27
John R. Jungck Professor of Biological Sciences and Mathema:cal Sciences Computa:onal Biology and Bioinforma:cs Interdisciplinary Science and Engineering Lab University of Delaware IMA Annual Program Year Workshop: BIOLOGICAL SYSTEMS AND NETWORKS Graph Theory for Systems Biology: Interval Graphs, Mo:fs, and PaJern Recogni:on

IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

John  R.  Jungck  Professor  of  Biological  Sciences  and  Mathema:cal  Sciences  

Computa:onal  Biology  and  Bioinforma:cs  Interdisciplinary  Science  and  Engineering  Lab  

University  of  Delaware    

IMA  Annual  Program  Year  Workshop:  BIOLOGICAL  SYSTEMS  AND  NETWORKS  

Graph  Theory  for  Systems  Biology:  Interval  Graphs,  Mo:fs,  and  PaJern  Recogni:on  

Page 2: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Triad  Profile  Analysis  of  three  species:  “EvoluConary  design  principles  and  funcConal  characterisCcs  based  on  kingdom-­‐specific  network  moCfs.”  Tae-­‐Hwan  Kim,    Junil  Kim,    Pat  Heslop-­‐Harrison,  and  Kwang-­‐Hyun  Cho.  (2011)    BioinformaCcs  27  (2):  245-­‐251.  

Page 3: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

‘Two-­‐node  feedback’  is  the  most  significant  mo:f  in  all  three  species.  By  considering  the  sign  of  each  two-­‐node  feedback  interac:on,  we  examined  the  enrichment  of  the  three  types  of  two-­‐node  feedbacks:    

 (1)  posi:ve–posi:ve  (PP),      (2)  nega:ve–nega:ve  (NN),  and      (3)  posi:ve–nega:ve  (PN).    

 We  found  that  PN  is  enriched  in  the  network  of  A.thaliana,  NN  in  the  network  of  S.cerevisiae  and  PP  and  NN  in  the  network  of  H.sapiens.  Each  feedback  type  has  characteris:c  features  of  robustness,  mul:stability  and  homeostasis.  

Triad  Profile  Analysis  of  three  species:  “EvoluConary  design  principles  and  funcConal  characterisCcs  based  on  kingdom-­‐specific  network  moCfs.”  Tae-­‐Hwan  Kim,    Junil  Kim,    Pat  Heslop-­‐Harrison,  and  Kwang-­‐Hyun  Cho.  (2011)    BioinformaCcs  27  (2):  245-­‐251.  

Page 4: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

PNAS  (2003)  

Page 5: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Could  a  liJle  graph  theory    inform  Rives  &  Galitski’s  work?  

Page 6: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Jungck,  John  R.,  and  Rama  Viswanathan.  (2015).      

Graph  Theory  for  Systems  Biology:  Interval  Graphs,      Mo:fs,  and  PaJern  Recogni:on.  

   In  Raina  Robeva,  Editor,  Algebraic  And  Discrete  Mathema8cal  

Methods  for  Modern  Biology.  Elsevier:  Chennai,  India,  pages  1-­‐27  plus  electronic  supplement.  

 

Interval graphs:

An  interval  graph  G  =  (V,E)  is  an  undirected  graph  obtained  from  a  collec:on  C  of  intervals  on  the  real  

line.    To  each  interval  in  C  there  corresponds  a  vertex  in  G.    The  edge  (u,v)  is  in  E  if  and  only  if  their  

corresponding  intervals  intersect.    

Page 7: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Benzer  divided  the  region  of  the  chromosome  into  subsec:ons  with  Ordered  overlapping  dele:ons  and  then  mapped  point  muta:ons  in    Standard  three-­‐point  crosses  to  determine  order  within  subsec:ons  

Page 8: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Benzer’s  map  was  en:tled  the  first  

“Fine  Structure  of  the  Gene”  

It  clearly  demonstrated  that  the  gene    

was  not  the  unit  of  func:on,  recombina:on,  and  func:on.  

Muta:on  was  not  uniform;  there  were  hot  spots.  

Recombina:on  could  occur  between  adjacent  nucleo:des  in  DNA.  

Page 9: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Graph  Theory  approach  

Fulkerson  &  Gross  1964  

Page 10: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

IntersecCon  Graph  &  Complementary  Graph  

Page 11: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

No  “Z4”  s  

Page 12: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

TransiCvely  Oriented  Complementary  Graph  

Page 13: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Maximal  Cliques  

A  

C  

B  

D  

Page 14: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Hamiltonian  Path  of  Maximal  Cliques  

outDegree  b(3)  -­‐>  a(2)  -­‐>  c(1)  -­‐>  d(0)  

Page 15: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Interval  Graph  SoluCon  

Page 16: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Steps in the graph theory solution of "Benzer's problem”

1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct the intersection graph by placing an edge

between each pair of vertices which represent overlapping deletions.

3. Construct the complement of the intersection graph. 4. Check for absence of Z4's in the intersection graph. 5. Determine whether the complement of the intersection graph

can be made transitive. 6. Find all the maximal cliques in the intersection graph. 7. Order these maximal cliques in the same way as in the transitive

complementary graph. 8. Find the Hamiltonian path of all the ordered maximal cliques. 9. Construct the interval graph by assigning deletions to each

interval of the line, which sequentially orders the maximal cliques, for all the cliques to which the deletion vertex belongs.

Thus, the algorithm is capable of processing the original recombination matrix data through each of these nine steps.

Page 17: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Set  TheoreCc  approach  

Shkurba  1965  

Page 18: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

original  form  

   1            2            3    4          5          6              7  

Page 19: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Move  5  one  to  the  right  

   1            2            3    4          6          5              7  

Page 20: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Move  1  three  to  the  right  

   2            3            4    1        6          5              7  

Page 21: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

“Shkurba  form”  

   2            3            4    1        6          5              7  

Page 22: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Interval  Graph  SoluCon  

Page 23: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Two  Alterna:ve  Approaches  

Visualiza:on  maJers!  

BioGrapher  

javaBenzer  

Page 24: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

Network  Design  

The  field  of  Network  Design  comprises  a  large  class  of  problems:  

•  Low  cost  •  High  Capacity  •  Fault  Tolerant  •  Highly  Connected  (the  remaining  nodes  will  s:ll  be  able  to  communicate)    

•  Low  conges:on  

Page 25: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

One-­‐dimensional  logic  gate  assignment  and  interval  graphs  

•  Ohtsuki,  T.,  Mori,  H.,  Khu,  E.S.,  Kashiwabara,  T.,  and  Fujisawa,  T.  One-­‐dimensional  logic  gate  assignment  and  interval  graphs.  Circuits  and  Systems,  IEEE  Transac:ons  on  26    (9  ):  675  –  684  (1979)  

•  This  paper  gives  a  graph-­‐theore:c  approach  to  the  design  of  one-­‐dimensional  logic  gate  arrays  using  MOS  or    units.  The  incidence  rela:on  between  gates  and  nets  is  represented  by  a  graph    ,  and  a  possible  layout  of  gates  and  nets  is  characterized  by  an  interval  graph    ,  where    is  called  an  augmenta:on.  It  is  shown  that  the  number  of  tracks  required  for  between-­‐gate  wiring  is  equal  to  the  clique  number  (chroma:c  number)  of  ,  and  hence  the  op:mum  placement  problem  is  converted  to  that  of  minimum  clique  number  augmenta:on.  This  turns  out  to  be  an    NP-­‐complete  problem.  Instead  a  polynomial-­‐:me  algorithm  for  finding  a  minimal  augmenta:on  is  presented,  where  an  augmenta:on  is  minimal  if  no  proper  subset  of  it  is  an  augmenta:on.  An  algorithm  for  gate  sequencing  with  respect  to  a  given  augmenta:on  is  also  presented.  

Page 26: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

 “This  follows  from  a  classic    interval-­‐graph  coloring  result:      if  at  most  L  subintervals  of  a  line  segment  contain  any  point  of  the  segment,  then  the  subintervals  can  be  colored  with  at  most  L  colors  so  that  overlapping  subintervals  have  dis:nct  colors.  ...”      

Page 27: IMAAnnual$Program$Year$Workshop:$ …...Steps in the graph theory solution of "Benzer's problem” 1. Convert each deletion mutant (restriction fragment) into a vertex. 2. Construct

194 No. 96 Tores and Barillot

Optimizing Pedigree Drawing Using Interval GraphTheory

Frederic Tores1 Emmanuel Barillot1,2

[email protected] [email protected] INFOBIOGEN, 7 rue Guy Moquet, BP8, 94800 Villejuif, France2 GENETHON, 1 rue de l’Internationale, 91000 Evry, France

Keywords: pedigree drawing, interval graph, interval graph sandwich, graph augmentation, graphdiminut

1 Introduction

A pedigree is a set of individuals that are related by four types of relations: mate, parent, child andsib. Conventionally, in a pedigree drawing: (1) Mates are linked to a mating unit. (2) Sibs are linkedto a sibship unit. (3) The sibship is linked to its parental mating (4) people from the same generationare drawn on the same horizontal line, and the older generations are at the top (see Figure 1).

Naive strategies to pedigree drawing may lead to poor readability of the representation becauseof numerous link crossings. Pedigrees including consanguinity loops, individuals with multiples matesor several related families are particularly problematic to draw neatly. To our knowledge, none of theexisting pedigree drawing softwares draws pedigree perfectly in all possible cases.

We propose to use interval graph theory to find a perfect representation of the pedigree, thatis a representation with no link crossing, if such a representation exists. If not, we propose to useline-crossing elimination in directed graph to find the best layout.

2 Method and Results

We have defined the rules of readability to whom a pedigree drawing should conform to be perfectlymeaningful: (a) No overlap is allowed between individuals. (b) Mates must be adjacent. (c) Sibs mustbe adjacent, but orphan spouses may be inserted within a sibship. (d) Parents are above their childsibship. (e) There are no link crossing. A pedigree for which a drawing verifying these five rules andthe four conventions given in introduction exists is said to be a perfectly drawable pedigree (PDP).

Starting from a pedigree, we now define the following set V of vertices: a vertex per individual, avertex per mating, and a vertex per sibship. We have shown that establishing if a pedigree is PDP is

SDD

F

mating

sibship

M

S

MF

Figure 1: Example of simple pedigree drawing and its associated interval graph. Right, solid lines aremandatory edges, dotted with a cross are forbidden, dashed have been added to get an interval graph.