33
Medical Radiation Physics, Clinical Sciences Lund, Lund University Michael Ljungberg, PhD, Katarina Sjögreen-Gleisner, PhD IMAGE-BASED PATIENT-SPECIFIC DOSIMETRY FOR RADIONUCLIDE THERAPY International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry 9-12 November 2010 Vienna, Austria

IMAGE-BASED PATIENT-SPECIFIC DOSIMETRY FOR RADIONUCLIDE … · 2015. 3. 18. · Vienna, Austria. Medical Radiation Physics, Clinical Sciences Lund, Lund University BASIC DOSIMETRY

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    Michael Ljungberg, PhD, Katarina Sjögreen-Gleisner, PhD

    IMAGE-BASED PATIENT-SPECIFIC DOSIMETRY FOR RADIONUCLIDE THERAPY

    International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry

    9-12 November 2010 Vienna, Austria

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    BASIC DOSIMETRY

    Absorbed dose is mean imparted energy in a mass element!Conditions:

    A radiation source volume somewhereA target volume somewhereThe intensity and characteristics of the radiation will be changed on its way toward the target volume!

    Common equation for dosimetry in Nuclear Medicine

    A is the total number of disintegrations (cumulated activity)S describes the energy, emitted from the source volume, absorbed in the target volume per mass unit and disintegration.

    D = A S%~

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    THE ”MIRD” EQUATION

    {D A S A A n E mSS

    φ= ⋅ = ⋅Δ ⋅Φ = ⋅ ⋅ ⋅% % %

    14243

    ( ) ( ) ( )k hr r r r

    r r i T S i T Sih i ihi iT T

    n Em

    Dm

    A Aφ φ

    ← = ⋅ = ⋅← ←

    Δ∑ ∑% %

    i i ii i

    n EΔ = Δ =∑ ∑n is the number of particles emitted per transitionE is the mean energy per particle

    S denotes the sourceT denotes the target

    ( )( )

    Sr r 1

    r r 0 ; T Snp T

    np T S

    φ

    φ

    ← =

    ← = ≠

    ( )T S0 r r 1iφ≤ ← ≤Photons

    Electrons

    Mean energy per disintegration Absorbed Fraction

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    APPLICATIONS OF DOSIMETRY IN NUCLEAR  MEDICINE

    Dosimetry for Diagnostic Nuclear MedicineEstimate risk for cancerogenic effects and hereditary changesLow activities / gamma-radiationIndividuals is not in focusPopulationsSpecific for the study but not for the individual patient

    Dosimetry for therapy with radionuclidesPrimary aim is to treat a disease with radiationHigh activities / charged particlesThe individual is in focusStudy specific as well as patient specific

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    DOSIMETRY FOR TREATMENT

    Activity (A)Measurement with a ’diagnostic tracer amount ’ for kinetic and dosimetry calculationsPreferably made with a scintillations camera or SPECT/PETUse Gy/MBq to predict activity needed to delived an prescribed absorbed dose to the target

    Geometry (S)The more accurate the geometry is - the better.Patient-specific geometry from a CT studySometimes difficult to segment target volumes in 3D

    General Goal: To determine absorbed dose for individuals

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    WHY IS RADIONUCLIDE DOSIMETRY DIFFICULT?

    External TherapyWell-defined source and intensityTurn-on and offEnergy usually evenly distributed within a volume elementHigh dose-rate

    Radionuclide therapyInjection of the sourceCannot turn the source on and off!Need to measure the activity distribution in time and spaceImaging systems have limitations (spatial resolution, noise,attenuation ..)Localization in the tissues and cells generally heterogeneous Biokinetic may vary with patientsLow dose-rate

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    THE DIFFICULTIES IN ACTIVITY MEASUREMENTS

    A. No patient motion and perfect camera resolutionB. Patient respiration and heart beatingC. Normal system resolution and patient movementsD. Photon attenuationE. Photon attenuation and scatterF. Realistic noise level

    A B C D E F

    Monte Carlo simulated images

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    2D DOSIMETRY – PRINCIPLES

    Dosimetry based on tools developed for diagnostic dosimetry

    Activity from Planar WB measurements (Geometrical-Mean)

    S-values calculated from analytical phantoms

    Assumes homogenous activity i organ

    Calculate mean absorbed dose in organs

    Correction for differences in organ masses relative to reference phantom!

    A S

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    AUC 

    Intensity

     [cou

    nts]

    Time [h]

    BIOKINETICS TO OBTAIN CUMULATED ACTIVITY

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    DEVELOPMENT OF MORE REALISTIC PHANTOMS

    May lead to more ’patient specific’ dosimetry

    Example: The NCAT phantom by P Segars, Duke University

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    WHY IMAGE‐BASED 3D DOSIMETRY

    Dosimetry based on two-dimensional (2D) whole-body imaging has known limitations.Contribution from overlapping structuresAttenuation correction is 2DScatter correctionSource thickness correctionBackground/overlap correction

    3D images provides information of the absorbed dose on a voxel levelHeterogenityCorrections more accuratePatient-specific anatomySPECT/CT on different time points – biokinetics on voxel level

    Hybrid SPECT/WB method common compromise!One Quantitative SPECT measurement to nomalise a kinetic curve obtained from multiple WB measurements

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    3D DOSIMETRY

    Multiple registered SPECT/CT or PET/CT studies

    Correction forPhoton attenuationScattered radiationCollimator resolutionSeptal penetrationPartial-Volume Effect

    3D dose calculation fromDose kernelsMonte Carlo method

    Evaluated asDose/volume histogramsRelate to biological effect

    Function Imaging SPECT/PET

    Function Imaging SPECT/PET

    Image Registration

    Image Registration Anatomical Imaging CT

    Anatomical Imaging CT

    Correction for Attenuation and Scatter Collimator Response Septal Penetration

    Partial-Volume Effects

    Correction for Attenuation and Scatter Collimator Response Septal Penetration

    Partial-Volume Effects

    Dose Calculation by Dose Kernels Monte Carlo

    Dose Calculation by Dose Kernels Monte Carlo

    SegmentationDV Histogram

    SegmentationDV Histogram

    Obtainbiokinetics

    Obtainbiokinetics

    Image Reconstruction

    Image Reconstruction

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    3D DOSIMETRY

    Modern SPECT/CT (PET/CT) systems makes life easier

    Correction forPhoton attenuationScattered radiationCollimator resolutionSeptal penetrationPartial-Volume Effect

    3D dose calculation fromDose kernelsMonte Carlo method

    Evaluated asDose/volume histogramRelate to biological effect

    Correction for Attenuation and Scatter Collimator Response Septal Penetration

    Partial-Volume Effects

    Correction for Attenuation and Scatter Collimator Response Septal Penetration

    Partial-Volume Effects

    Dose Calculation by Dose Kernels Monte Carlo

    Dose Calculation by Dose Kernels Monte Carlo

    SegmentationDV Histogram

    SegmentationDV Histogram

    Obtainbiokinetics

    Obtainbiokinetics

    Image Reconstruction

    Image Reconstruction

    Hybrid SPECT/CT

    Hybrid SPECT/CT

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    3D DOSIMETRY

    Today Quantification is made by iterative methods

    Include correction forPhoton attenuationScattered radiationCollimator resolutionSeptal penetrationPartial-Volume Effect

    3D dose calculation fromDose kernelsMonte Carlo method

    Evaluated asDose/volume histogramRelate to biological effect

    Iterative Methods preferrable

    since they allow for correction of

    Attenuation and Scatter Collimator Response Septal Penetration

    Backscatter

    Iterative Methods preferrable

    since they allow for correction of

    Attenuation and Scatter Collimator Response Septal Penetration

    Backscatter

    Dose Calculation by Dose Kernels Monte Carlo

    Dose Calculation by Dose Kernels Monte Carlo

    SegmentationDV Histogram

    SegmentationDV Histogram

    Obtainbiokinetics

    Obtainbiokinetics

    Hybrid SPECT/CT

    Hybrid SPECT/CT

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    NewImage

    Estimate

    Forward Projection

    EstimatedProjections

    Comparing step

    Errorprojection

    Backproject Error

    Update step

    MeasuredProjections

    Initial Image Estimate

    More angles?

    Image space Projection space

    PRINCIPLES OF THE ML-EM ALGORITHM

    yes

    More Iterations

    Exit

    yesRatio

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    ABSORBED DOSE CALCULATIONS FROM SPECT/PET IMAGES

    Dose Calculation

    Absorbed Dose RateActivity

    Density

    ( ) ( )T ST Sr r

    r r iS i ii T

    D A n Em

    φ ←← = ⋅∑

    Same ”MIRD” Equation!!!Source is one voxelin the SPECT/PET image set

    Target is one voxel inthe density image set

    S values not pre-tabulated butcalculated when needed

    Patient-specific geometry

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    POINT‐DOSE KERNELS – 3D

    Describes specific absorbed fraction as function of radial distance from a point source.

    Derived for homogeneous media (H2 O) using Monte Carlo calculations.photonsmono-energetic electronsβ-particlesRadionuclides

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    FULL MONTE CARLO CALCULATION – 3D

    Energy deposition in 3D

    Takes into account heterogenities in sources and tissues

    May take considerable of CPU time

    ”Public Domain” programsEGS4,EGSnrcMCNPXGeant4Penelope........

    90‐Y    MCNP4 Simulation

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    3D DOSIMETRY BASED ON SPECT/PET

    Absorbed dose calculation from local deposit energy, dose kernels or full Monte Carlo

    are on a voxel level

    Segmentation of organ volumes is not critical

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    3D-ID

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    RMDP (ROYAL MARSDEN)

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    THE LUNDADOSE

    Include also methods for 3D SPECT/CT based dosimetry

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    Medical Radiation Physics, Lund Katarina Sjögreen-Gleisner, Michael Ljungberg, Karin Wingårdh, David Minarik, Sven-Erik Strand, Tomas Ohlsson

    Department of Oncology, Lund Ola Lindén, Jan Tennvall

    EXAMPLE: 3D BASED DOSIMETRIC STUDY IN LUND

    High Dose Zevalin™ antibodies Non-Hodkin’s Lymphoma Dosimetry study - 111InTherapy study – 90Y Bremstrahlung ImagingBone-marrow supportAdministered activity based on absorbed dose (Gy)Maximum Tolerated Dose (MTD)

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    PROCEDURE

    Seven multiple 111In SPECT/CT studies and WB studies

    SPECT Reconstruction with OSEM iterative reconstruction algorithmPatient-specific correction for attenuation, scatter and collimator response

    Image RegistrationCT-CT Based Non-Rigid Registration over multiple measurements. CT-CT transformations applied to SPECT-SPECT

    Voxel based Absorbed Dose DistributionLocal absorbed energy (90Y)

    LundAdose Software – written in IDL

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    ABSORBED DOSE IMAGES

    90Y absorbed dose estimated from multiple quantitative 111-In images

    Absorbed dose by numerical integration voxel-by-voxel after image registration

    Masses from CT images

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    FUSED IMAGES

    90Y absorbed dose estimated from multiple quantitative 111-In images

    Absorbed dose by numerical integration voxel-by-voxel after image registration

    Masses from CT images

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    REGIONS OF INTEREST

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    DOSE‐VOLUME HISTOGRAM

    Dose calculationsAverageMedianAverage of 75% or aboveAverage of 90% or above

    Gy / MBq

    Estimation of necessary therapy activity is based on this value.

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    RADIOBIOLOGICAL PARAMETERS

    Iterative Methods preferrable

    since they allow for correction of

    Attenuation and Scatter Collimator Response Septal Penetration

    Partial-Volume Effects

    Iterative Methods preferrable

    since they allow for correction of

    Attenuation and Scatter Collimator Response Septal Penetration

    Partial-Volume Effects

    Dose Calculation by Dose Kernels Monte Carlo

    Dose Calculation by Dose Kernels Monte Carlo

    SegmentationDV Histogram

    SegmentationDV Histogram

    Obtainbiokinetics

    Obtainbiokinetics

    Radiobiological Parameters

    Hybrid SPECT/CT

    Hybrid SPECT/CT

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    RADIOBIOLOGICAL PARAMETERS

    RBE-weighted DoseConsider differences in Radiobiological effect for different types of radiation

    Biologically Effective DoseAccounts for dose rate variations in radionuclide therapyBased on Linear-Quadratic Response ModelInclude α/β and rate-of-repair of sublethal damages.

    Equivalent Uniform DoseSpatially varying absorbed dose distribution converted into an equivalent uniform absorbed dose that yield a biologic response similar to that expected from the nonuniform dose distribution.

    Isoeffective DoseEquivalent absorbed dose of low-LET radiation that when delivered would produce the same clinical effects as the high-LET treatment.

    "MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature." J Nucl Med 2009 50(3): 477-484.

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    PROBLEMS WITH MACROSCOPIC MONTE CARLO

    Even if a voxel‐based Monte Carlo  dosimetry approach that  is properly 

    done is a improvement over organ‐based  dosimetry – we still do not know the  distribution of activity within the the 

    target voxel!!!

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    CONCLUSION

    Dosimetry in Nuclear Medicine is a real challenge ☺

    New hybrid SPECT/CT systems have significantly improved the accuracy in activity quantitation

    Dosimetry on SPECT voxel level possible

    Inherent spatial resolution problem may need connection to models describing activity distribution of small-scale levels

    Radiobiological parameters will complement the physical ’absorbed dose’

  • Medical Radiation Physics, Clinical Sciences Lund,  Lund University

    THANK YOU FOR YOUR ATTENTION

    Lund University, Sweden

    http://upload.wikimedia.org/wikipedia/commons/f/fc/Lunds_universitets_huvudbyggnad_%28juli_2008%29.jpg

    IMAGE-BASED PATIENT-SPECIFIC DOSIMETRY FOR RADIONUCLIDE THERAPY�Slide Number 2THE ”MIRD” EQUATIONSlide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8BIOKINETICS TO OBTAIN CUMULATED ACTIVITYSlide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14PRINCIPLES OF THE ML-EM ALGORITHMABSORBED DOSE CALCULATIONS FROM SPECT/PET IMAGESSlide Number 17Slide Number 183D DOSIMETRY BASED ON SPECT/PET3D-IDRMDP (ROYAL MARSDEN)THE LUNDADOSESlide Number 23Slide Number 24Slide Number 25Slide Number 26REGIONS OF INTERESTSlide Number 28RADIOBIOLOGICAL PARAMETERSRADIOBIOLOGICAL PARAMETERSPROBLEMS WITH MACROSCOPIC MONTE CARLOSlide Number 32THANK YOU FOR YOUR ATTENTION