21
| Rene Reimann, [email protected] www.nano-optics.org Cavity Optomechanics - Interaction of Light with Mechanical Structures Nano-Optics Lecture 2017-12-08 1 Image: PhD thesis of Albert Schließer, LMU München

Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, [email protected] -optics.org 2017 12 08 | 2 Cavity Optomechanics

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org

Cavity Optomechanics

- Interaction of Light with Mechanical StructuresNano-Optics Lecture

2017-12-08 1

Image: PhD thesis of Albert Schließer, LMU München

Page 2: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 2

Cavity Optomechanics

From M. Aspelmeyer et al., Physics Today 65, 29-35 (2012)

Page 3: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 3

Radiation Pressure Force

Page 4: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 4

Cavity Basics

Fabry-Perot Cavity – Input-Output Formalism

▪ 𝐸in = 𝐸0 exp[𝑖 𝜔𝑡 − 𝑘𝑧 ], for simplicity we set 𝐸0 =1

▪ 𝑟 2 + 𝑡 2 + 𝑎 2 = 𝑅 + 𝑇 + 𝐴 = 1, for simplicity we keep 𝑎 = 0

▪ Solve for 𝐸𝑥 as a function of 𝐸in

▪ Write field as 𝐸𝑥 = 𝑢𝑥 exp 𝑖𝜙𝑥 × 𝐸in

▪ Intensity 𝐼𝑥 = 𝐸𝑥2 = 𝑢𝑥

2 = 𝑇𝑥, as 𝐼in = 1

𝐸in

𝐸ref

𝐸1

𝐸2

𝐸out

𝑟, 𝑡 𝑟, 𝑡

𝐸1 = 𝑖𝑡𝐸in + 𝑟𝐸2

𝐿

𝐸2 = exp 𝑖2𝑘𝐿 𝑟𝐸1𝐸ref = 𝑖𝑡𝐸2 + 𝑟𝐸in𝐸out = exp 𝑖𝑘𝐿 𝑖𝑡𝐸1

Page 5: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 5

Cavity Basics

Fabry-Perot Cavity – Output Field

𝐸in

𝐸ref

𝐸1

𝐸2

𝐸out

𝑅, 𝑇 𝑅, 𝑇

→ 𝑇out=𝑇2

1 + 𝑅2 − 2𝑅 cos 2𝑘𝐿

𝐿

𝐸1 = 𝑖𝑡𝐸in + 𝑟𝐸2𝐸2 = exp 𝑖2𝑘𝐿 𝑟𝐸1𝐸ref = 𝑖𝑡𝐸2 + 𝑟𝐸in𝐸out = exp 𝑖𝑘𝐿 𝑖𝑡𝐸1

Page 6: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 6

Cavity Basics

Fabry-Perot Cavity – Output Field

𝑇out =𝑇2

1 + 𝑅2 − 2𝑅 cos 2𝜔𝑐 𝐿

𝜔FSR = 𝜋𝑐/𝐿

𝜆/2

in real space

Page 7: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 7

Cavity Basics

Fabry-Perot Cavity – Cavity Language

𝑇out =𝑇2

1 + 𝑅2 − 2𝑅 cos 2𝜔𝑐 𝐿

with cos 𝑥 ≈ 1 − 𝑥2/2 and 𝑇 = 1 − 𝑅one finds for 𝑅 ≈ 1 and close to a resonance (e.g 𝜔 ≈ 0)

𝑇out ≈ Lorentzian =𝛾02

𝛾02 + 𝜔2

𝛾0 =(1 − 𝑅)

2

𝑐

𝐿where

Page 8: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 8

Cavity Basics

Fabry-Perot Cavity – Cavity Language

2𝛾0 = 𝜔FWHM

𝑇out ≈ Lorentzian =𝛾02

𝛾02 + 𝜔2

Page 9: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 9

Cavity Basics

Fabry-Perot Cavity – Cavity Language

2𝛾0

𝜔FSR

Define cavity finesse 𝐹 =𝜔FSR

2𝛾0

𝛾0 =1 − 𝑅

2

𝑐

𝐿𝜔FSR = 𝜋𝑐/𝐿

=𝜋

1 − 𝑅𝑅 𝐹 = 105 = 0.99997

Page 10: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 10

Equations of Motion

Cavity:

Oscillator:

Page 11: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 11

Coupled Equations of Motion

Page 12: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 12

Effective Equation of Motion + Solutions

Detailed treatment: PhD thesis of Albert Schließer, LMU München

Page 13: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 13

Effective Temperature

With Wiener Khintchine theorem:

With Equipartition theorem:

Page 14: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 14

Sidebands

Page 15: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 15

Sideband Cooling

ω

Ωmech Ωmech

𝜔𝐿 𝜔cav

𝑚𝑚 − 1

𝑚 + 1

Ground-state cooling

works in the resolved

sideband regime:

2𝛾0 ≪ Ω0

2𝛾0

Page 16: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 16

Sideband Cooling

Page 17: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org

Optomechanical Systems in the Novotny group

2017-12-08 17

Page 18: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 18

An Optical Tweezer for a Dielectric Particle

Page 19: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 19

Feedback Cooling

Page 20: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 20

Cavity Optomechanics

𝑚𝑚 − 1

𝑚 + 1𝑉cav

Ωmech

𝐿

𝛾0 =𝜋𝑐

2𝐹𝐿

Sensitivity

Sensitivity to particle motion 𝑆 = 𝑔/(2𝛾0).With 𝑔 ∝ 1/𝑉cav and 𝑉cav ∝ 𝐿2 one finds 𝑺 ∝ 𝑭/𝑳.

Bandwidth

For 𝐿 = 0.5 mm and 𝐹 = 300 × 103 one finds 2𝛾0 = 2𝜋 × 1 MHz.2𝛾0 > Ωmech guarantees a fast information retrieval rate.

2𝛾0

Page 21: Image: PhD thesis of Albert Schließer, LMU …...Image: PhD thesis of Albert Schließer, LMU München Rene Reimann, rreimann@ethz.ch -optics.org 2017 12 08 | 2 Cavity Optomechanics

|Rene Reimann, [email protected] www.nano-optics.org 2017-12-08 21

References

▪ Recent Review: Aspelmeyer, M., Kippenberg, T. J., & Marquardt, F. (2014). Cavity

optomechanics. Reviews of Modern Physics, 86(4), 1391–1452.

http://doi.org/10.1103/RevModPhys.86.1391

▪ In the language of the course: Chapter 11.4: Novotny, L., & Hecht, B. (2006). Principles of Nano-

Optics. Cambridge University Press.

▪ Reflection from vibrating mirror: Van Bladel, J., & De Zutter, D. (1981). Reflections from linearly

vibrating objects: Plane mirror at normal incidence. IEEE Transactions on Antennas and

Propagation, 29(4), 629–637. http://doi.org/10.1109/TAP.1981.1142645

▪ 𝛿𝑇 and 𝛿Γ equations: Schließer, A. (2009). Cavity optomechanics and optical frequency comb

generation with silica whispering-gallery-mode microresonators. Thesis LMU München.

http://edoc.ub.uni-muenchen.de/10940/1/Schliesser_Albert.pdf

▪ For fluctuating force: Kubo, R. (1966). The fluctuation-dissipation theorem. Reports on Progress

in Physics, 29(1), 306. http://doi.org/10.1088/0034-4885/29/1/306

▪ Very nice lectures (lectures 18 to 21) by Florian Marquardt alvailable as videos on

http://theorie2.physik.uni-erlangen.de/index.php/Lecture_Quantum-

optical_phenomena_in_nanophysics#Videos