t 1 micron. T h u s a l l n i o b i u m d e f e c t s a s s o c i a t e d w i t h d e l a m i n a t i o n s and v o i d s can be understood b a s i c a l l y as r e g i o n s of no s i g n a l due t o t h e i n a b i l i t y of t h e u l t r a sound t o p e n e t r a t e t h e a i r f i l l e d l a y e r .

Two c a t e g o r i e s o f d e l a m i n a t i o n were f o u n d i n t h e n i o b i u m p l a t e s . We re fe r t o t h e s e a s e d g e r o l l i n g d e l a m i n a t i o n s and n e a r s u r f a c e r o l l i n g d e l a m i n a - t i o n s . The SLAM r e v e a l e d these defect t y p e s i n t h e new high R R R (100-150 and 165) material. The edge r o l l i n g defect, i n p a r t i c u l a r , was found i n 3 o f 12 100-150 R R R p l a t e s examined . I t i s l i k e l y t h a t p u r e r ma te r i a l w i l l h a v e r o l l i n g r e l a t e d d e f e c t s more o f t e n .

Shown i n F igu re 7 i s a SLAM image of a p o r t i o n o f an i n t e r n a l d e l a m i n a t i o n o c c u r i n g a t t h e e d g e o f t h e niobium p l a t e . The d e l a m i n a t i o n extended a l o n j t h e e d g e of t h e p l a t e f o r a b o u t 6 cm. The w i d t h o f t h e d e l a m i n a t i o n inward from t h e edge v a r i e s a l o n g t h e l e n g t h up t o a maximum of abou t 2 cm. The r e g i o n of t h e p l a t e c o n s i s t i n g of t h e two l a y e r s o f me ta l a p p e a r d a r k i n t h e SLAM images. The d a r k r e g i o n i n d i c a t e s a l a c k of s o u n d t r a n s m i s s i o n d u e t o a voided r e g i o n between t h e two l a y e r s .

The o r i g i n of t h e s e d e l a m i n a t i o n s is a p p a r e n t l y a r e s u l t of t h e r o l l i n g p r o c e s s i t s e l f . D u r i n g t h e r o l l i n g p r o c e s s t h e t o p and bottom s u r f a c e s of t h e p l a t e are pushed backwards due t o f r i c t i o n a l f o r c e s w i t h t h e rolls. A s t h e p l a t e t h i n s , t h e pushed back t o p and bo t tom r e g i o n s a r e s q u e e z e d t oge the r a n d a p p e a r t o be p a r t of t h e s o l i d body of t h e p l a t e . However , t h e r e is o n l y i n t i m a t e c o n t a c t ; t h e s q u e e z e d t o g e t h e r r e g i o n s a re n o t a c t u a l l y bonded t o g e t h e r . The m i l l o p e r a t o r s a r e aware o f t h i s phenomena and c u t t h e end of the r o l l e d p l a t e o f f as a mat ter o f c o u r s e . Our r e s u l t s show t h a t t h e y sometimes unde res t ima te t h e l e n g t h of t h e squeezed together p o r t i o n .

Near s u r f a c e r o l l i n g d e l a m i n a t i o n s have been found r e p e a t e d l y on n i o b i u m p l a t e s w h i c h , u n l i k e o t h e r p l a t e s we r e c i e v e d , were n o t f i n a l annea led and were o n l y l i g h t l y etched. I n a d d i t i o n , t h e s e p l a t e s have a h i g h e r R R R ( 1 6 5 ) t h a n a n y o f t h e o t h e r s d u e t o s p e c i a l p r o c e s s i n g . T h e p l a t e s m e a s u r e 23.5 cm on each s i d e and have a great deal of o p t i c a l l y v i s i b l e s t r e a k i n g on bo th s i d e s .

1985 ULTRASONICS SYMPOSIUM - 549

Page 4: [IEEE IEEE 1985 Ultrasonics Symposium - San Francisco, CA, USA (1985.10.16-1985.10.18)] IEEE 1985 Ultrasonics Symposium - Nondestructive Inspection of Niobium to Improve Superconductivity

An example of a n e a r s u r f a c e r o l l i n g d e l a m i n a t i o n is p i c t u r e d o p t i c a l l y a s p a r t of F i g u r e 6. T h i s p a r t i c u l a r f l a w is r a t h e r o b l o n g a n d is a b o u t 2 cm wide. A c o u s t i c a l l y a p o r t i o n of t h e f l a w c a n be e a s i l y s e e n w i t h 30 MHz compressional waves as shown i n F i g u r e 8. The d a r k n e s s i n t h e a c o u s t i c image r e p r e s e n t s no a c o u s t i c t r a n s m i s s i o n t h r o u g h t h e d e l a m i n a t e d region. Th i s flaw was confirmed t o be a d e l a m i n a t i o n when a t h i n l a y e r s e p a r a t e d from t h e rest of t h e material d u r i n g c r o s s - s e c t i o n i n g .

S i m i l a r p l a t e s show areas s u s p e c t e d of b e i n g n e a r s u r f a c e d e l a m i n a t i o n s . I n f a c t some p l a c e s h a v e de lamina ted under f i n g e r p re s su re . The most l i k e l y c a u s e of t h i s d e f e c t t y p e is a c t i o n t h a t o c c u r s d u r i n g r o l l i n g . S ince t h i s material has a h igh RRR v a l u e it a l so has much lower s t r e n g t h than s t a n d a r d commercial niobium. Th i s c a u s e s t h e niobium t o ac t v e r y doughy d u r i n g r o l l i n g w h i c h is t h e opt imum c o n d i t i o n for such d e l a m i n a t i o n s to occur .

CONCLUSIONS

Th i s paper has p re sen ted r e s u l t s which demons t r a t e t h a t t h e SLAM c a n be a u s e f u l s c r e e n i n g t o o l f o r i m p r o v i n g t h e q u a l i t y of n i o b i u m p l a t e u s e d i n s u p e r c o n d u c t i n g RF c a v i t i e s . T h e s e r e s u l t s c o n s i s t e d o f SLAM images a n d d a t a of t h e more c r i t i c a l t y p e s o f mater ia l v a r i a t i o n s a n d d e f e c t s o b s e r v e d d u r i n g e x a m i n a t i o n of a n u m b e r o f commercial niobium p l a t e s . T h i s is o n l y t h e f i r s t i n a series of p a p e r s t h a t w i l l d e s c r i b e t h e e x p e r i m e n t a l t e c h n i q u e s and h a r d w a r e r e q u i r e d for p r a c t i c a l s c r e e n i n g of n i o b i u m f o r u s e i n t h e proposed l a r g e e l e c t r o n accelerators.

REFERENCES

1 ) "To t h e Heart of Matter - The S u p e r c o n d u c t i n g Super C o l l i d e r , " U n i v e r s i t i e s Research A s s o c i a t i o n , Uashington, D.C., March 1985.

2 ) M . T i g n e r and H. Padamsee , " S u p e r c o n d u c t i n g Mic rowave C a v i t i e s i n Accelerators f o r P a r t i c l e P h y s i c s - A Review," CLNS-82/553, December 1982.

3) H. L e n g e l e r , " S u p e r c o n d u c t i n g RF C a v i t i e s f o r Large E l e c t r o n A c c e l e r a t o r s a n d S t o r a g e R ings , " CERN/EF 84-19, 24 November 1984, ( S u b m i t t e d t o Atomkernenergie - Kerntechnik) .

4) P. B e r n a r d , H. L e n g e l e r a n d E. P i c a s s o , "A P o s s i b l e U p g r a d i n g o f LEP E n e r g y w i t h Supe rconduc t ing A c c e l e r a t i n g C a v i t i e s , " LEP Note 524 (CERN/EF/RF 85- 11, 8 Janua ry 1985.

5) Proc. of t h e 2nd Workshop on RF Superconduc t iv i - t y , CERN, Geneva, J u l y 1984, Editor : H. Lengeler .

6) Made by W.C. Heraeus GmbH, Hanau, West Germany.

7) H. Padamsee , "The T e c h n o l o g y of Nb P r o d u c t i o n and P u r i f i c a t i o n , " ref. 5, p. 339.

8 ) G. M u l l e r , " D i a g n o s t i c T e c h n i q u e s and Defect C l a s s i f i c a t i o n , " ref. 5, p. 377.

9) D. E. Yuhas a n d T. E. M c C r a w , " A c o u s t i c Micros- c o p y , S E H , and O p t i c a l Mic roscopy : C o r r e l a t i v e I n v e s t i g a t i o n s i n Ceramics," Scanning E l e c t r o n Microscopy 1979, Vol. 1, SEM, Inc . , pp. 103-110.

Figure 1 - 100 MHz images showing s i g n i f i c a n t d i f - f e r e n c e s i n image t e x t u r e and i n a v e r a g e t r ansmis - s i o n l e v e l a t t r i b u t e d t o t h e lower p l a t e ' s h i g h e r i n t e r s t i t i a l con ten t . The t o p p l a t e has ASTM 3-6 and RRR=100-150; t h e bo t tom p l a t e has ASTM 4-6.5 and RRRz26. F i e l d o f view is 3 mm across.

F i g u r e 2 - 30 MHz i n t e r f e r o g r a m s o f e l e c t r o n beam we lds ( runn ing h o r i z o n t a l l y ) i n niobium. The bottom w e l d (bad vacuum) h a s h i g h e r a t t e n u a t i o n and more s c r a m b l e d f r i n g e s compared t o t h e t o p w e l d (good vacuum). The we lds were ground smooth t o e l i m i n a t e s u r f a c e t e x t u r e . F i e l d of view is 10 mm across.

550 - 1985 ULTRASONICS SYMPOSIUM

Page 5: [IEEE IEEE 1985 Ultrasonics Symposium - San Francisco, CA, USA (1985.10.16-1985.10.18)] IEEE 1985 Ultrasonics Symposium - Nondestructive Inspection of Niobium to Improve Superconductivity

10) D. E.Yuhas and L. W. Kessler, "Defec t Charac- 1 2 ) L . W. K e s s l e r a n d D . E. Yuhas , " A c o u s t i c t e r i z a t i o n by Means of t h e Scanning Laser Acoustic Microscopy - 1979," Proc. IEEE, I n v i t e d Manuscript, Microscope (SLAM)," S c a n n i n g E l e c t r o n Microscopy Vol. 67, No. 4, Apri l 1979, pp. 526-536. - 1980, Vol. 1, pp. 385-391.

13) L. W. Kessler and D. E. Yuhas, " P r i n c i p l e s and 1 1 ) D. E. Yuhas and M. G. Oravecz, "Micros t ruc tura l A n a l y t i c a l C a p a b i l i t i e s of t h e Scanning Laser Acous- Charac te r iza t ion of Titanium by A c o u s t i c Microsco- t i c Microscope (SLAM)," SEM/ 1978, Vol. 1, p. 555. py," M a t e r i a l s E v a l u a t i o n , Vol. 41, No. 11, pp. 1304-1309, 1983, ASNT, Inc. 14) L. W. Kessler, "A Review of P r o g r e s s and

A p p l i c a t i o n s i n A c o u s t i c Microscopy," J- A c o u s t i c Socie ty America 55, pp. 909-918, 1974.

c)( 1.0 yf

I I

I I I I

I

I

n c(

U @ Q 0 00 I

- c1

v

Q) 0.59:

= I

I I

I I

U 3 - c(

t I

a 0.29: t- U. I U.

I

I

I c(

I t

0.0 A

Spat i a I Frequency (cy c I e s/ mm)

P+w9Mw+*-*w***-**

60 MHz SLAM IMAGE 1/8' NIOBIUM l m m GRAINS

&J..&. .&*.&.*.* .......... *.,U ............................... ............,... * ..........a

I 16.3

Spat la1 Frequency (cycles/mm)

I 1 8.1 12.1

Figures 3 & 4 - Digi t ized SLAM d a t a comparing niobium p l a t e s w i t h d i f f e r e n t g r a i n s i z e . Note t h e h i g h e r s p a t i a l f requencies assoc ia ted w i t h t h e smaller grained m a t e r i a l compared t o t h e l a r g e r grained m a t e r i a l . The FFT's were ca lcu la ted from the h o r i z o n t a l l i n e marked white. F i e l d of view is 4.8 mm h o r i z o n t a l l y .

1985 ULTRASONICS SYMPOSIUM - 551

Page 6: [IEEE IEEE 1985 Ultrasonics Symposium - San Francisco, CA, USA (1985.10.16-1985.10.18)] IEEE 1985 Ultrasonics Symposium - Nondestructive Inspection of Niobium to Improve Superconductivity

F i g u r e 5 - 30 HHz s h e a r wave i n t e r f e r o g r a m s of ASTH F i g u r e 6 - O p t i c a l ( t o p ) and 30 HHz s h e a r wave image 20-30 n i o b i u m c o m p a r i n g a " s t r e a k e d " p l a t e ( t o p ) (bottom) of unannea led RRRs165 niobium. The s u r f a c e w i t h a "normal" p l a t e (bottom). The s t r e a k e d p l a t e s t r e a k s , v i s i b l e o p t i c a l l y , are s e e n a c o u s t i c a l l y was r o t a t e d t o show t h e d a r k l i n e s ( s t r e a k s ) cros- t h r o u g h o u t t h e b u l k o f t h e p l a t e . T h i s s t r o n g s i n g t h e f r i n g e s a t 45 degrees . No l i n e s are obse r - s t r e a k i n g p a t t e r n s u g g e s t s t h a t F i g u r e 5's s t r e a k s ved i n normal p l a t e s . F i e l d of v iew is 10 mm across. may be remnants of p r e a n n e a l i n g s t r u c t u r e .

F i g u r e 7 - 30 MHz micrograph of a t y p i c a l p o r t i o n o f F i g u r e 8 - 30 MHz image o f a p o r t i o n o f a n e a r t h e an edge r o l l i n g d e l a m i n a t i o n o b s e r v e d i n s e v e r a l s u r f a c e r o l l i n g d e l a m i n a t i o n . The f law is v i s i b l e RRR=lOO-l50 niobium p l a t e s . F i e l d of v iew is abou t i n t h e bottom c e n t e r of t h e o p t i c a l image i n F i g u r e 12 mm across. 6. The large d a r k area i n d i c a t e s t h e l a c k of acous-

t i c t r a n s m i s s i o n th rough t h e de lamina ted p o r t i o n .

552 - 1985 ULTRASONICS SYMPOSIUM