46
Imaging Instruments (part I) Principal Planes and Focal Lengths (Effective, Back, Front) Multi-element systems Pupils & Windows; Apertures & Stops the Numerical Aperture and f/# Single-Lens Camera Human Eye Reflective optics Scheimpflug condition MIT 2.71/2.710 09/22/04 wk3-b-1

Imaging Instruments (part I)dspace.mit.edu/bitstream/handle/1721.1/74610/2-71-fall... · 2019. 9. 12. · MIT 2.71/2.710 W. J. Smith, “Modern Optical Engineering,” McGraw-Hill

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Imaging Instruments (part I)

    • Principal Planes and Focal Lengths (Effective, Back, Front)

    • Multi-element systems• Pupils & Windows; Apertures & Stops• the Numerical Aperture and f/#• Single-Lens Camera• Human Eye• Reflective optics• Scheimpflug condition

    MIT 2.71/2.71009/22/04 wk3-b-1

  • Focal Lengths & Principal Planes

    generalized optical system(e.g. thick lens,

    multi-element system)

    2nd PS

    2nd FP

    1st FP

    1st PS

    EFL

    BFL

    EFL

    FFL

    EFL: Effective Focal Length (or simply “focal length”)FFL: Front Focal LengthBFL: Back Focal LengthFP: Focal Point/Plane PS: Principal Surface/Plane

    MIT 2.71/2.71009/22/04 wk3-b-2

  • The significance of principal planes /1

    MIT 2.71/2.71009/22/04 wk3-b-3

    generalizedoptical system

    thin lensof the same power

    located at the 2nd PSfor rays passing through 2nd FP

    1st PS

    2nd PS

    2nd FP

    1st FP

  • The significance of principal planes /2

    MIT 2.71/2.71009/22/04 wk3-b-4

    generalizedoptical system

    thin lensof the same power

    located at the 1st PPfor rays passing through 1st FP

    1st PS

    2nd PS

    2nd FP

    1st FP

  • Reminder: imaging condition (thin lens)

    MIT 2.71/2.71009/22/04 wk3-b-5

    2nd FP

    object

    image

    chief ray1st FP

    n=1 n=1

  • The significance of principal planes /3

    1st PS 2nd PS

    MIT 2.71/2.71009/22/04 wk3-b-6

    image?magnification?

    multi-elementoptical system

    2nd FP

    1st FP

    object

  • The significance of principal planes /4

    1st PS 2nd PS

    multi-elementoptical system

    2nd FP

    1st FP

    object

    s s’

    ,111fss

    =′

    +ssm′

    −=lateral hold, where f = (EFL)MIT 2.71/2.71009/22/04 wk3-b-7

  • Numerical Aperture

    medium ofrefr. index n

    θ

    θ: half-angle subtended by the imaging system from an axial object

    Numerical Aperture(NA) = n sinθ

    Speed (f/#)=1/2(NA)pronounced f-number, e.g.f/8 means (f/#)=8.

    Aperture stopthe physical element whichlimits the angle of acceptance of the imaging system

    MIT 2.71/2.71009/22/04 wk3-b-8

  • Aperture / NA: physical meaning

    MIT 2.71/2.71009/22/04 wk3-b-9

    medium ofrefr. index n

    θ

    The Numerical Aperturelimits the optical energythat can flow through the system

    Later we will also learn that the NA also defines the resolution (or resolving power) of the optical system

  • Entrance & exit pupils

    multi-elementoptical system

    image throughpreceding elements

    image throughsucceeding elements

    entrancepupil exitpupil

    MIT 2.71/2.71009/22/04 wk3-b-10

  • The Chief Ray

    Starts from off-axis object,Goes through the center of the Aperture

    MIT 2.71/2.71009/22/04 wk3-b-11

  • The Field Stop

    Limits the angular acceptanceof Chief Rays

    MIT 2.71/2.71009/22/04 wk3-b-12

  • Entrance & Exit Windows

    multi-elementoptical system

    image throughpreceding elements

    MIT 2.71/2.71009/22/04 wk3-b-13

    entrancewindow

    exitwindow

    image throughsucceeding elements

  • All together

    entrancepupil

    exitpupil

    exitwindow

    entrancewindow

    aperturestopfield

    stop

    MIT 2.71/2.71009/22/04 wk3-b-14

  • All together

    entrancepupil

    exitwindow

    entrancewindow

    aperturestopfield

    stopexit

    pupil

    MIT 2.71/2.71009/22/04 wk3-b-15

  • Example: single-lens camera

    2nd FP

    MIT 2.71/2.71009/22/04 wk3-b-16

    objectplane

    imageplane

    1st FPsize offilm

    or digitaldetector

    array

  • Example: single-lens camera

    2nd FP

    objectplane

    1st FP

    ApertureStop

    & EntrancePupil

    imageplane

    MIT 2.71/2.71009/22/04 wk3-b-17

  • Example: single-lens camera

    2nd FP

    1st FP

    Exitpupil

    (virtual)

    ApertureStop

    & EntrancePupil

    objectplane

    imageplane

    MIT 2.71/2.71009/22/04 wk3-b-18

  • Example: single-lens camera

    2nd FP

    objectplane

    1st FP

    chief ray

    Field Stop& Exit Window

    MIT 2.71/2.71009/22/04 wk3-b-19

  • Example: single-lens camera

    Field Stop& Exit Window

    2nd FP

    1st FP

    chief ray

    EntranceWindow

    MIT 2.71/2.71009/22/04 wk3-b-20

  • Example: single-lens camera

    2nd FP

    1st FP

    Exitpupil

    (virtual)

    ApertureStop

    & EntrancePupilEntrance

    Window

    Field Stop& Exit Window

    MIT 2.71/2.71009/22/04 wk3-b-21

  • Example: single-lens camera

    Field Stop& Exit Window

    2nd FP

    1st FP

    Exitpupil

    (virtual)

    ApertureStop

    & EntrancePupilEntrance

    WindowMIT 2.71/2.71009/22/04 wk3-b-22

  • Example: single-lens camera

    vignettingvignetting

    2nd FP

    1st FP

    ApertureStop

    MIT 2.71/2.71009/22/04 wk3-b-23

  • Imaging systems in nature

    • “Physical” architecture matches survival requirements and processing capabilities

    • Human eye: evolved for– adaptivity (e.g. brightness adjustment)– transmission efficiency (e.g. mexican hat response)– bypass structural defects (e.g. blind spot)– other functional requirements (e.g. stereo vision)

    • Insect eye: similar, but much simpler processor (human brain = ~1011 neurons; insect brain = ~104 neurons)

    MIT 2.71/2.71009/22/04 wk3-b-24

  • Anatomy of the human eye

    Images removed due to copyright concerns

    W. J. Smith, “Modern Optical Engineering,” McGraw-HillMIT 2.71/2.71009/22/04 wk3-b-25

  • Image removed due to copyright concerns

    Eye schematic with typical dimensions

    Photographic camera

    Image removed due to copyright concerns

    MIT 2.71/2.71009/22/04 wk3-b-26

  • Accommodation (focusing)

    Remote object (unaccommodated eye)

    Proximal object (accommodated eye)

    Comfortable viewing up to 2.5cm away from the corneaMIT 2.71/2.71009/22/04 wk3-b-27

  • Eye defects and their correction

    Images removed due to copyright concerns

    from Fundamentals of Opticsby F. Jenkins & H. White

    MIT 2.71/2.71009/22/04 wk3-b-28

  • The eye’s “digital camera”: retina

    Images removed due to copyright concerns

    http://www.mdsupport.org

    MIT 2.71/2.71009/22/04 wk3-b-29

  • The eye’s “digital camera”: retina

    rods: intensity (grayscale) cones: color (R/G/B)

    Images removed due to copyright concerns

    http://www.phys.ufl.edu/~avery/MIT 2.71/2.71009/22/04 wk3-b-30

  • Retina vs your digital cameraRetina:

    variant sampling rateDigital camera:

    fixed sampling rate

    MIT 2.71/2.71009/22/04 wk3-b-31

    (grossly exaggerated; in actual retinatransition from dense to sparse sampling

    is much smoother)

  • Retina vs your digital cameraRetina:

    blind spot not noticeableDigital camera:

    bad pixels destructive

    MIT 2.71/2.71009/22/04 wk3-b-32

  • Retina vs your digital camera

    Images removed due to copyright concerns

    Retinal image CCD image

    http://www.klab.caltech.edu/~itti/MIT 2.71/2.71009/22/04 wk3-b-33

  • Spatial response of the retina –lateral connections

    Image removed due to copyright concerns

    http://webvision.med.utah.edu/MIT 2.71/2.71009/22/04 wk3-b-34

  • Spatial response of the retina –lateral connections

    http://www.phys.ufl.edu/~avery/MIT 2.71/2.71009/22/04 wk3-b-35

  • Spatial response of the retina –lateral connections

    Explanation of the “flipping dot” illusion: the Mexican hat response

    Image removed due to copyright concerns

    MIT 2.71/2.71009/22/04 wk3-b-36

    http://faculty.washington.edu/wcalvin

  • Temporal response: after-images

    http://dragon.uml.edu/psych/MIT 2.71/2.71009/22/04 wk3-b-37

  • Seeing 3D

    Images removed due to copyright concerns

    http://www.ccom.unh.edu/vislab/VisCourseMIT 2.71/2.71009/22/04 wk3-b-38

  • MIT 2.71/2.71009/22/04 wk3-b-39

  • The compound eye

    Images removed due to copyright concerns

    MIT 2.71/2.71009/22/04 wk3-b-40

  • Elements of the compound eye:ommatidia (=little eyes)

    Images removed due to copyright concerns

    “image” formation:blurry, but

    computationally efficientfor moving-edge detection

    MIT 2.71/2.71009/22/04 wk3-b-41

  • Reflective Optics

    MIT 2.71/2.71009/22/04 wk3-b-42

    s

    s’

    Example:imaging by a spherical mirror

  • Sign conventions for reflective optics

    • Light travels from left to right before reflection and from right to left after reflection

    • A radius of curvature is positive if the surface is convex towards the left

    • Longitudinal distances before reflection are positive if pointing to the right; longitudinal distances after reflection are positive if pointing to the left

    • Longitudinal distances are positive if pointing up• Ray angles are positive if the ray direction is obtained by

    rotating the +z axis counterclockwise through an acute angle

    MIT 2.71/2.71009/22/04 wk3-b-43

  • Reflective optics formulae

    Rss211

    −=′

    +Imaging condition

    2Rf −=Focal length

    ssmx′

    −=ssm′

    −=αMagnification

    MIT 2.71/2.71009/22/04 wk3-b-44

  • The Cassegrain telescope

    MIT 2.71/2.71009/22/04 wk3-b-45

  • The Scheimpflug condition

    The object plane and the image planeintersect at the plane of the lens.

    MIT 2.71/2.71009/22/04 wk3-b-46

    Imaging Instruments (part I)Focal Lengths & Principal PlanesThe significance of principal planes /1The significance of principal planes /2Reminder: imaging condition (thin lens)The significance of principal planes /3The significance of principal planes /4Numerical ApertureAperture / NA: physical meaningEntrance & exit pupilsThe Chief RayThe Field StopEntrance & Exit WindowsAll togetherAll togetherExample: single-lens cameraExample: single-lens cameraExample: single-lens cameraExample: single-lens cameraExample: single-lens cameraExample: single-lens cameraExample: single-lens cameraExample: single-lens cameraImaging systems in natureThe eye’s “digital camera”: retinaThe eye’s “digital camera”: retinaRetina vs your digital cameraRetina vs your digital cameraRetina vs your digital cameraSpatial response of the retina – lateral connectionsSpatial response of the retina – lateral connectionsSpatial response of the retina – lateral connectionsTemporal response: after-imagesSeeing 3DThe compound eyeElements of the compound eye:ommatidia (=little eyes)Reflective OpticsSign conventions for reflective opticsReflective optics formulaeThe Cassegrain telescopeThe Scheimpflug condition