24
1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS Conference, June 30-July , 2015, UCSB III-V MOS C.-Y. Huang, S. Lee*, A.C. Gossard, V. Chobpattanna, S. Stemmer, B. Thibeault, W. Mitchell : UCSB Low-voltage devices P. Long, E. Wilson, S. Mehrotra, M. Povolotskyi, G. Klimeck: Purdue Now with: *IBM, **Intel

III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

1

III-V MOS:

Record-Performance Thermally-Limited Devices,

Prospects for

High-On-Current Steep Subthreshold Swing Devices

Mark Rodwell, UCSB

IPRM/ISCS Conference, June 30-July , 2015, UCSB

III-V MOS C.-Y. Huang, S. Lee*, A.C. Gossard, V. Chobpattanna, S. Stemmer, B. Thibeault, W. Mitchell : UCSB

Low-voltage devices P. Long, E. Wilson, S. Mehrotra, M. Povolotskyi, G. Klimeck: Purdue

Now with: *IBM, **Intel

Page 2: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

2

Why III-V MOS ?

III-V vs. Si: Low m*→ higher velocity. Fewer states→ less scattering → higher current. Can then trade for lower voltage or smaller FETs.

Problems: Low m*→ less charge. Low m* → more S/D tunneling. Narrow bandgap→ more band-band tunneling, impact ionization.

Page 3: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

3

Reducing leakage: Vertical spacer, Ultra-thin channel

*Heavy elements look brighter Courtesy of S. Kraemer (UCSB) Lee et al., 2014 VSLI Symposium

Vertical Spacer

N+ S/D

Page 4: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

4

Reducing leakage: Vertical spacer, Ultra-thin channel

10 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S. Lee, VLSI 2014

J. Lin, IEDM 2013

T. Kim, IEDM 2013

Intel, IEDM 2009

J. Gu, IEDM 2012

D. Kim, IEDM 2012

I on (

mA

/m

)

Gate Length (nm)

VDS

= 0.5 V

Ioff

=100 nA/m

S. Lee et al., VLSI 2014

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.510

-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

DIBL = 76 mV/V

VT = -85 mV at 1 A/m

SSmin

~ 72 mV/dec. (at VDS

= 0.1 V)

SSmin

~ 77 mV/dec. (at VDS

= 0.5 V)

Lg = 25 nm

VDS

= 0.1 to 0.7 V

0.2 V increment

Cu

rre

nt

De

ns

ity

(m

A/

m)

Gate Bias (V)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu

rre

nt

De

ns

ity

(m

A/

m)

Drain Bias (V)

Ron

= 303 Ohm-m

at VGS

= 0.7 V

VGS

= -0.4 V to 0.7 V

0.1 V increment

0.01 0.1 160

70

80

90

100

110

120 [2]

[4]

[3]

[7]

[1]

[6]

[5]

Solid: VDS

= 0.5 V

Open: VDS

= 0.1 V

Gate Length (m)

SS

min (

mV

/de

c.)

This work

[1] Lin IEDM 2013,[2] T.-W. Kim IEDM 2013,[3] Chang IEDM 2013,[4] Kim IEDM 2013 [5] Lee APL 2013 (UCSB), [6] D. H. Kim IEDM 2012,[7] Gu IEDM 2012,[8] Radosavljevic IEDM 2009

Page 5: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

5

Off-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel

-0.2 0.0 0.2 0.410

-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

IG

SS ~ 60 mV/dec

at VDS

=0.1 V

Cu

rre

nt

De

ns

ity

(m

A/

m)

Gate Bias (V)

ID

-0.2 0.0 0.2 0.4

IG

SS ~ 64 mV/dec

at VDS

=0.1 V

Gate Bias (V)

ID

5.0 nm InAs 2.5 nm InAs

0.01 0.1 160

70

80

90

100

110

5.0 nm InAs

2.5 nm InAs

Open: VDS

= 0.1 V

Solid: VDS

= 0.5 V

Gate Length (m)

SS

min (

mV

/de

c)

Better SS at all gate lengths

Better electrostatics (aspect ratio) and reduced BTBT (quantized Eg)

~10:1 reduction in minimum off-state leakage

~5:1 increase in gate leakage increased eigenstate

Lg =500 nm Lg =500 nm

Page 6: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

6

On-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel

0.01 0.1 10.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8InAs channel thickness

2.5 nm

5.0 nm

VDS

= 0.5 V

Gate Length (m)

Pe

ak

gm (

mS

/m

)

0 1 2 3 4 5 6 70

200

400

600

800

1000

1200

x 1012

e

ff (

cm

2/s

-V)

Carrier Density (/cm2)

2.5 nm InAs

5.0 nm InAs

-0.2 0.0 0.2 0.4 0.60.0

0.5

1.0

1.5

2.0

2.5

Cox

= 4.2 F/cm2

EOT= 0.8 nm

W/L= 25m/21 m

Freq: 200kHz

2.5 nm InAs

5.0 nm InAs

Ga

te C

ap

ac

ita

nc

e (F

/cm

2)

Gate Bias (V)

0

1

2

3

4

5

6

7

x 1

01

2

Ca

rrie

r D

en

sit

y (

/cm

2)

0.4

0.2

-0.2

0.0

-0.4

-0.6

0.6

0.8

EF

E1En

erg

y (

eV

)

Position (nm)10 20 30

EF

E1

Position (nm)10 20 30

~1.25 nm ~2.5 nm

2.5 nm thick 5 nm thick

1D-Possion Schrodinger solver (coded by W. Frensley, UT Dallas)

Page 7: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

7

ZrO2 vs. HfO2: Peak gm, SS, split-CV, and mobility

0.01 0.1 10.0

0.4

0.8

1.2

1.6

2.0

2.4

0425A1 (30A ZrO2)

0425A2 (30A HfO2)

VLSI (30A ZrO2)

VDS

= 0.5 V

Gate Length (m)

Pe

ak

gm (

mS

/m

)

0.01 0.1 1

60

65

70

75

80

85

90 VLSI (30A ZrO2)

0425A1 (30A ZrO2)

0425A2 (30A HfO2)

Open: VDS

= 0.1 V

Solid: VDS

= 0.5 V

Gate Length (m)

SS

min (

mV

/de

c)

0.0 0.2 0.4 0.60.0

0.5

1.0

1.5

2.0

2.5W/L= 25m/21 m

Freq: 200kHz

ZrO2

HfO2

Ga

te C

ap

ac

ita

nc

e (F

/cm

2)

Gate Bias (V)

0

1

2

3

4

5

6

7

x 1

01

2

Ca

rrie

r D

en

sit

y (

/cm

2)

7 (1) ZrO2 higher capacitance than HfO2 , (2) ZrO2 results, low SS, are reproducible

Comparison: two process runs ZrO2 , one run HfO2 , both 2nm (on 1nm Al2O3)

Page 8: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

8

Double-heterojunction MOS: 60 pA/m leakage

• Minimum Ioff~ 60 pA/μm at VD=0.5V for Lg-30 nm

• 100:1 smaller Ioff compared to InGaAs spacer

• BTBT leakage suppressedisolation leakage dominates

Lg-30nm

C. Y. Huang et al., IEDM 2014

Lg-30nm

Page 9: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

9

12 nm Lg III-V MOS

N+InGaAs

InP spacer

InAlAs

Barrier

Lg~12nm

~ 8nm

tch~ 2.5 nm

(1.5/1 nm InGaAs/InAs)

Top View

Ni

Cross-setion

N+InP

Page 10: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

10

ID-VG and ID-VD curves of 12nm Lg FETs

0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

gm (m

S/

m)I D

(m

A/

m)

VGS

(V)

0.0

0.4

0.8

1.2

1.6

2.0

2.4V

DS = 0.1 to 0.7 V,

0.2 V increment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

0.5

1.0

1.5

I D (

mA

/m

)

VDS

(V)

Ron

= 302 Ohm-m

at VGS

= 1.0 V

VGS

= -0.2 V to 1.2 V

0.2 V increment

-0.2 0.0 0.2 0.4 0.6 0.810

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

SS ~ 107.5 mV

at VDS

=0.5 V

SS ~ 98.6 mV

at VDS

=0.1 V

VDS

= 0.1 to 0.7 V

0.2 V increment

I D,

|IG|

(mA

/m

)

VGS

(V)

Ioff~1.3 nA/μm Ion~1.1 mA/μm

Ion/Ioff > 8.3∙105

Lg-12nm

Page 11: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

11

-0.2 0.0 0.2 0.4 0.60.0

0.5

1.0

1.5

2.0

2.5

Cox

= 4.2 F/cm2

EOT= 0.8 nm

W/L= 25m/21 m

Freq: 200kHz

2.5 nm InAs

5.0 nm InAs

Ga

te C

ap

ac

ita

nc

e (F

/cm

2)

Gate Bias (V)

0

1

2

3

4

5

6

7

x 1

01

2

Ca

rrie

r D

en

sit

y (

/cm

2)

Mobility extraction at Lg-25 µm long channel FETs

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Ca

rrier d

en

sity

(10

12 c

m-2

)

Ca

cc (F

/cm

2)

VGS

(V)

0

2

4

6

8

10V

DS = 0.1 to 0.7 V

0.2 V increment

0 1 2 3 4 5 60

100

200

300

400

500

Mo

bil

ity

(c

m2/Vs

)

Carrier density (cm-2)

VDS

= 25 mV to 50 mV

Mobility~ 250 cm2/V∙s

Mobility~ 280 cm2/V∙s

Freq: 200 kHz

EOT~ 0.9~1 nm

This work InAs channel

1.5/1 nm InGaAs/InAs

1.5/1 nm InGaAs/InAs

m*, RS/D more important!

0 1 2 3 4 5 6 70

200

400

600

800

1000

1200

x 1012

e

ff (

cm

2/s

-V)

Carrier Density (/cm2)

2.5 nm InAs

5.0 nm InAs

Page 12: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

12

Steep FETs

Page 13: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

13

Tunnel FETs: truncating the thermal distribution

Source bandgap truncates thermal distribution

J. Appenzeller et al., IEEE TED, Dec. 2005

T-FET

Normal

Must cross bandgap: tunneling

Fix (?): broken-gap heterojunction

Page 14: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

14

Tunnel FETs: are prospects good ?

Useful devices must be small

Quantization shifts band edges→ tunnel barrier

Band nonparabolicity increases carrier masses

Electrostatics: bands bend in source & channel

What actual on-current might we expect ?

Page 15: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

15

Tunneling Probability

barrier

barrier

*2 where),2exp(

barrier) square (WKB,y Probabiliton Transmissi

EmTP

barrier thick 4nm afor %1

barrier thick 2nm afor %10

barrier thick 1nm afor %33

:Then

eV 2.0 ,06.0* :Assume 0

P

Emm b

For high Ion, tunnel barrier must be *very* thin.

~3-4nm minimum barrier thickness: P+ doping, body & dielectric thicknesses

Page 16: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

16

T-FET on-currents are low, T-FET logic is slow

-1.5

-1

-0.5

0

0.5

1

1.5

2

5 10 15 20 25

En

erg

y, eV

position, nm10

-310

-210

-110

0

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Transmission

En

erg

y(e

V)

3.0%

NEMO simulation: GaSb/InAs tunnel finFET: 2nm thick body, 1nm thick dielectric @ er=12, 12nm Lg

10-5

10-4

10-3

10-2

10-1

100

101

102

0 0.1 0.2 0.3 0.4 0.5 0.6

dra

in c

urr

en

t, A

/m

gate-source bias, volts

60mV/dec.

10 A/m

Experimental: InGaAs heterojunction HFET; Dewey et al, 2011 IEDM, 2012 VLSI Symp.

~15 A/m @0.7V

Low current → slow logic

Page 17: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

17

Resonant-enhanced tunnel FET Avci & Young, (Intel) 2013 IEDM

2nd barrier: bound state

dI/dV peaks as state aligns with source

improved subthreshold swing.

Can we also increase the on-current ?

Page 18: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

18

Electron anti-reflection coatings

Tunnel barrier: transmission coefficient < 100% reflection coefficient > 0% want: 100% transmission, zero reflection familiar problem

Optical coatings reflection from lens surface quarter-wave coating, appropriate n reflections cancel

Microwave impedance-matching reflection from load quarter-wave impedance-match no reflection Smith chart.

Page 19: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

19

T-FET: single-reflector AR coating

Peak transmission approaches 100%

Narrow transmission peak; limits on-current

10-3

10-2

10-1

100

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

TransmissionE

ne

rgy(e

V)

TFET

TFET+ one barrier10

-5

10-4

10-3

10-2

10-1

100

101

102

0 0.1 0.2 0.3 0.4 0.5

dra

in c

urr

ent,

A/m

gate-source bias, volts

60mV/dec.

TFET

+one barrier

Can we do better ?

Page 20: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

20

Limits to impedance-matching bandwidth

-7

-6

-5

-4

-3

-2

-1

0

1

0 5 10 15 20

Tra

nsm

issio

n,

dB

Frequency, GHz

1, 2, 3 sections

Microwave matching: More sections→ more bandwidth Is there a limit ?

Bode-Fano limits R. M. Fano, J. Franklin Inst., Jan. 1960

Bound bandwidth for high transmission example: bound for RC parallel load→ Do electron waves have similar limits ?

0

2||||

1ln

RCd

Yes ! Schrödinger's equation is isomorphic to E&M plane wave. Khondker, Khan, Anwar, JAP, May 1988

T-FET design→ microwave impedance-matching problem Fano: limits energy range of high transmission Design T-FETs using Smith chart, optimize using filter theory Working on this: for now design by random search

)/*)(/()( wherepower,currenty probabilit , , , / xjmxIVfhE *

Page 21: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

21

T-FET with 3-layer antireflection coating

-1.5

-1

-0.5

0

0.5

1

1.5

2

5 10 15 20 25 30 35

En

erg

y, e

V

position, nm10

-310

-210

-110

00.1

0.15

0.2

0.25

Transmission

En

erg

y(e

V) 3-layer

0-layer

10-5

10-4

10-3

10-2

10-1

100

101

102

0 0.1 0.2 0.3 0.4 0.5 0.6

dra

in c

urr

en

t, A

/m

gate-source bias, volts

P-GaSb/N-InAs

tunnel FET

single layer

triple layer

60mV/dec.

Interim result; still working on design

Simulation

Page 22: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

22

Source superlattice: truncates thermal distribution

Gnani, 2010 ESSDERC

M. Bjoerk et al., U.S. Patent 8,129,763, 2012. E. Gnani et al., 2010 ESSDERC

Proposed 1D/nanowire device:

Gnani, 2010 ESSDERC:

simulation

Page 23: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

23

Planar (vs. nanowire) superlattice steep FET Long et al., EDL, Dec. 2014

Planar superlattice FET superlattice by ALE regrowth easier to build than nanowire (?)

Performance (simulations): ~100% transmission in miniband. 0.4 mA/m Ion , 0.1A/m Ioff ,0.2V

Ease of fabrication ? Tolerances in SL growth ? Effect of scattering ?

simulation

Page 24: III-V MOS: Record-Performance Thermally-Limited Devices ...web.ece.ucsb.edu/.../publications/2015_6_30_rodwell_IPRM_slides.pdf4 Reducing leakage: Vertical spacer, Ultra-thin channel

24

(backup slides follow)