249
Impact of Personalized Medicine for the Practice of Hematopathology Adam Bagg MD Professor Director, Hematology University of Pennsylvania Kojo S.J. ElenitobaJohnson MD Henry C Bryant Endowed Professor Director of Molecular Diagnostics University of Michigan Megan S. Lim MD PhD Professor Director of Hematopathology University of Michigan 2011 College of American Pathologists. Materials are used with the permission of the faculty. 1

Impact of Personalized Medicine for the Practice of Hematopathology

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Impact of Personalized Medicine for the Practice of Hematopathology

Impact of Personalized Medicine for the Practice of Hematopathology

Impact of Personalized Medicine for the Practice of Hematopathology

Adam Bagg MDProfessor

Director, HematologyUniversity of Pennsylvania

Kojo S.J. Elenitoba‐Johnson MDHenry C Bryant Endowed Professor Director of Molecular Diagnostics

University of Michigan 

Megan S. Lim MD PhDProfessor 

Director of HematopathologyUniversity of Michigan  2011 College of American Pathologists. Materials are used with the permission of the faculty.

1

Page 2: Impact of Personalized Medicine for the Practice of Hematopathology

DisclosuresDisclosures

None

2

Page 3: Impact of Personalized Medicine for the Practice of Hematopathology

Course ObjectivesCourse Objectives

• Be familiar with concepts of personalized medicine in the context of hematopathology

• Understand the appropriate diagnostic and prognostic value of specific molecular tests in the evaluation of hematopoietic neoplasms

• Appreciate how novel genetic alterations in myeloid and lymphoid neoplasms impact patient management. 

3

Page 4: Impact of Personalized Medicine for the Practice of Hematopathology

AgendaTopic Speaker Time

I. Introduction Lim 5’

II. Principles of personalized medicine and evolution of molecular hematopathology-Overview of commonly used molecular technologies in hematopathology-Update in new technologies including array CGH, next generation sequencing

Elenitoba-Johnson

40’

III. Approach to myeloid neoplasms in the era ofpersonalized medicine-Chronic myeloid leukemia-Acute myeloid leukemia

Bagg 65’

IV. Approach to NHL in the era of personalized medicine-Aggressive B-cell lymphomas-Splenic Lymphoma-ALCL

Lim 60’

IV. Summary and Closing Lim 10’4

Page 5: Impact of Personalized Medicine for the Practice of Hematopathology

Impact of Personalized Medicine for the Practice of Hematopathology

Impact of Personalized Medicine for the Practice of Hematopathology

Kojo S.J. Elenitoba‐Johnson MDHenry C Bryant Endowed Professor 

Director of Molecular Diagnostics LaboratoryUniversity of Michigan 

2011 College of American Pathologists. Materials are used with the permission of the faculty.5

Page 6: Impact of Personalized Medicine for the Practice of Hematopathology

Personalized medicine and evolution of molecular hematopathology

1. Principles of personalized medicine

2. Evolution of molecular diagnostics

3. Update in new technologies including array CGH, next-generation sequencing

6

Page 7: Impact of Personalized Medicine for the Practice of Hematopathology

Concepts of Personalized Medicine

Personalized Medicine (2013) 10(1), 13-15

7

Page 8: Impact of Personalized Medicine for the Practice of Hematopathology

Personalized Medicine

DefinitionForm of medicine that uses information about a person’s genes, proteins, and environment to prevent diagnose and treat disease National Cancer Institute http://www.cancer.gov/

Not a new concept

“The new language of genomics, as applied to medicine, is less a revolution than an evolution“       Steele 2009 Personalized medicine: something old, something new.  Pers Med 6:1‐5

8

Page 9: Impact of Personalized Medicine for the Practice of Hematopathology

Genetic testing for personalized medicine in hematopathology

9

Pre-symptomatic risk assessment

Diagnosis Prognosis Treatment

Pharmacogenomics

Classification Disease monitoring

Response to treatment

Prediction of response

Page 10: Impact of Personalized Medicine for the Practice of Hematopathology

1980 1985 19901988 1994 2001 2008 …

Morphologic evaluation

Cytogenetics

Introduction of immunopathology, flow cytometry immunohistochemistry

Rapid growth in molecular genetic application

Gleevecapproved by FDA

New therapies

•Combination of small molecules

Clinical sequencing for detection of structural alterations/mutations

2015

Evolution of Molecular Diagnostics in Hematopathology

PCR FFPE tissues REAL classification

WHO classification

10

Page 11: Impact of Personalized Medicine for the Practice of Hematopathology

MOLECULAR HEMATOPATHOLOGY

11

Page 12: Impact of Personalized Medicine for the Practice of Hematopathology

Genetic alterations in hematologic neoplasms

12

Gene rearrangements

Gene Mutations

Gene Mutations

AdditionsAdditions

LossesLosses

Page 13: Impact of Personalized Medicine for the Practice of Hematopathology

Different types of gene rearrangements

13

VDJ/TCR

Homogeneous Heterogeneous

Monoclonal Polyclonal

Physiologic

Diagnosis

Qualitative Quantitative

Chromosomaltranslocations

Yes or No How much

Pathologic

MinimalResidual disease

Diagnosis

t(11;14)t(14;18)t(2;5)

Page 14: Impact of Personalized Medicine for the Practice of Hematopathology

V D J C Germline(lane A)

18 kb

V DJ C DJ rearrangement(lane B)

12 kb

V DJ C VDJ rearrangement(lane C)

21 kb

A B C21 kb

18 kb12 kb

Southern blot

JB1B2 Probe

JB1B2 Probe

JB1B2 Probe

D

D

5´ 3´

B cells undergo immunoglobulin gene rearrangements

14

Page 15: Impact of Personalized Medicine for the Practice of Hematopathology

Detection of clonal rearrangements

15

Southern blot hybridization PCR/gel

electrophoresis PCR/capillarygel electrophoresis

Page 16: Impact of Personalized Medicine for the Practice of Hematopathology

Applications of Molecular Approaches to Clonality Testing

• Benign versus malignant

• Lymphoma versus carcinoma

• Minimal residual disease

• Lineage: B or T

• Subclassification

16

Page 17: Impact of Personalized Medicine for the Practice of Hematopathology

Common Recurrent Chromosomal Aberrations in Human Malignant Lymphoma

Cytogenetic Abnormality Genes Involved Disease Clinical Features Frequency

(%)t(14;18)(q32;q21) IGH@/BCL2 FL Indolent ~90

t(2;18)(p12;q21) IGK@/BCL2 FL Indolent <5

t(3;14)(q27;q32) IGH@/BCL6 FL Indolent ~10

t(11;14)(q13;q32) IGH@/CCND1 MCL Aggressive >90

Trisomy 3 Unknown MZBCL Indolent Variable

t(11;18)(p21;q21) BIRC3(API2)/MALT1 MZBCL Indolent 40

t(1;14)(p22;q32) IGH@/BCL10 MZBCL Indolent *

t(14;18)(q32;q21) IGH@/MALT1 MZBCL Indolent *

t(3;14)(p22;q32) IGH@/FOXP1 MZBCL Indolent *

t(8;14)(q24;q32) IGH@/MYC Burkitt lymphoma Highly Aggressive 75

t(2;8)(p12;q24) IGK@/MYC Burkitt lymphoma Highly Aggressive 15

t(8;22)(q24;q11) IGL@/MYC Burkitt lymphoma Highly Aggressive 10

t(3;14)(q27;q32) IGH@/BCL6 DLBCL Aggressive ~30

t(14;18)(q32;q21) IGH@/BCL2 DLBCL Aggressive 30

Amplification 2p REL PMLBCL Aggressive *

del 13q14 DLEU2/mir-15a/16-1 CLL Indolent 25-50

Trisomy 12 Unknown CLL Indolent 30

t(2;5)(p23;q35) NPM1/ALK ALCL Aggressive ~40

inv 14(q11;q32) TRA@/TCL1 T-PLL Aggressive 75

17

Page 18: Impact of Personalized Medicine for the Practice of Hematopathology

18

Fluorescence in situ hybridization detection of chromosomal translocations

TranslocationNormal

Gene 1probe

Gene 2probe

Gene 1Bprobe

Gene 1Aprobe

FusionAssay

SplittingAssay

Page 19: Impact of Personalized Medicine for the Practice of Hematopathology

Mantle Cell Lymphoma

BCL-1/IGH PCR

Cyclin D1

CD20+CD43+CD23-

19

FISH detecting t(11;14)

Page 20: Impact of Personalized Medicine for the Practice of Hematopathology

Molecular genetics of hematologic neoplasms

Technologies

• Clonal populations• Rearrangements• Chimeric fusions• Mutations• Splice variants

20

• PCR • Cytogenetics• FISH • CGH arrays• SNP arrays• NGS

Genetic events

Page 21: Impact of Personalized Medicine for the Practice of Hematopathology

21

Current role of molecular diagnostics in hematopathology

WHO 2008 Classification

Diagnosis Prognosis Therapy

Page 22: Impact of Personalized Medicine for the Practice of Hematopathology

Traditional “Genomic” Technology: Metaphase Cytogenetics

• Drawbacks– Requires actively dividing cells for analysis– Cannot be performed on archived tissue– Lower limit of resolution of approximately 2,500 kb for 

abnormalities

• Benefits– Routinely performed in many centers– Excellent for detecting large numerical and structural 

abnormalities– Can detect balanced abnormalities– Allows distinction between different clones

22

Page 23: Impact of Personalized Medicine for the Practice of Hematopathology

Impact of New Genomic Technologies on Hematopathology

High density aCGH/SNP arrays

Next generation sequencing

23

Page 24: Impact of Personalized Medicine for the Practice of Hematopathology

Array Comparative Genomic Hybridization

24

Page 25: Impact of Personalized Medicine for the Practice of Hematopathology

High Density SNP Array

25

Page 26: Impact of Personalized Medicine for the Practice of Hematopathology

aCGH and SNP Array• Benefits

– Allows resolution of ~10 ‐ 50kb, depending upon coverage– Far better than metaphase karyotyping to identify small copy 

number changes– Can be performed on archival tissue, with some loss in quality– SNP arrays allow detection of copy‐neutral loss of 

heterozygosity (acquired uniparental disomy)

• Drawbacks– Are unable to identify balanced translocations– Identify many benign CNVs—paired normal tissue helpful to 

identify somatic changes in tumors

26

Page 27: Impact of Personalized Medicine for the Practice of Hematopathology

BM

CD3

SNP array detection of aquireduniparental disomy

27

Page 28: Impact of Personalized Medicine for the Practice of Hematopathology

PRIVATE SECTOR PUBLIC SECTOR

Page 29: Impact of Personalized Medicine for the Practice of Hematopathology

29

Next generation sequencing

Human Genome Project

Page 30: Impact of Personalized Medicine for the Practice of Hematopathology

Rapid development in cost and quality trends of DNA sequencing

30

Page 31: Impact of Personalized Medicine for the Practice of Hematopathology

Sanger sequencing

PCR followed by cycle sequencing with dNTPs/ddNTPS

Electrophoretic separation of chain termination products

31

Page 32: Impact of Personalized Medicine for the Practice of Hematopathology

Traditional DNA “Sequencing” MethodsMethod Basic Technique Sensitivity Advantages DisadvantagesSanger “chain‐terminationmethod”

Fluorescent dye–labeled bases; DNA fragments separated by capillary electrophoresis

High “Gold standard”; complete sequence

Time‐consuming; cannot detect deletions, translocations, copy number changes

Pyrosequencing“sequencing by synthesis method”

Chemiluminescentdetection; DNA polymerase synthesizes DNA complementary to a target template; pyrophosphate release detected at each base addition

Higher More sensitive than Sanger; provides percentage of mutated vs wild‐type DNA; works well with fragmented DNA from FFPE samples

Short length reads limit technique to hot spots; limited accuracy detecting changes in homopolymer runs; scalability limited com‐pared with other NGS methods

Mass spectroscopy–based mutation analysis (MALDI‐TOF)

Primer extension with chain termination using PCR amplicon templates identifies variant alleles

Higher High sensitivity; high resolution of DNA fragments; detects frame‐shift mutations; readily identifies germline SNPs

Mass spectrometry resolution window balanced with PCR amplicon design requirements combine to limit scalability

Allele‐specific RT‐PCR

Primers span DNA sites of interest; probes detect specific mutations

Higher Very high sensitivity; widely used for clinical testing for oncogene mutations in CRC, NSCLC

Scalability constraints limit application to hot spots

RT‐PCR melting curve analysis

Heterogeneous DNA PCR products melt at temperatures different from those for homogeneous DNA PCR products

High High sensitivity; provides percentage of mutated vs wild‐type DNA

Often difficult to resolve differences in melt curves; difficult to standardize; multiplex capability limited

32

Page 33: Impact of Personalized Medicine for the Practice of Hematopathology

Next‐generation sequencing

• Massively parallel sequencing

• Powerful approach to DNA sequencing

• Dramatic reduction of cost‐per‐base and time 

• Disruptive technology resulting in dramatic change in rate of new discoveries

33

Page 34: Impact of Personalized Medicine for the Practice of Hematopathology

NEXT GENERATION SEQUENCING

DNA sequencingTranscriptomesequencing

Gene regulation and control analyses

Whole genome/Exomesequencing/resequencing

De novo sequencing/Targeted 

resequencing

SNP, CNV, deletion, Translocations‐Chromosomal 

rearrangement

Tag profiling

Small RNA discovery

mRNA seq

Mapping reads Non mapping reads

Gene expression

SNP discovery

Fusion transcripts

Alternate splicing

Viral genome

ChIP Seq

DNA protein interaction

Genome wide methylation

34

Page 35: Impact of Personalized Medicine for the Practice of Hematopathology

Comparison of Sanger and Next‐Generation Sequencing Methods

High‐throughput Sanger• Multiple copies of single 

fragment produced• ~100 fragments sequenced 

in parallel• Each fragment ~1kb• 0.1 Mb of sequence per 

“run”

Next‐generation• Multiple copies of multiple 

fragments produced• Millions of fragments 

sequenced in parallel• Each fragment 50‐100bp• >100 Gb of sequence per 

“run”

35N Engl J Med. 2010 May 27;362(21):2001-11

Page 36: Impact of Personalized Medicine for the Practice of Hematopathology

A number of technical platformsbut similar strategy

Miniaturization of individual sequencing chemical reactions to:

– overcome limited scalability of Sanger sequencing

– overcome bottlenecks of library preparation and template preparation 

– allows millions of individual sequencing reactions to occur in parallel

– results are high volumes of short read sequence data in unprecedented detail and single‐nucleotide resolution 

36

Page 37: Impact of Personalized Medicine for the Practice of Hematopathology

Next Generation Sequencingsequence DNA fragment library in situ 

A    T   C   G

Massively paralleled configuration of sequences

37

Page 38: Impact of Personalized Medicine for the Practice of Hematopathology

Read= A short length of sequence 

Example: Illumina Hi‐ Seq

• Each read is 100 bp

• 160M of these reads! 

• Need to connect sequences to each other 

38

Page 39: Impact of Personalized Medicine for the Practice of Hematopathology

Disruptive Technology in Drivers of Medical Genomics

Time Period Genomes Turn‐around time FTEs Cost per genome

1990‐2003 1.NIH reference ~5 years ~2,000 ~$2‐3 billion2.Celerareference

2003‐2009 ~10 additional ~6 months Dozens $300,000→38,000

2010‐2014 103‐105 4 weeks 3‐4 $ 6,000 exome$ 9,500 genome

2015‐2020 Millions 6‐0.5 hr <<1 $1000‐250

39

Page 40: Impact of Personalized Medicine for the Practice of Hematopathology

Whole Genome Sequencing

Human genome = 3.1 billion base‐pairs 

WGS – determining the sequence of an individuals genome 

Includes sequence of the genes – exons & introns 

Includes sequence of regions between genes 

40

Page 41: Impact of Personalized Medicine for the Practice of Hematopathology

Adapter ligation

Flow cellcDNA Fragmented 

cDNA

QC analysis

mRNA

Whole Transcriptome Sequencing

Paired end sequencing

41

RNAseq

Page 42: Impact of Personalized Medicine for the Practice of Hematopathology

Exome sequencing: sequencing the coding region of all genes

• Human Genome: 20K to 25K genes 

• Genes composed of exons that code for AA of a protein 

• Introns are spacer regions that are spliced out 

• Can interpret a change in AA sequence such as an Arg to a stop codon 

42

Page 43: Impact of Personalized Medicine for the Practice of Hematopathology

Whole Exome Sequencing

• Exons are shown as colored part of gene 

• Capture array has complementary sequence of each exon bound to solid support 

• Single strand DNA of exons hybridize • Selected DNA sequenced • 1% of the genome 

43

Page 44: Impact of Personalized Medicine for the Practice of Hematopathology

WES vs WGS vs RNAseq

Whole exome Whole genome Whole transcriptome

Coverage of genome 1%  Better coverage mRNA, tRNA, 

Cost* $600‐800 $1000‐3000 $700‐800

Genome Only coding region

Coding and noncoding mRNA, tRNA, alternativetranscripts

Bioinformatics Better developed Challenging Better developed

Applications SNV, indels Rearrangements, SNV, indels

Rearrangements, inversions, SNV, indels,GEP, alternative spliced variants

44

Page 45: Impact of Personalized Medicine for the Practice of Hematopathology

Commercial Next‐Generation Sequencing Platforms

Technologic Basis Application Time RequiredInstrument Cost($, thousands)

Illumina Flow cell‐based, reversible dye termination, and4‐color optical imaging

Whole exomesequencing; whole genome sequencing; SNP detection

Intermediate, 4 d fragment; 9 dpaired end

500‐900

454 Pyrosequencing

Emulsion PCR with bead‐based pyrosequencing and CCD light imaging

Targeted exon sequencing; confirmatory sequencing; SNP detection

Fast, <1 d 500‐700

Helicos Oligo‐dT captured PolyA‐tailed DNA fragments; flow cell 4‐color dNTP optical imaging

Single molecule sequencing; whole genome sequencing

Slowest, 8 d 999

SOLiD Sequential dinucleotide ligation; flow cell‐based 4‐color optical imaging

Whole exome sequencing; whole genome sequencing; SNP detection

Slow, 7 d fragment run; 14 d paired end

600‐700

Ion Torrent Semiconductor‐based nonoptical detection; standard dNTP sequencing chemistry

Targeted sequencing projects not demanding deep sequencing

Fast, <1 d 50

45

Page 46: Impact of Personalized Medicine for the Practice of Hematopathology

Performance characteristics of NGS platforms

100 1000 10000 100000

1 Mb

100 Mb

1 Gb

10 Gb

100 Gb

Read Length bp

Total datayield

Sanger

Roche454 PacBioRS

Ion Torrent

IlluminaHiSeq2000

Ion Proton

IlluminaHiSeq2500

Page 47: Impact of Personalized Medicine for the Practice of Hematopathology

White = frozen, orange = FFPE 

MR Schweiger et al. PLoS ONE 2009;4:e5548 M Kerick et al. BMC Medical Genomics 2011;4:68 

Targeted high throughput sequencing of FFPE tissuesis feasible  

47

Page 48: Impact of Personalized Medicine for the Practice of Hematopathology

Novel alterations in lymphoid neoplasia identified by NGS

• Chronic lymphocytic leukemia

• Splenic marginal zone lymphoma

• Hairy cell leukemia

• Follicular lymphoma

• Diffuse large B‐cell lymphoma

• Burkitt lymphoma

• Peripheral T cell lymphoma, NOS

• Angioimmunoblastic T cell lymphoma

• Cutaneous anaplastic large cell lymphoma

• Clonal evolution

• Tumor heterogeneity

48

2015

Page 49: Impact of Personalized Medicine for the Practice of Hematopathology

Bioinformatics Analysis of Genome Sequencing Data

The steps from sample processing to result interpretation

Sample

DNA

FASTQ

BAM

VCF

aVCF

Interpretation

ATGACGATGATAGGATGA

chr19: 17,949,097 ATGACGATATAAGATGA

chr19: 17,949,108 G A Ref: 35 Alt:39 GQ: 99

chr19: 17,949,108 G A JAK3 p.M511I MISSENSE NM_000215

Known pathogenic mutation in T-cell leukemia with targeted therapeutic

What are the barriers to automated genome sequencing interpretation?

Genotype-phenotype correlations are known for 500+ conditions

Increasingly, these data are available in public databases…

True Positives and

True Negatives

Diagnosis

Page 50: Impact of Personalized Medicine for the Practice of Hematopathology

Genome Sequencing DataThe challenges associated with automated interpretation

Negative Positive

False FN FP

True TN TP

False Negativespotentially missed diagnoses

True Negativeswhat can safely be ignored

False Positivestoo much to look at

True Positiveswhat needs to be acted on

Sensitivity how often positive when it should be?

Specificity how often negative when it should be?

Positive Predictive Value how often positive if test result is positive?

Negative Predictive Value how often negative if test result is negative?

Page 51: Impact of Personalized Medicine for the Practice of Hematopathology

Practical Aspects of NGS in the Clinical Laboratory

Rigorous Validation Required!

Page 52: Impact of Personalized Medicine for the Practice of Hematopathology

• Verify all secondary mutations identified during validation using known standards

• Run normals – Tissues and HAPMAP cell line

• Orthogonal and parallel platform validations

• Bioinformatics Validation

• Variant database construction

• External Proficiency and User Community Groups

Targeted Sequencing Assays

Recommendations for Development and Validation

Page 53: Impact of Personalized Medicine for the Practice of Hematopathology

Ion Torrent 50 gene panel – depth & uniformity

8 specimens on 316v2

8 specimens on 318v2

Page 54: Impact of Personalized Medicine for the Practice of Hematopathology

Ion Variant Caller Report

Page 55: Impact of Personalized Medicine for the Practice of Hematopathology

Mixed Mutation Control

Cell block mix of 4 engineered cell linesWe extract DNA from scrollsCost effectiveMutation levels determined/verified via digital droplet PCR

Page 56: Impact of Personalized Medicine for the Practice of Hematopathology

KRAS – G13D (16.5%) and G12D (5.5%)FFPE reference cell line mixture; mutations quantified via digital PCR8 specimens on Ion Torrent 316v2 chip

KRAS G12D

KRAS G13D

Page 57: Impact of Personalized Medicine for the Practice of Hematopathology

KRAS – G12D  low‐level

KRAS G12D

FFPE tissue sequenced via Sanger at ~7% mutation8 specimens on Ion Torrent 318v2 chip

Page 58: Impact of Personalized Medicine for the Practice of Hematopathology

MPL W515L (low‐level)

MPL W515L

Peripheral blood tested positive for W515L via allele‐specific PCRTested negative via Sanger sequencing

DL‐12‐16233

Page 59: Impact of Personalized Medicine for the Practice of Hematopathology

Conclusions

• NGS is a disruptive technology

• NGS is transforming the routine practice in molecular pathology and personalized diagnostics

• Robust bioinformatics infrastructure is essential in NGS implementation

• Pathologists should embrace this platform for integration in all aspects of Diagnostic Pathology 

Page 60: Impact of Personalized Medicine for the Practice of Hematopathology

QUESTIONS?

Page 61: Impact of Personalized Medicine for the Practice of Hematopathology

AgendaTopic Speaker Time

I. Introduction Lim 5’

II. Principles of personalized medicine and evolution of molecular hematopathology-Overview of commonly used molecular tests in hematopathology-Update in new technologies including array CGH, next generation sequencing

Elenitoba-Johnson

40’

III. Approach to myeloid neoplasms in the era ofpersonalized medicine-Chronic myeloid leukemia-Acute myeloid leukemia

Bagg 65’

IV. Approach to NHL in the era of personalized medicine-Aggressive B-cell lymphomas-Splenic Lymphoma-ALCL

Lim 60’

IV. Summary and Closing Lim 10’61

Page 62: Impact of Personalized Medicine for the Practice of Hematopathology

Impact of Personalized Medicine for the Practice of Hematopathology

62

Approach to myeloid neoplasms in the era of personalized medicine

Adam Bagg MDUniversity of Pennsylvania

Page 63: Impact of Personalized Medicine for the Practice of Hematopathology

Case #1

30-year-old previously healthy female patient

- nonspecific abdominal pain - noted to have a leukocytosis on a routine CBC- a bone marrow biopsy was performed

- digital whole slide images of PB and BM Bx

Page 64: Impact of Personalized Medicine for the Practice of Hematopathology

• What is the favored diagnosis based upon the clinical

presentation and peripheral blood smear morphology?

What is the role of performing a bone marrow biopsy in

this case?

• What additional studies would you perform to confirm

the diagnosis?

Case #1 – Questions

Page 65: Impact of Personalized Medicine for the Practice of Hematopathology

• The patient read on the internet that the presence of

ABL1 mutations might affect her response to therapy,

and wants to be tested for these; should she be

tested now? What are the indications for testing for thesemutations?

• How should the patient be monitored after initiation of

therapy?

Case #1 – Questions

Page 66: Impact of Personalized Medicine for the Practice of Hematopathology

CML - a peripheral blood diagnosis

Page 67: Impact of Personalized Medicine for the Practice of Hematopathology
Page 68: Impact of Personalized Medicine for the Practice of Hematopathology
Page 69: Impact of Personalized Medicine for the Practice of Hematopathology

Major flavors of myeloid neoplasms

AML

MPN

MDS

MPN/MDS

MALNWEAAOPPOF

Page 70: Impact of Personalized Medicine for the Practice of Hematopathology

Myeloproliferative -vs- Myelodysplastic

bone marrowhypercellularity

MPNhigh

peripheralcounts

MDSlow

peripheralcounts

quantitativelyincreased

hematopoiesis

effective

ineffective

neoplastichematopoietic

stem celldisorders

Page 71: Impact of Personalized Medicine for the Practice of Hematopathology

CEL Mastocytosis

UnclassifiableCNL

Flavors of myeloid neoplasms (non-AML, non-MDS)

CML

Ph-neg MPNs“Classical”

“Non-classical”

MPN

CMML

JMML

aCML

Unclassifiable

PDGFRA PDGFRB FGFR1

MPN/MDS

MALNWEAAOPPOF

PV

ET

PMF

Page 72: Impact of Personalized Medicine for the Practice of Hematopathology

Mast cell

SM

MALNWEAAOPPOF

CML

PV ET PMF

BCR-ABL1

JAK2JAK2

MPL

KIT

PDGFRAPDGFRBFGFR1

CEL

CNL

CMML JMML aCML

TET2ASXL1

SRSF2

PTPN11

RASNF1

CALR

CSF3R

SETBP1

Page 73: Impact of Personalized Medicine for the Practice of Hematopathology

The (other) Philadelphia story

Page 74: Impact of Personalized Medicine for the Practice of Hematopathology

• median age ~ 67 years

• non-specific symptoms- fatigue/weight loss/LUQ discomfort- routine CBC (~40%)

• splenomegaly (~90%)

• is a peripheral blood diagnosis [but defined by genetics]- marked leukocytosis (> 50 -100 x 109/l) - granulocytes in all stages of maturation (but < 10% blasts)- [need to rule out a “leukemoid reaction”]- basophils- platelets , N or - hemoglobin mildly

Chronic myelogenous leukemia

Page 75: Impact of Personalized Medicine for the Practice of Hematopathology

Blast phase

CML is (was) a triphasic disease

Accelerated phase

Chronic phase

Page 76: Impact of Personalized Medicine for the Practice of Hematopathology

Genetic testing in CML

Diagnosis

Monitoring

Resistance

Diagnosis

Monitoring

Resistance

Page 77: Impact of Personalized Medicine for the Practice of Hematopathology

? CML cytogenetics

CML ~2.5% -~2.5% + CML

Avoid term“Ph-neg” CML

(no such thing!)

? CMML? aCML

? BCR-ABL1

~95% +

CML

~5% -

moleculargenetics

? t(9;22)

CML diagnosis: t(9;22) and BCR-ABL1

Page 78: Impact of Personalized Medicine for the Practice of Hematopathology

? CML cytogenetics

CML ~2.5% +

? moleculargenetics

YES!molecular target for:

1] Rx2] MRD

? cytogenetics

YES!- clonal “evolution”

[Ph+; Ph- with imatinib]

? BCR-ABL1

~95% +

CML

~5% -

moleculargenetics

? t(9;22)

CML diagnosis: t(9;22) and BCR-ABL1

Page 79: Impact of Personalized Medicine for the Practice of Hematopathology

Woessner et aCancer J 201117; 477-486

ROS

Genomic Instability

Progression

TKDmutations

Page 80: Impact of Personalized Medicine for the Practice of Hematopathology

Monitoring

Molecular testing in CML

Diagnosis

Monitoring

ResistanceResistance

Page 81: Impact of Personalized Medicine for the Practice of Hematopathology

CML monitoring

Two major forms of therapy …

TKI

SCT

• Initial therapy of choice• Does not eradicate/cure CML (?)• ? Long-term outcome• Minimal toxicity1

1 cytopenias, GI/pancreas, fluid retention, myalgia

• No longer 1st line Rx2

• Only Rx that cures CML3

• Major toxicity and mortality4

• Not available to all5

BCR-ABL1reduction

BCR-ABL1negativity

Rx goal (?)

2 indicated when [i] very young, [ii] (selected)TKI failure, [iii] AP an3 10-yr survival ~65%4 10-20% mortality even when low risk 5 need to have a donor!

Page 82: Impact of Personalized Medicine for the Practice of Hematopathology

CML monitoring

sensitivities…modalities…

CBC ~10% [~10-1]

conventional cytogenetics

~5% [~10-2]

D-FISH ~0.5% [~10-3]

RT-PCR [quantitative] ~0.001% [~10-5]

RQ-PCR [qualitative] ~0.001%* [~10-5]* non-nested; can reach 10-8 with nested RT-PC

Page 83: Impact of Personalized Medicine for the Practice of Hematopathology

CML monitoring: definitions of response

complete hematologic

• platelet: < 450• WBC: < 10• diff: no immature granulocytes• basos: < 5%• clinical: non-palpable spleen

cytogenetic # Ph+

• none: >95% • minimal: 66-95%• minor: 36-65% • partial: 1-35% • complete: 0%

molecular

• next slide please …{major

Page 84: Impact of Personalized Medicine for the Practice of Hematopathology

diagnosis

complete hematologic remission

complete cytogenetic remission

major molecular response(MR3.0)

“complete molecular remission”undetectable transcript

(MR4.5)

1012

<1010

<109

<107-8

100

<0.1

<0.01

responses BCR-ABL1ratio

… yet overall survival ~85%

imatinibresponses

~98%

~85%

~75%

~10%

logreduction

<1011

>3

# cells

24% @ 6 mo39% @ 1 yr55% @ 2 yr86% @ 8 yr

? up to 40-50%800mg vs 400mg

but imatinib failure-free survival ~60% (SE, LOR)

Page 85: Impact of Personalized Medicine for the Practice of Hematopathology

The sooner the better …

• predicting adverse outcomes if don’t reach landmarks:- 18 months <3 log reduction (> 0.1%) = MMR- 12 months <2 log reduction (>1%)- 6 months <1 log reduction (>10%)

• likelihood of an adverse event, if achieve MMR by:- 12-18 months ~15%

- 6-12 months ~8%

- 6 months ~0%

• thus, the quicker the response, the better the outcome

- testing as early as 3 months (or even 1 month) may be predictive!level >10% at 3 months (ie, < 1 log reduction) particularly poor

Page 86: Impact of Personalized Medicine for the Practice of Hematopathology

RQ-PCR: Ongoing attempts at harmonization

international scale

conversionfactor

internationalstandard

• standardized baseline from original IRIS trial• pool of 30 CML cases

• sample exchange between your lab and IRIS lab• analogous to INR

• WHO initiative—freeze dried preparations • 4 serial dilutions of K562 into HL60:

10%, 1%, 0.1%, 0.01% • also insufficient amounts of this!• use restricted to:

reference laboratoriesmanufacturers of secondary reference materi

rapidly exhausted

Page 87: Impact of Personalized Medicine for the Practice of Hematopathology

Molecular testing in CML

Diagnosis

Monitoring

Resistance

Page 88: Impact of Personalized Medicine for the Practice of Hematopathology

Resistance to imatinib (and other TKIs …)

primary • failure to achieve an initial response

• uncommon--seen in ~5% of pts

• bioavailability; not due to mutations

secondary • commoner--usually due to mutations

• response loss of response (especially early on)- 1st 3 years on Rx: ~5%/year

- 2nd 3 years on Rx: ~1%/year

• hence 1st 3 years most important monitoring perio- most likely to encounter mutations

• incidence of mutations: depends on disease phas

Page 89: Impact of Personalized Medicine for the Practice of Hematopathology

Mechanisms of resistance to imatinib

BCR-ABL1independent

BCR-ABL1dependent

1. Kinase domain mutations:- most common cause of resistance [~60% overall]

- spans ~240 aa’s

2. BCR-ABL1 amplification:- genomic > transcriptional [~10%]

3. Clonal evolution:- other genetic/cellular pathways [LYN/JAK-

STAT/SRC/GAB2/PI3K]4. ↓Bioavailability:- absorption- metabolism [hepatic]- plasma binding [1acid glycoprotein sequestration]- ↓influx ↑efflux [MDR1, PGP, BCRP2/ABCG2, hOCT1,

MRP1]5. 7. BIM6. TKI BCL6

Page 90: Impact of Personalized Medicine for the Practice of Hematopathology
Page 91: Impact of Personalized Medicine for the Practice of Hematopathology

T315I

Kinase domain mutations

P = P loop- ATP-binding site- ? worst mutations

B = Binding domain- where imatinib binds

C = Catalytic doma

A = Activation loop- conformation altered- affects imatinib bindi- closed: inactive- open: active

2-10% of patients

>10% of patientsgreen

red

> 100 different mutations[ABL1 exons 4-10]

these 6 accountfor > ~65% ofall mutations

~15-20%

T315I

Page 92: Impact of Personalized Medicine for the Practice of Hematopathology

Kinase domain mutations

• MUST test for specific mutations before changing Rx to

determine appropriate action

1. do nothing … may be innocuous (SNPs)2. increase dose of imatinib3. switch to 2nd (or 3rd) generation kinases

inhibitor ** type of mutation will dictate which one to use

4. stem cell transplant5. alternative Rx/clinical trail

• If a mutation is found, options include:

• If a mutation is NOT found:1. consider compliance failure 2. if due to other biologic causes problematic

Page 93: Impact of Personalized Medicine for the Practice of Hematopathology

Indication for mutation testing

treatment failure/suboptimal response

loss of response

anyone in AP or BP

• no CHR by 3 months• no PaCR by 6 months• no CCR by 12 months• no MMR by 18 months

• hematologic relapse• cytogenetic relapse• ↑ing BCR-ABL1 levels [1-log]

No role at CP diagnosis* NEVER change Rx based upon a single result:(1) short-term lapse in compliance(2) assay variation

P h l i i ti ith l f

*

• BCR/ABL1 >10% at 3 month

Page 94: Impact of Personalized Medicine for the Practice of Hematopathology

Methods of mutation testing

Technology Sensitivity

Specificity Bias

Sanger sequencing 15-25 ++ no

Subcloning and sequencing 10 +++ noD-HPLC 0.1-10 ++ noPyrosequencing 5 ++ noDouble-gradient denat. electroph.

5 ++ no

Fluorescence PCR – PNA clamping

0.2 ++ yes

ASO-PCR 0.01 ++ yesSmall clones (<20%) may not be clinically signific

Sanger sequencing (current) method of chto detect, then pyrosequencing to quantify

Emerging data to support more sensitive detectio if have T315I @ 10-5 precludes MMR!

High resolution meltingNanofluidicsNext gen. sequencingMass Spec

Page 95: Impact of Personalized Medicine for the Practice of Hematopathology

Overcoming resistance

• Alternative kinase inhibitors:- 2nd generation TKIs: nilotinib- dual SRC-ABL inhibitors: dasatinib

bosutinib - multikinase (KIT/PDGFRA/FLT3/FGFR1) inhibs: ponatinib- aurora kinase inhibitors: XL-228

MK-0457

• Others:- protein synthesis inhibitors: omacetaxine- switch pocket-control inhibitors: rebastinib (DCC-2036)

• ImmunoRx:- vaccines against: BCR-ABL1, PR1, WT1, HSPs- 1o role in MRD Rx

• Targeting the stem cell:- not dependent on BCR-ABL1 WNT-CTN/HH/JAK2-PP2A/TGF-

**

* FDA approved

**

∞ active vs T315I

Page 96: Impact of Personalized Medicine for the Practice of Hematopathology

Overcoming resistance

• Alternative kinase inhibitors:- 2nd generation TKIs: nilotinib- dual SRC-ABL inhibitors: dasatinib

bosutinib - multikinase (KIT/PDGFRA/FLT3/FGFR1) inhibs: ponatinib- aurora kinase inhibitors: XL-228

MK-0457

• Others:- protein synthesis inhibitors: omacetaxine- switch pocket-control inhibitors: rebastinib (DCC-2036)

• ImmunoRx:- vaccines against: BCR-ABL1, PR1, WT1, HSPs- 1o role in MRD Rx

• Targeting the stem cell:- not dependent on BCR-ABL1 WNT-CTN/HH/JAK2-PP2A/TGF-

**

* FDA approved

**

∞ active vs T3151

∞® ~20% vascular/

thrombotic problems®

Page 97: Impact of Personalized Medicine for the Practice of Hematopathology

80 -

100 -

60 -

20 -

40 -

0 -

CCR (1 yr) MMR (1 yr)

66%

28%

77%

46%

CCR (1 yr) MMR (1 yr)

65%

22%

80%

44%

2nd generation TKIs as 1st line therapy

imatinib 400mg

dasatinib 100mg

imatinib 400mg

nilotinib 300mg x 2

Page 98: Impact of Personalized Medicine for the Practice of Hematopathology

Genetic testing in CML: summary

Diagnosis

Monitoring

Resistance

CC BM PB FISH instead is not ideal

RT-PCR PB qualitative (not quantitative) with characterization

CC BM 3-6 monthly until CCR6-12 monthly thereafter

FISH PB ? before achieve CCR (not ideal)

RQ-PCR PB 3 monthly until MMR, then 6 monthly (ELN)

directsequencing

PB vBM

Rx failure, loss of response, accelerated & blast phase

Page 99: Impact of Personalized Medicine for the Practice of Hematopathology

Survival in newly-diagnosed CP CML by year of Rx

<19751975-1982

>2001

1991-2000

1983-1990

Kantarjian H et al. Blood 2012;119:1981-1987

Page 100: Impact of Personalized Medicine for the Practice of Hematopathology

• What is the favored diagnosis based upon the clinical

presentation and peripheral blood smear morphology?

What is the role of performing a bone marrow biopsy in

this case?

• What additional studies would you perform to confirm

Case #1 – Answers

-- chronic myelogenous leukemia, BCR-ABL1positive

-- best shot at getting metaphases

-- qualitative RT-PCR (FISH if negative or complex)

Page 101: Impact of Personalized Medicine for the Practice of Hematopathology

• The patient read on the internet that the presence of

ABL1 mutations might affect her response to therapy,

and wants to be tested for these; should she be

tested now?

• Would you be surprised if cytogenetics by metaphase

analysis showed a normal karyotype?-- a little (~ 2-3% missed)

-- probably not, but things may change

Case #1 – Answers

Page 102: Impact of Personalized Medicine for the Practice of Hematopathology

What are the indications for testing for thesemutations?

• How should the patient be monitored after initiation of

therapy?

Case #1 – Answers

-- failure to reach milestones-- loss of response-- accelerated phase or blast phase

-- CBC-- BM cytogenetics-- RQ-PCR frequency depends on attainment of

milestones

Page 103: Impact of Personalized Medicine for the Practice of Hematopathology

• How will the finding of a mutation affect subsequent

therapy?

Case #1 – Answers

-- do nothing … may be innocuous-- increase dose of imatinib-- switch to 2nd (or 3rd) generation kinases inhibitor

** type of mutation will dictate which one to use-- stem cell transplant-- alternative Rx/clinical trail

Page 104: Impact of Personalized Medicine for the Practice of Hematopathology

Case #2

57-year-old male patient--recent onset of bleeding gums

- CBC: HGB 10.2 g/dLWBC 7.4 x 109/L PLT 21 x 109/L

- abnormal cells (79 %) on peripheral blood sme- bone marrow aspirate/biopsy performed

- digital whole slide images of PB and BM Bx

Page 105: Impact of Personalized Medicine for the Practice of Hematopathology
Page 106: Impact of Personalized Medicine for the Practice of Hematopathology

• What is the favored diagnosis based upon the

clinical presentation and morphology?

• What standard additional studies would youperform to confirm and refine the

diagnosis, andwhich of these are likely to have the

greatestimpact on prognosis and therapy?

Case #2 – Questions

• Would you be surprised if cytogenetics bymetaphase analysis showed a normalkaryotype?

Page 107: Impact of Personalized Medicine for the Practice of Hematopathology

Case #2 – Questions

• How might the finding of a normal karyotype

affect what additional genetic tests you might

order?• In addition to the molecular studies ordered as

per questions 2 and 4 above, what other genetic

analyses are likely to be useful in terms ofprognosis and therapy?• What technology might be best to test for

allthese mutations?

Page 108: Impact of Personalized Medicine for the Practice of Hematopathology

Acute myeloid leukemia

morphology

cytochemistry

immunophenotype

Page 109: Impact of Personalized Medicine for the Practice of Hematopathology

the most important diagnostic test inacute leukemia

(cyto)genetics

Acute leukemia

Page 110: Impact of Personalized Medicine for the Practice of Hematopathology

Risk group Genetics Frequency CR 5yr Sur

t(8;21)Favorable t(15;17) ~25% ~85% ~60%

inv(16)

normalIntermediate +8, +21 ~50% ~80% ~40%

t(9;11)

-5, -7Unfavorable inv(3)

complex ~25% ~60% ~15%monosomal11q23t(6;9)

M2M3M4Eo

M5

dysmeg

basophilia

AML: Cytogenetic stratification

Page 111: Impact of Personalized Medicine for the Practice of Hematopathology

AML: Cytogenetic stratification

100

60

80

40

20

1 32 4 5 6 7 years

surv

ival

intermediate

unfavorable

favorable

Page 112: Impact of Personalized Medicine for the Practice of Hematopathology

AML: Cytogenetics

The big 4 sine qua non for WHO

• t(15;17) [M3] ~10%• t(8;21) [M2] ~10% GOOD• inv(16) [M4Eo] ~10%

• t(11q23)* [M4/M5] ~5 - 10% not so go

© 2001 2008 = big 7 [added t(1;22), t(6;9) and inv(3); t(9;11) specifically]

* promiscuous (>60 partners)

}}

Page 113: Impact of Personalized Medicine for the Practice of Hematopathology

AML: Predicting the genetics

Page 114: Impact of Personalized Medicine for the Practice of Hematopathology

Translocation Partner Frequency ATRA-responsive

t(15;17)(q24;q21) PML >99% +t(11;17)(q23;q21) ZBTB16 0.5% -t(11;17)(q13;q21) NUMA <0.5% ?+t(5;17)(q32;q21) NPM <0.5% ?+t(17;17)(q21;q21) STAT5B <0.5% ?

The various genetic flavors of APL

Non-t(15;17)-positive cases not “APL”

Page 115: Impact of Personalized Medicine for the Practice of Hematopathology

Another morphologic flavor of APL

Page 116: Impact of Personalized Medicine for the Practice of Hematopathology

AML with t(8;21)(q22;q22); RUNX1-RUNX1T1

Page 117: Impact of Personalized Medicine for the Practice of Hematopathology

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11

Page 118: Impact of Personalized Medicine for the Practice of Hematopathology

AML with t(6;9)(p23;q34); DEK-NUP214

Page 119: Impact of Personalized Medicine for the Practice of Hematopathology

AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1

Page 120: Impact of Personalized Medicine for the Practice of Hematopathology

AML: Cryptic abnormalities

t(8;21)RUNX1-RUNX1T1

inv(16)CBFB-MYH11

t(15;17)PML-RARA

• ~ 30% of positive cases lack M4Eo morphology• upto 30% with M4Eo morphology are:

- RT-PCR/FISH- cytogenetics

• some M4Eos do not have inv(16) at all

• upto 30% are:- RT-PCR/FISH- cytogenetics

• upto 15% are:- RT-PCR/FISH

t ti

+-

+-

+-

Page 121: Impact of Personalized Medicine for the Practice of Hematopathology

Mutations in AML

Page 122: Impact of Personalized Medicine for the Practice of Hematopathology

15 1614 20191817

ECD JM TK2 TM

*

400bp

300bp

350bp

FLT3ITD heterozygous FLT3ITD hemizygous

+ -FLT3WT

FLT3 : genotyping

Page 123: Impact of Personalized Medicine for the Practice of Hematopathology

FLT3 : multiplex PCR on CE

ITDe14/e15

e20/ECoRV D835

Page 124: Impact of Personalized Medicine for the Practice of Hematopathology

• One of the most common known molecular targets in

• Possibly most prognostically relevant molecular lesion- quantification is important (mutant:wt)

• A potentially useful MRD target- patient specific primers vs ITD- ITD may [rarely] not be stable between presentation and re

[+ -] [- +] [+A +B] [+ ++]

• A therapeutic target- a la imatinib mesylate in CML

FLT3

Page 125: Impact of Personalized Medicine for the Practice of Hematopathology

NPM1

• most commonly mutated gene in AML- ~60% of cytogenetically normal AML- ~30% of all AML- shuttles between nucleus and cytoplasm (lives in nucleus)- mutations (typically 4bp insertion):

* lose nucleolar localization signal/creates export signal

- good prognosis:* but only if FLT3 wild type (and perhaps if IDH2 mutant?)

without IHC IHC—wild type IHC—mutant

Page 126: Impact of Personalized Medicine for the Practice of Hematopathology

AML: Genetics – WHO 2008

Karyotype

Genes Morphology

Frequency

Prognosis

t(8;21) RUNX1/RUNX1T1

M2 ~5% good

t(15;17) PML/RARA M3 ~5-8% good

inv(16) CBFB/MYH11 M4Eo ~5-8% good

t(9;11) MLLT3/KMT2A M4/M5 ~2% intermediate

t(1;22) RBM15/MKL1 M7 <1% good

t(6;9) DEK/NUP214 Basophila ~1% poor

inv(3) RPN1/EVI1 MLD ~1% poorNPM1mutations*

M4/M5 ~30% good

CEBPAmutations*

M1/M2 ~10% good* AMLs with mutated NPM1 and CEBPA = provisional entitiesAMLs with FLT3 mutations not an “entity” but testing “strongly recommend

Page 127: Impact of Personalized Medicine for the Practice of Hematopathology

AML genetics – but wait, there’s more…

• explosion of discoveries (NGS, SNPa …)

• enriched in cytogenetically normal (CN) AML• unlike most “AML-defining” translocations:

- may be (variably) seen in other myeloid malignancies

(MDS, MPN, MDS/MPN, 20 AML)• relevant in prognosis may dictate Rx

Page 128: Impact of Personalized Medicine for the Practice of Hematopathology

AML mutations: the NKOTB

TET2

CBL

DNMT3A

IDH1/2

EZH2ASXL1

MLL

WT1

RUNX1SF3B1BCOR

PTPN11

JAK3

ND4

NPM1

CEBPA

FLT3

KIT

Page 129: Impact of Personalized Medicine for the Practice of Hematopathology

Meme K K

me K

hmeC

me

me

IDH1/2

IDH1/2

MLL

EZH2

DNMT3

TET2

gain-of-function loss-of-function

me

ASXL1KMT2A

Page 130: Impact of Personalized Medicine for the Practice of Hematopathology

AML

AML: Cooperative mutations

FLT3RASKIT

PTPN11JAK2

Class I mutations

Signal transducers:• [+] proliferation• [+] survival

Class II mutations

PML-RARARUNX1-RUNX1T1

CBFB-MYH11KMT2A fusions

?NPM1

Transcription factors:• [-] differentiation• [-] apoptosis

Class III mutations

Epigenetics

IDH1/2TET

DNMT3A

Page 131: Impact of Personalized Medicine for the Practice of Hematopathology

AML: But wait, there’s more … 99.5% of cases

Activated signalling

DNA methylation

NPM1 mutation

Chromatin modifiers

Transcription factor fusions

Transcription factor mutations

Tumor suppressors

Cohesin complex

Spliceosome

FLT3 RASs PTPs

IDH1/2 TET2 DNMT2A

KMT2A ASXL1 EZH2

PML-RARA CBFB-MYH11

RUNX1 CEBPA

TP53 WT1 PHF6

RAD21 SMC3 STAG2

SF3B1 SRSF2 U2AF1

~60%

~45%

~30%

~30%

~20%

~20%

~15%

~15%

~15%

Page 132: Impact of Personalized Medicine for the Practice of Hematopathology

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11

+8mKIT

FLT3-TKD

+22

mRAS

15%

35%

15%

20%

50%

}

Page 133: Impact of Personalized Medicine for the Practice of Hematopathology

AML with FLT3 or NPM1 or IDH1/2 mutation

Page 134: Impact of Personalized Medicine for the Practice of Hematopathology

AML: how to manage the nascent data

• has become extraordinarily complex

• reaching the point of TMI

• discovery outpacing clinical trials

• not all are mutually exclusive- some associations and interactions

• how to handle?- algorithms- multiplexing

Page 135: Impact of Personalized Medicine for the Practice of Hematopathology

AML: associations and interactions

Patel JP et al. Integrated genetic profiling in acute myeloid leukemia. N Engl J Med, 2012;366:1079 1089

Page 136: Impact of Personalized Medicine for the Practice of Hematopathology

AML: Cytogenetic stratification

Risk group Genetics Frequency CR 5yr Sur

t(8;21)Favorable t(15;17) ~25% ~85% ~60%

inv(16)

normalIntermediate +8, +21 ~50% ~80% ~40%

t(9;11)

-5, -7Unfavorable inv(3)

complex ~25% ~60% ~15%monosomal11q23t(6;9)

Page 137: Impact of Personalized Medicine for the Practice of Hematopathology

Normalcytogenetics

Cytogeneticallyintermediateprognostic

group

mutation

NPM1 But only if FLT3 WT(and ? IDH2 mutated)

CEBPA But only if biallelic

FLT3 But only if ITD and no WTAnd no effect on t(15;17) TET2

But only if CEBPA WTAnd only if R882But benefit from hi dose dauna

DNMT3A

PHF6

ASXL1

AML: Cytogenetic molecular stratification

Page 138: Impact of Personalized Medicine for the Practice of Hematopathology

• What is the favored diagnosis based upon the

clinical presentation and morphology?-- acute leukemia

• What standard additional studies would youperform to confirm and refine the

diagnosis, andwhich of these are likely to have the

greatestimpact on prognosis and therapy?

-- flow cytometry-- cytochemistry [?]

Case #2 – Answers

Page 139: Impact of Personalized Medicine for the Practice of Hematopathology

Case #2 – Answers

• Would you be surprised if cytogenetics bymetaphase analysis showed a normalkaryotype?

-- no, they are normal in ~45%

• How might the finding of a normal karyotype

affect what additional genetic tests you might

order?-- FISH or RT-PCR for recurrent,

disease

Page 140: Impact of Personalized Medicine for the Practice of Hematopathology

Case #2 – Answers

• In addition to the molecular studies ordered as per

questions 2 and 4 above, what other genetic analyses are likely to be useful in terms ofprognosis and therapy?

-- mutational analysis of ~10-30 other genes [IDH1, IDH2, TET2, ASXL1, DNMT3A, RUNX1,

KIT, TP53, NRAS]

• What technology might be best to test for all these

mutations?

Page 141: Impact of Personalized Medicine for the Practice of Hematopathology

QUESTIONS?

Page 142: Impact of Personalized Medicine for the Practice of Hematopathology

AgendaTopic Speaker Time

I. Introduction Lim 5’

II. Principles of personalized medicine and evolution of molecular hematopathology-Overview of commonly used molecular tests in hematopathology-Update in new technologies including array CGH, next generation sequencing

Elenitoba-Johnson

40’

III. Approach to myeloid neoplasms in the era ofpersonalized medicine-Chronic myeloid leukemia-Acute myeloid leukemia

Bagg 65’

IV. Approach to NHL in the era of personalized medicine-Aggressive B-cell lymphomas-Splenic Lymphoma-ALCL

Lim 60’

IV. Summary and Closing Lim 10’142

Page 143: Impact of Personalized Medicine for the Practice of Hematopathology

Impact of Personalized Medicine for the Practice of Hematopathology

Approach to non-Hodgkin lymphoma in the era of personalized medicine

Aggressive B-cell lymphomasSplenic lymphoma

Anaplastic large cell lymphoma

Megan S. Lim MD  PhDUniversity of Michigan

143

Page 144: Impact of Personalized Medicine for the Practice of Hematopathology

Case 3

• A 40 year old woman presented with enlarging neck lesion.  The biopsy of the right neck lymph node revealed a soft tan lymph node with dimensions of 3.2 x 1.6 x 0.6 cm. 

• An initial immunohistochemical evaluation reveals a B cell lymphoma (CD20 and CD10 positive).   A virtual slide of the sections of the lymph node is provided.

144

Page 145: Impact of Personalized Medicine for the Practice of Hematopathology

Questions • What are the differential diagnostic considerations?• What additional stains would you perform to refine the 

diagnosis?• What additional molecular studies may help refine the 

diagnosis?• What is the role of karyotypic analysis, FISH and gene 

rearrangement in the workup of this class of lymphoma? • What other lymphoid neoplasms demonstrate MYC 

aberrations? • What genetic abnormalities have been recently described 

in the group of aggressive B‐cell lymphomas?

145

Page 146: Impact of Personalized Medicine for the Practice of Hematopathology

Case 3:  H&E

146

Page 147: Impact of Personalized Medicine for the Practice of Hematopathology

BCL2 BCL6

CD3

CD10

CD20 Ki67

Diagnosis ?

Diffusely + Background T cells >95%

Faintly variably + Diffusely +Small subset +147

Page 148: Impact of Personalized Medicine for the Practice of Hematopathology

WHO classification 2008Aggressive B‐cell Lymphoma

• Diffuse large B‐cell lymphoma, not otherwise specified

• Diffuse large B‐cell lymphoma, subtypesT‐cell/histiocyte‐rich large B‐cell lymphoma• Primary mediastinal (thymic) large B‐cell lymphoma• Intravascular large B‐cell lymphoma• DLBCL associated with chronic inflammation (New entity)• ALK‐positive B‐cell lymphoma• Plasmablastic lymphoma• Large B‐cell lymphoma arising in HHV8‐associated with Castleman disease• Primary effusion lymphoma

• Burkitt lymphoma• B‐cell lymphoma, unclassifiable, with features between DLBCL and Burkitt lymphoma

148

Page 149: Impact of Personalized Medicine for the Practice of Hematopathology

Differential Diagnosis of Aggressive B cell Lymphomas

Histology Immunophenotype Proliferative Index

MolecularGenetics

DLBCL Large centroblasticcells

CD5+/-, CD10+/-CD20+, BCL2+, BCL6+, CCND1-

<90% t(14;18) ~20%, t MYC (10%) 3q27 (~20%)

Burkittlympoma

Intermediate monotonous cells multiple nucleoli

CD5-, CD10+, CD20+, BCL2-,

BCL6+, CCND1 -

>95% t MYC ~100%

Blastoid mantle cell lymphoma

Intermediate lymphoblast like cells

CD5+, CD10-, CD20+, BCL2+, BCL6-, CCND1+

<90% t(11;14)~100%

B-cell lymphoma, unclassifiable, with

features between DLBCL and Burkitt

lymphoma

Intermediate CD5-, CD10+, CD20+, BCL2-,

BCL6+, CCND1 -

>90-95 t(14;18) ~20%, t MYC (10%) 3q27 (~20%)

149

Page 150: Impact of Personalized Medicine for the Practice of Hematopathology

Classic Burkitt lymphoma

150

EndemicSporadicImmunodeficiency

associated

Page 151: Impact of Personalized Medicine for the Practice of Hematopathology

MYC rearrangements in BL

1518q24

8q24

t(8;14)/t(8;22)/t(2;8) low complexity genotype; no coexisting translocations involving bcl2 or bcl6 or bcl1

Page 152: Impact of Personalized Medicine for the Practice of Hematopathology

B‐cell lymphoma, unclassifiable, with features between DLBCL and Burkitt 

lymphoma

• 4% of NHLs• Extranodal disease• High proliferative index• Low median survival• Ig/Myc rearrangements or variant myc partners • Includes “double‐hit” lymphomas

152

Page 153: Impact of Personalized Medicine for the Practice of Hematopathology

Double Hit Lymphomas

• Aggressive B‐cell lymphomas harboring MYC/8q24 gene rearrangement with another recurrent breakpoint 

• BCL2/IGH  + MYC/8q24  DHL       60%• BCL6/IGH  + MYC/8q24  DHL         8%• CCND1/IGH + MYC/8q24  DHL     10%• BCL2/IGH + BCL6/IGH   DHL         Rare

153 Aukema SM et al., BLOOD 2010

Page 154: Impact of Personalized Medicine for the Practice of Hematopathology

DLBCL BL BLU

Age at presentation Usually older but can occur at any age

Children, young adults Older adults

PathogenesisMay be related to the germinal center (GCB), activated B cell or other pathway

GCB derived GCB derived

Growth rate RapidExtremely rapid, Ki67 approaching 100%

Extremely rapid but usually less than 100%

Stage Even distribution, 50% stage 1 or 2

Usually high stage Usually advanced III/IV

Bone marrow involvement

Uncommon, often terminal Common Common

CNS involvement UnusualLeptomeningeal disease common at presentation in children and adults60

Common

EBVUncommon in the absence of immunodeficiency or age‐related senescence

>90% in endemic BL 40% in sporadic and HIV‐related BL

Negative

MYC translocationUncommon, usually a secondary event associated with a complex karyotype

Almost always present as initiating event and single abnormality (MYC simple)

Often double hits with translocations involving MYC, plus BCL2 and/or sometimes BCL6

DLBCL, BL and B-cell lymphoma unclassifiable, with features intermediate between DLBCL and

BL (BLU)

Modern Pathology (2013) 26, S42–S56;154

Page 155: Impact of Personalized Medicine for the Practice of Hematopathology

Is it important to make the distinction between DLBCL, BL and DHL?

155

Page 156: Impact of Personalized Medicine for the Practice of Hematopathology

MYC positive diffuse large B‐cell lymphoma and poor survival

156

CD20

Savage et al. Blood 2009

Ki-67

Page 157: Impact of Personalized Medicine for the Practice of Hematopathology

“Double Hit” Lymphoma

Snuderel et al. AJSP 2010

BL

DLBCLDHL

Page 158: Impact of Personalized Medicine for the Practice of Hematopathology

BACK TO OUR CASE

158

Page 159: Impact of Personalized Medicine for the Practice of Hematopathology

Diagnostic Algorithm

Aggressive B‐cell lymphoma FISH panel• t(14;18) BCL2/IgH

• 3q27 rearrangement  BCL6/IgH

• 8q24 rearrangement  CMYC/IgH

• t(11;14) BCL1/IgH

159

DDX of BL or BCLU

HistologyImmunohistochemistry

Page 160: Impact of Personalized Medicine for the Practice of Hematopathology

Normal

2G2R

Follicular Lymphomat(14;18) IGH/BCL2

GRFF

BCL2IGH

IGH/BCL2 dual‐color dual‐fusion FISH

160

Page 161: Impact of Personalized Medicine for the Practice of Hematopathology

Abbott MYC Dual Color Break Apart Probe

161

Normal MYC rearrangement

Breakpoint Region

Page 162: Impact of Personalized Medicine for the Practice of Hematopathology

Abbott Molecular

Normal cell (FF) BCL6 translocation +VE (FGR)

telChr 3q27 cenBCL6 gene

TranslocationBreakpoints

Red Probe Green Probe

BCL6 Break-Apart FISH

Page 163: Impact of Personalized Medicine for the Practice of Hematopathology

Integrated interpretation 

163

Diagnosis: B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma (Double-hit)

Aggressive B-cell lymphoma FISH panel• 8q24 rearrangement MYC/IgH +• 3q27 rearrangement BCL6/IgH +• t(14;18) BCL2/IgH -• t(11;14) BCL1/IgH -

Page 164: Impact of Personalized Medicine for the Practice of Hematopathology

Integrated interpretation 

164

Diagnosis: B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma (Double-hit)

Aggressive B-cell lymphoma FISH panel• 8q24 rearrangement MYC/IgH +• 3q27 rearrangement BCL6/IgH -• t(14;18) BCL2/IgH +• t(11;14) BCL1/IgH -

Page 165: Impact of Personalized Medicine for the Practice of Hematopathology

Integrated interpretation 

165

Diagnosis: Mantle cell lymphoma, t(11;14) positive with MYC rearrangement

Aggressive B-cell lymphoma FISH panel• 8q24 rearrangement MYC/IgH +• 3q27 rearrangement BCL6/IgH -• t(14;18) BCL2/IgH -• t(11;14) BCL1/IgH +

Page 166: Impact of Personalized Medicine for the Practice of Hematopathology

Integrated interpretation 

166

Diagnosis: Burkitt lymphoma

Aggressive B-cell lymphoma FISH panel• 8q24 rearrangement MYC/IgH +• 3q27 rearrangement BCL6/IgH -• t(14;18) BCL2/IgH -• t(11;14) BCL1/IgH -

Page 167: Impact of Personalized Medicine for the Practice of Hematopathology

BCL6‐breakapart FISH

167

Page 168: Impact of Personalized Medicine for the Practice of Hematopathology

C‐MYC (8q24) breakapart probe

168

Page 169: Impact of Personalized Medicine for the Practice of Hematopathology

Integrated interpretation (Diagnosis)

• 8q24 rearrangement (MYC) –Positive

• 3q27 rearrangement (BCL6) – Positive

• B‐cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma (Double‐hit)

• Predicted prognosis ‐ Poor

169

Page 170: Impact of Personalized Medicine for the Practice of Hematopathology

Conclusions• Aggressive B‐cell lymphomas are 

clinically, histologically and genetically diverse neoplasia.

• Molecular genetics is necessary to convey important prognostic information relevant for therapy.

• Evaluate all DLBCL with greater than 95% PI and other aggressive B cell lymphomas with the panel of FISH probes.

Double HitLymphoma

DLBCL

BL

Page 171: Impact of Personalized Medicine for the Practice of Hematopathology

MYC BCL2

DHS = 1

DHS = 2Green TM et al., JCO 30:3460-3467: 2012171

MYC/BCL2 immunohistochemistry in DLBCL

Page 172: Impact of Personalized Medicine for the Practice of Hematopathology

MYC/BCL2 immunohistochemistry in DLBCL

• MYC/BCL2 coexpression was reasonably sensitive and specific for MYC/BCL2 double‐hit rearrangements: sensitivity 79%, specificity 81%

• Much better than Ki‐67 index (recent study used 75% as threshold, Maitong‐Kalaw et al., Histopathology 2012;61:1214‐8)

172Johnson NA et al.,  J Clin Oncol. 2012 

Green TM et al., J Clin Oncol. 2012

Page 173: Impact of Personalized Medicine for the Practice of Hematopathology

• Coexpression of MYC and BCL2 identifies a subset of patients with DLBCL (18‐29%) with inferior OS and PFS: “biologic double‐hit”

• Independent of IPI and cell of origin (ABC and GCB)

• Co‐expression of MYC and BCL2 can identify the ABC‐type and IPI‐high DLBCL cases with worse outcomes

• May identify the majority of patients with refractory or resistant DLBCL

173

MYC/BCL2 immunohistochemistry in DLBCL

Page 174: Impact of Personalized Medicine for the Practice of Hematopathology

Impact of novel genetic alterations identified by next generation 

sequencing

Aggressive B‐cell lymphomasin 2015

Page 175: Impact of Personalized Medicine for the Practice of Hematopathology

Mutations of ID3 and TCF3 cooperatewith IG‐MYC in BL

ID3 and TCF3mutations in 70% of sporadic BL6/47 (13%) other BCL with MYC‐IG translocation 

Cyclin D3 in mutations in 38% sporadic BL .

175

Page 176: Impact of Personalized Medicine for the Practice of Hematopathology

Cooperation between MYC and ID3/TCF3/Cyclin D3 in BL

Schmitz R et al., Nature 2012176

Page 177: Impact of Personalized Medicine for the Practice of Hematopathology

Relative frequency of gene alterations in GCB and ABC DLBCL

Courtesy of Bailey N 2013177

Page 178: Impact of Personalized Medicine for the Practice of Hematopathology

178

Impact of genetic aberrations on pathophysiology of B‐cell NHL

Page 179: Impact of Personalized Medicine for the Practice of Hematopathology

TAKE HOME MESSAGES• True BL has low genetic complexity

• Identification of MYC positive mature lymphoma is important to guide chemo (CVAD vs. R‐CHOP)– mBL signature (t(8;14), low complexity,benefit from CVAD

– Double hit or MYC+ DLBCL (high complexity), less responsive to either

179

Page 180: Impact of Personalized Medicine for the Practice of Hematopathology

Take home messages• Aggressive B‐cell lymphomas are clinically, histologically and genetically diverse neoplasms

• Molecular genetics is necessary to convey important prognostic information relevant for therapy

• Algorithmic approach using  immunohistochemistry and FISH analysis will allow subclassification for better risk stratification and treatment

• NGS identifies novel genetic events that may have a role in diagnosis and therapy 

180

Page 181: Impact of Personalized Medicine for the Practice of Hematopathology

Answers for Case 3• What are the differential diagnostic considerations?

DLBCL,  BL,  Double hit lymphoma, MCL, BCL Unc

• What additional stains would you perform to refine the diagnosis?CD20, BCL2, BCL6, MIB1, MUM1

• What additional molecular studies may help refine the diagnosis?FISH for MYC, BCL2 and BCL6 rearrangements

• What is the role of karyotypic analysis, FISH and gene rearrangement in the workup of this class of lymphoma? 

Gene rearrangement study would not be helpfulKaryotypic and FISH studies will aid in determining genetic  complexity and presence of MYC, BCL2, BCL6 rearrangements

181

Page 182: Impact of Personalized Medicine for the Practice of Hematopathology

Answers for Case 3

What other lymphoid neoplasms demonstrate MYC aberrations? 

ALCL, MCL, NK/T cell lymphomasWhat genetic abnormalities have been recently described in the group of aggressive B‐cell lymphomas?

ID3, TCF3, Cyclin D3 mutations in BLCARD11,CD79a,A20 mutations in DLBCL

182

Page 183: Impact of Personalized Medicine for the Practice of Hematopathology

Case 4

• A 53 year old man presented with abdominal discomfort.  Physical examination and radiologic studies revealed an enlarged spleen which was removed.  The spleen weighed 3.55 kg with dimensions of 25 x 19.5 x11.7 cm.  

• A virtual slide of a section of the splenectomyspecimen is provided.

183

Page 184: Impact of Personalized Medicine for the Practice of Hematopathology

Case 4: H&E

184

Page 185: Impact of Personalized Medicine for the Practice of Hematopathology

Case 4• What are the differential diagnostic considerations?• What additional stains would you perform to refine the 

diagnosis?• What additional molecular studies may help refine the 

diagnosis?• What is the role of karyotypic analysis, FISH and gene 

rearrangement in the workup of splenic lymphomas? • What genetic abnormalities have been recently described 

in lymphomas that present primarily in the spleen?• How will genetic abnormalities contribute to patient 

management such as prognosis, therapy and disease monitoring?

185

Page 186: Impact of Personalized Medicine for the Practice of Hematopathology

Case 4: Differential diagnosis

• Splenic marginal zone lymphoma• Splenic B‐cell lymphoma, unclassifiable• Follicular lymphoma• Mantle cell lymphoma• Chronic lymphocytic leukemia/SLL• Hairy cell leukemia

• T cell lymphoma

186

Page 187: Impact of Personalized Medicine for the Practice of Hematopathology

Case 4: Immunophenotype

CD5 negativeCD43 negativeCyclin D1 negativeCD10 negative

187

Page 188: Impact of Personalized Medicine for the Practice of Hematopathology

Splenic Marginal Zone Lyphoma

• SMZL uncommon indolent lymphoma involving splenic white pulp, blood, and bone marrow

• First-line therapies• splenectomy• anti-B-cell biologicals

• Median survival 10yr

188 Kiel MJ, .. Elenitoba-Johnson KSJ J Exp Med. 2012 Aug27;209(9):1553‐65.

PathoPic

EH&O

Page 189: Impact of Personalized Medicine for the Practice of Hematopathology

Molecular genetics of splenic lymphoma

189

• del7q, +3/+3q [+18, +12] • no recurrent translocation• no known genetic etiology

• del7q, +3/+3q [+18, +12] • no recurrent translocation• no known genetic etiology

Page 190: Impact of Personalized Medicine for the Practice of Hematopathology

Experiment Design: Whole Genome     and Targeted Sequencing

190

Page 191: Impact of Personalized Medicine for the Practice of Hematopathology

del7q

del7q

-19

del13q

+8q

SMZL Genome Complexity

191

Page 192: Impact of Personalized Medicine for the Practice of Hematopathology

NOTCH2 Frameshift Mutation

192

Page 193: Impact of Personalized Medicine for the Practice of Hematopathology

Recurrent NOTCH2 Nonsense Mutations

193

Page 194: Impact of Personalized Medicine for the Practice of Hematopathology

Recurrent NOTCH2 Mutations in SMZL

Additional 93 SMZL specimens sequenced in validation cohort.22 additional cases with NOTCH2 mutations identified

Kiel MJ, .. Elenitoba-Johnson KSJ J Exp Med. 2012 Aug27;209(9):1553‐65. 194

Page 195: Impact of Personalized Medicine for the Practice of Hematopathology

Frequency of NOTCH2 Mutations in Various Lymphoma Subtypes and Reactive Lymph Nodes

Kiel MJ, .. Elenitoba-Johnson KSJ J Exp Med. 2012 Aug27;209(9):1553‐65. 195

Page 196: Impact of Personalized Medicine for the Practice of Hematopathology

Recurrently targeted pathways in SMZL

Rossi D et al. J Exp Med 2012;209:1537-1551 196

Page 197: Impact of Personalized Medicine for the Practice of Hematopathology

Decreased Relapse-free Survival in NOTCH2-mutated SMZL

Kiel MJ, .. Elenitoba-Johnson KSJ J Exp Med. 2012 Aug27;209(9):1553‐65. 197

Page 198: Impact of Personalized Medicine for the Practice of Hematopathology

SMZL

SMZL

delta jagged/serrate

γ-secretase

NICD

CSLCoR CSL

NICDCoA

Transcription of target genes:HES, HEY, NF-κB, PPAR

CoR

Notch heterodimer

Notch signaling can be inhibited by gamma secretase inhibitors

DAPT

Cell survival and differentiation

198

Page 199: Impact of Personalized Medicine for the Practice of Hematopathology

ConclusionsConclusions

• NOTCH2 is recurrently mutated in SMZL• Mutations cluster in C-terminus

causing gain-of-function of NOTCH2• NOTCH2 mutations are specific to MZL• NOTCH2 mutations confer an adverse

prognosis

• KLF2 is recurrently mutated in SMZL

199Piva R et al., Leukemia 2014 KLF2

Page 200: Impact of Personalized Medicine for the Practice of Hematopathology

Molecular testing in small B cell lymphomas of the spleen

200

• Splenic marginal zone lymphoma

• Splenic B‐cell lymphoma, unclassifiable

• Nonsplenic MALT• Follicular lymphoma• Mantle cell lymphoma• Chronic lymphocytic leukemia/SLL

• Hairy cell leukemia

Page 201: Impact of Personalized Medicine for the Practice of Hematopathology

Novel alterations in lymphoid neoplasia identified by NGS

201

Page 202: Impact of Personalized Medicine for the Practice of Hematopathology

Recurrently mutated genes in CLL

202

Gene Protein Mutation Mutated cases /

total

Overall frequency

(%)

Frequency in IGHV-

unmutated(%)

Frequency in IGHV-

mutated (%)

NOTCH1 Notch 1 P2515Rfs*4Q2503*F2482Ffs*2

29/2551/2551/255

12.2 20.4 7

MYD88 Myeloid differentiation primary response gene 88

L265P 9/310 2.9 0.8 5.6

XPO1 Exportin 1 E571KE571G

3/1651/165

2.4 4.6 0

KLHL6 Kelch-like 6 F49L/L65PL90FL58P/T64A/Q81P

3/160 1.8 0 4.5

Puente XS et al. Nature, 2011; 475: 101-05.

Page 203: Impact of Personalized Medicine for the Practice of Hematopathology

N‐Ras

B‐Raf

MEK1/2

ERK1/2

A MOLECULAR DIAGNOSTIC APPROACH

BRAF V600E is strongly associated with classic HCL

203

Page 204: Impact of Personalized Medicine for the Practice of Hematopathology

BRAF exon‐15 mutation is sensitive and specific for hairy cell leukemia 

204

Cases (n=243)Tumor Entity

analyzed mutated % mutatedHairy Cell Leukemia 48 48 100Splenic Marginal Zone Lymphoma 22 0 0Splenic Lymphoma/Leukemia, Unclassifiable* 16 0 0Chronic Lymphocytic Leukemia 21 0 0Follicular Lymphoma 35 0 0Diffuse Large B-cell Lymphoma 71 0 0Mantle Cell Lymphoma 18 0 0Burkitt Lymphoma 12 0 0

Tiacci E et al. N Engl J Med 2011;364:2305-2315.

Page 205: Impact of Personalized Medicine for the Practice of Hematopathology

N‐Ras

B‐Raf

MEK1/2

ERK1/2

MAP2K1 (MEK) mutations are associated with HCL‐v

205

Page 206: Impact of Personalized Medicine for the Practice of Hematopathology

RAF kinase is a molecular target 

206Vakiani and Solit J Pathol 2011: 223:219-229

Page 207: Impact of Personalized Medicine for the Practice of Hematopathology

Improved survival with vemerafanib in melanoma patients with BRAF 

mutations  

207Chapman PB et al., N Eng J Med 2011: 364:2507-2516

Page 208: Impact of Personalized Medicine for the Practice of Hematopathology

Immunohistochemistry for detection of B‐RAF V600E (clone VE1) mutant protein

208Andrulis M et al., Am J Surg Pathol 2012

Page 209: Impact of Personalized Medicine for the Practice of Hematopathology

B‐RAF V600E (clone VE1) mutant protein IHC for minimal residual disease

209Akarca AU et al., Br J Haematol Jul 2013

Page 210: Impact of Personalized Medicine for the Practice of Hematopathology

Discovery of novel genetic alterations in B‐NHL

210

Traditional NGSBL MYC rearrangements ID3, TCF3, Cyclin D3

DLBCL, GC MYC, BCL2, BCL6 rearrangementsSomatic hypermutations

Chromatin remodelling genes(MLL2, EP300, CREBBP)Epigenetic modifiers (EZH2)TBL1XR1/TP63

DLBCL, activated  MYC, BCL2, BCL6 rearrangements CARD11, CD79B, A20,BLIMP1. MYD88Chromatin remodelling genes(MLL2, EP300, CREBBP)

Pediatric DLBCL MYC IRF4 translocations

Primary mediastinal B‐cell lymphoma JAK2 amplifications  MHC) class II transactivator CIITA

Hodgkin lymphoma JAK MHC) class II transactivator CIITA

Splenic marginal zone lymphoma del7q, +3/+3q [+18, +12]  NOTCH2, NFKB pathway genes, chromatin remodelling genes

Hairy cell leukemia IGH‐CyclinD1 B‐RAF/ MAP2K1

Follicular lymphoma IGH‐BCL2 EZH2, MLL, TBL1XR1/TP63

CLL TrisomyDel 17p, del11q, del13q

NOTCH1, MYD88, SF3B1

Waldenstrom macroglobulinemia MYD88

Page 211: Impact of Personalized Medicine for the Practice of Hematopathology

Answers for Case 4• What are the differential diagnostic considerations?

Splenic marginal zone lymphomaSplenic B‐cell lymphoma, unclassifiableNonsplenic MALTFollicular lymphomaMantle cell lymphomaChronic lymphocytic leukemia/SLLHairy cell leukemia

• What additional stains would you perform to refine the diagnosis?CD43, CD5, Cyclin D1, CD25

• What additional molecular studies may help refine the diagnosis?B‐RAF for HCL, MYD88 for WM

• What is the role of karyotypic analysis, FISH and gene rearrangement in the workup of splenic lymphomas? 

FISH for CLL associated genetic alterationsFISH for t(11;14)  

211

Page 212: Impact of Personalized Medicine for the Practice of Hematopathology

Answers for Case 4

• What genetic abnormalities have been recently described in lymphomas that present primarily in the spleen?

NOTCH2mutations in 25% KLF2mutations in 40% 

• How will genetic abnormalities contribute to patient management such as prognosis, therapy and disease monitoring?

SMZL with NOTCH2mutations may have worse survivalNOTCH2 signaling may represent a therapeutic target

212

Page 213: Impact of Personalized Medicine for the Practice of Hematopathology

Take home messagesTake home messages

• Many subtypes of B‐cell lymphomas can present in the spleen

• SMZL is a B‐cell malignancy that has not been associated with a recurrent genetic abnormality

• NGS studies identified NOTCH2mutations in 25% of SMZL

• Gene mutations in NFKB pathway, chromatin remodeling are also present in SMZL

• Molecular studies may help in subclassification of other B‐cell lymphomas that present in the spleen

213

Page 214: Impact of Personalized Medicine for the Practice of Hematopathology

Case 5

• A 14 year old boy presented with a one year history of diffuse lymphadenopathy of cervical, axillary, abdominal regions. He complained of fevers, weight loss, night sweats.  

• An excisional biopsy of the cervical lymph node was performed.  A virtual slide of the lymph biopsy is provided.  

214

Page 215: Impact of Personalized Medicine for the Practice of Hematopathology

Case 5: Questions• What are the differential diagnostic considerations?• What additional stains would you perform to refine the diagnosis?

• What additional molecular studies may help refine the diagnosis?

• What is the role of karyotypic analysis, FISH and gene rearrangement in the workup of T cell lymphomas? 

• What genetic abnormalities have been recently described in T cell lymphomas?

• How will genetic abnormalities contribute to patient management such as prognosis, therapy and disease monitoring?

215

Page 216: Impact of Personalized Medicine for the Practice of Hematopathology

Case 5: H&E

216

Page 217: Impact of Personalized Medicine for the Practice of Hematopathology

Differential diagnostic considerations

Hematopoietic • Non‐Hodgkin lymphoma 

‐diffuse large B‐cell lymphomas with anaplastic features, ‐anaplastic large cell lymphoma (ALK‐positive and ALK‐negative)Peripheral T cell lymphomas, NOS

• Extramedullary myeloid tumors, • Hodgkin lymphoma • Anaplastic myeloma

Non‐hematopoietic • Melanoma • Carcinoma (anaplastic

variants)

217

Page 218: Impact of Personalized Medicine for the Practice of Hematopathology

Immunophenotype

218

CD30

ALK1

Page 219: Impact of Personalized Medicine for the Practice of Hematopathology

Immunophenotype

Antibody ResultsCD45 Negative

CD20 Negative

CD3 Negative

CD2 Negative

CD4 Positive

CD7 Negative

CD8 Negative

CD30 Positive  +++

Perforin Positive

ALK‐1 Positive  +++ N/C

Anaplastic large cell lymphoma, ALK+

Diagnosis

219

Page 220: Impact of Personalized Medicine for the Practice of Hematopathology

ALKALK

ALKALK

Y Y YYJAK2/3 PI3K

AKTPDK

STAT3/5 PKCα

NPM

AUTOPHOSPHORYLATION

NPM

Apoptosis Proliferation ??

t(2;5)(p23;q35)

PLC

Signaling Cascades Induced byNPM-ALK

Activation

Localization

Expression

Aberrant

ALK

220

Page 221: Impact of Personalized Medicine for the Practice of Hematopathology

t(2;5)(p23;q35) ~75% N/C 80kd

t(1;2)(q25;p23 ~18% C 104kd

t(2;3)(p23;q21) ~1% C 97kd

t(2;3)(p23;q21) ~1% C

inv(2)(p23q35) ~2% C 96kd

t(2;17)(p23;q23) ~2% C 250ld

t(2;19)(p23;p13.1) - C

t(2;2)(p23;q11-13)?or inv (2)(p23p11-13)?

- C

ALK Kinase

ALK Kinase

ALK Kinase

ALK Kinase

ALK Kinase

ALK Kinase

ALK Kinase

ALK Kinase

NPM

TPM3

TFGL

TFGS

ATIC

CLTC

TPM4

RanBP2

117 680

221 784

193 756

138 701

229 792

1634 2197

221 784

867 1430

Variant ALK Translocation Partner Genes

CARS, Moesin, MYH9, SEC31A221

Page 222: Impact of Personalized Medicine for the Practice of Hematopathology

Diagnosis by FISH Cytogenetics

222

Page 223: Impact of Personalized Medicine for the Practice of Hematopathology

Intracellular localization of ALK expression is dependent on the partner gene

Nuclear and cytoplasmic Cytoplasmic

223

Page 224: Impact of Personalized Medicine for the Practice of Hematopathology

Other tumors that express ALK protein

• Lymphomas

• Soft tissue tumors

• Carcinomas

• Neuroblastomas

• Chromosomal translocations

• Gene amplifications• Kinase activating

mutations• Overexpression

MechanismsNeoplasms

224

Page 225: Impact of Personalized Medicine for the Practice of Hematopathology

ALK 75%

15%

ALCL2p235q35

NPM1

TMP3

TFG

ATIC

CLTCL

~10%

IMT

Diffuse large B-cell lymphoma

TPM4

ALK

ALK

ALK

ALK

ALK

MYH

MSN

ALO17

ALK

ALK

ALK

RanBP2 ALK

ATIC ALK

CLTCL ALK

TPM4 ALK

TMP3 ALK

CARS ALK

SEC31L1 ALK

EML4

KIF5B

ALK

ALK

CLTCL ALK

ALKNPM1

Non-small-cell lung cancer

ALK translocations in human cancer

SQSTM1 ALK

225

Page 226: Impact of Personalized Medicine for the Practice of Hematopathology

ALK is a therapeutic target

Phase 1/2 study of PF-2341066, oral small molecule inhibitor of ALK and C-MET in children with relapsed/refractory solid tumors and anaplastic large cell lymphoma

ADVL0912

Children’s Oncology Group

Butrynski JE et al: N Engl J Med 2010;363:1727-33Kwak EL, et al: N Engl J Med 2010;363:1693-703

Phase II study of crizotinib in children with newly diagnosed anaplastic large cell lymphoma

ANDHL12P1Children’s Oncology Group

226YP Mosse , MS Lim et al  Lancet Oncology 2013 May;14(6):472‐80

Page 227: Impact of Personalized Medicine for the Practice of Hematopathology

227

580

4126

77 8 3 60

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4

Copies NPM

‐ALK/10 00

0 AB

L

Months post treatment

Molecular monitoring of NPM-ALK transcript in bone marrowand peripheral blood samples of ALCL patients before and after Crizotinib

38

59

23

913 13

6 71 3 3 1

0

10

20

30

40

50

60

70

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Copies NPM

‐ALK/10 00

0 AB

L

Months post treatment

YP Mosse , MS Lim et alLancet Oncology 2013 May;14(6):472-80

Page 228: Impact of Personalized Medicine for the Practice of Hematopathology

Update on genomic studies of mature T cell lymphoma/leukemia

228

Page 229: Impact of Personalized Medicine for the Practice of Hematopathology

• JAK-STAT mutations in 76% of T-PLL

• IL2RG implicated in human cancer for the first time

• Inhibition of JAK or pSTAT5 may represent a therapeutic strategy for T-PLL patients

229

Integrated genomic analysis of T-PLL identifies novel highly recurrent activating mutations

Kiel M et al., Blood. 2014 Aug 28;124(9):1460‐72

JAK1 JAK3JAK3

STAT5B

IL2

IL2R

IL2R

IL2R

Transcriptional activation

Page 230: Impact of Personalized Medicine for the Practice of Hematopathology

230BLOOD, 11 Dec 2014: 124: 3768

TYK2 gene fusions in cutaneous CD30+ LPDs

CD30

TYK2TYK2

NPM1‐TYK2

Page 231: Impact of Personalized Medicine for the Practice of Hematopathology

Recurrent structural abnormalities in T‐cell neoplasia

231

Disease entity Structural Abnormality Frequency

ALK+ ALCL NPM1‐ALK

Various‐ALK

84%

16%

T‐PLL TRA‐TCL1A

TRA‐MTCP1

70‐80%

10%

HSTL i(7q)(q10) >80%

EATL 9q gains

16q12.1 loss

~70%

~30%

ALK‐ ALCL, c‐ALCL IRF4/DUSP22 translocations

TYK2/ NPM1‐TYK2

25%

17%/4%

PTCL P53‐related genes 6%

F‐PTCL ITK‐SYK 18‐38%

AITL ITK‐SYK rare

Page 232: Impact of Personalized Medicine for the Practice of Hematopathology

Recurrent somatic gene mutations in T‐cell neoplasia

232

Leukemias

Lymphomas

Gene Disease entity FrequencyJAK1/JAK3 T‐PLL

ENKTCL

40%

20‐35%

STAT3 T‐LGLLGD HSTCLCLPD‐NK

27‐40%9%30%

STAT5B T‐PLLGD HSTCLT‐LGLL

36%36%rare

RHOA AITL; PTCL, NOS 67%; 18%

FYN AITL; PTCL, NOS 3% rare

TET2 AITL

F‐PTCL

33‐47%

58%

IDH2 AITL ~25%

DNMT3A AITL; PTCL, NOS 11% overall

Page 233: Impact of Personalized Medicine for the Practice of Hematopathology

Molecular studies will impact therapeutic decisionsin  T‐cell neoplasia

Lymphoma       Genetic features  Therapeutic relevance

ALCL                         ALK                                   ALK inhibitorcALCL TYK2 TYK2 inhibitorAITL ITK/SYK SYK inhibitorT‐PLL/ENKTCL JAK3 JAK3 inhibitorT‐PLL STAT5B STAT5 inhibitorT‐LGLL, NK‐LPD STAT3 STAT3 inhibitor

AITL TET2, IDH2, DNMT3A Epigenetic modulators

PTCL, NOS DNMT3A Epigenetic modulators

F‐PTCL TET2 Epigenetic modulators

233

Page 234: Impact of Personalized Medicine for the Practice of Hematopathology

Genomic Classification of Mature T‐cell Lymphoma/Leukemia

Cutaneous

Primary Cutaneous CD30+ T‐cell Disorders

Mycosis Fungoides

Extranodal

NK/TCL Nasal Type Adult T‐cell Leukemia/Lymphoma 

T‐cell Large Granular 

Lymphocytic Leukemia

Subcutaneous Panniculitis‐like TCL

Leukemic

Enteropathy‐associated TCL

Hepatosplenic TCL

Aggressive NK‐Cell Leukemia

T‐PLL

Mature T‐/NK‐cell 

Primary Cutaneous Gamma/Delta TCL

Sézary Syndrome

PTCL,NOS

Nodal

AITLAnaplastic Large Cell Lymphoma (ALK +)

Anaplastic Large Cell Lymphoma (ALK‐)

STAT3RHOA/IDH2/TET2/DNMT3A

TYK2

?????

ALK

IRF4/DUSP

JAK3

JAK/STAT5B

STAT3

234

TP53/ARID1A/MLL

Page 235: Impact of Personalized Medicine for the Practice of Hematopathology

Case 5: Answers• What are the differential diagnostic considerations?

Other ALK+ neoplasms, ALCL ALK neg, • What additional stains would you perform to refine the diagnosis?

Pan T cell antigens • What additional molecular studies may help refine the diagnosis?

ALK FISH, TCR gene rearrangement• What is the role of karyotypic analysis, FISH and gene 

rearrangement in the workup of T cell lymphomas?TCR gene rearrangement may be necessary for “null cell phenotype”, FISH may be necessary in cases where ALK staining is weak 

235

Page 236: Impact of Personalized Medicine for the Practice of Hematopathology

Case 5: Answers

• What genetic abnormalities have been recently described in T cell lymphomas?

TYK2 fusions in cALCLJAK/STAT5B mutations in T‐PLLIDH1/2, TET2, RhoAmutations in AITL

• How will genetic abnormalities contribute to patient management such as prognosis, therapy and disease monitoring?

Molecular methods for disease monitoringDetection of ALK mutations for monitoring disease response to therapy

236

Page 237: Impact of Personalized Medicine for the Practice of Hematopathology

SUMMARY AND CONCLUSIONS

237

Page 238: Impact of Personalized Medicine for the Practice of Hematopathology

IMPLICATIONS OF MOLECULAR GENETICS FOR HEMATOPATHOLOGY?

238

Page 239: Impact of Personalized Medicine for the Practice of Hematopathology

Translating New Genetic Findings into Clinical Practice

• Genomic profiling technologies have identified an explosion of genes associated with various hematolymphoid malignancies

• More clinical studies are needed to sort out which genes are most important prognosticallyand therapeutically.

239

Page 240: Impact of Personalized Medicine for the Practice of Hematopathology

Molecular studies will impact therapeutic decisions in  lymphoma

Lymphoma       Genetic features  Therapeutic relevanceBurkitt  MYC/IGH CVAD vs RCHOPDouble Hit DLBCL MYC/IGH; BCL2/IGH    Not responsive 

BCL6/IGHGastric MALT       API2/MALT1                 MALT1 inhibitorsHairy cell leukemia B‐RAF mutation B‐RAF inhibitorsCLL/SLL                           IgH SHM                             No need for                   

aggressive TxCLL/SLL; SMZL NOTCH mutation              Gamma secretase inhibitorFCL/DLBCL EZH2, MLL, p300 Demethylating agentsALCL                         ALK                                   Tyrosine kinase inhibitorT cell lymphoma      ITK/SYK SYK inhibitor

240

Page 241: Impact of Personalized Medicine for the Practice of Hematopathology

Target Year Target Discovered

Disease(s) and Proportions

Estimated Total # Pts Annually (US)

Drug(s) Clinical Outcomes

Outcomes from Conventional Chemotherapy

Year Mutation-Targeted Treatment Documented

BCR-ABL 1960 CML (100%) 5,000ImatinibDasatinibNilotinib

RR 90%5y PFS 80%5y OS 90%

RR 35%5y OS 70% 2001

EGFR 1978EGFR mutated NSCLC (10% of NSCLC)

17,000 ErlotinibGefitinib

RR 75%Median PFS 11 mosMedian OS 31 mos

RR 30%Median PFS 5 mosMedian OS 24 mos

2004

KIT 1998 GIST 6,000 Imatinib

RR 55%Median PFS 27 mosMedian OS 58 mos

RR 5%Median OS 20 mos 2002

BRAF 2002 50% of melanoma100% HCL 34,000 PLX4032

RR 77%Median PFS 7 mosOS not yet determined

RR 10-20%PFS 1.5 mosOS 8 mos.

2010

ALK 2007EML4-ALK NSCLC (5% of NSCLC)ALK+ ALCL

8,500 Crizotinib

RR 55%6 month PFS 70%OS not yet determined

RR 25%Median PFS 4-6 mosMedian OS 12 mos

2010

Changing Pace of Target Discovery to Therapy

Gerber DE and Minna JD Cancer Cell 2010241

Page 242: Impact of Personalized Medicine for the Practice of Hematopathology

242

Multiplexed targeted platforms

Page 243: Impact of Personalized Medicine for the Practice of Hematopathology

243

Impact on WHO Classification?

WHO 2008 Classification

Diagnosis Prognosis Therapy

Page 244: Impact of Personalized Medicine for the Practice of Hematopathology

CONCLUSIONSCONCLUSIONS• Molecular techniques are routinely being employed to 

provide adjunctive results critical to patient management

• Molecular techniques also provide opportunities for improved diagnosis, early disease detection and prognosis of hematopoietic diseases

• Molecular techniques e.g. ABL1 kinase sequencing now offer opportunities for therapeutic refinement and adaptation to diseases specific to each patient (personalized medicine)

244

Page 245: Impact of Personalized Medicine for the Practice of Hematopathology

• New genomic tools have led to discovery of novel mutations in hematopoietic neoplasms.

• Certain genetic abnormalities previously underappreciated as important lesions in hematopoietic malignancies.

• As costs of sequencing continue to fall, additional novel mutations likely to be identified at a rapid rate.

245

CONCLUSIONSCONCLUSIONS

Page 246: Impact of Personalized Medicine for the Practice of Hematopathology

1980 1985 19901988 1994 2001 2008 …

Morphologic evaluation

Cytogenetics

Introduction of immunopathology, flow cytometry immunohistochemistry

Rapid growth in molecular genetic application

Gleevecapproved by FDA

New therapies

•Combination of small molecules

Multi-panel detection of structural alterations/mutations with prognostic and therapeutic implications

2015

Evolution of Molecular Diagnostics in Hematopathology 

PCR FFPE tissues REAL classification

WHO classification

246

Page 247: Impact of Personalized Medicine for the Practice of Hematopathology

NEED FOR INTEGRATED HEMATOPATHOLOGY REPORTS 

247

1) What disease does the patient have? (diagnosis)

1) How much of the disease is there? (residual disease)

2) What drug will the disease respond to? (therapy)

3) Who needs treatment? (prognosis)

4) What dose? (pharmacogenomics, dynamics)

Page 248: Impact of Personalized Medicine for the Practice of Hematopathology

Mass spectrometry

Integrated evaluation of molecular abnormalities in hematologic disease

New insights into pathogenesis

Altered gene expressionAltered gene expression

Gene rearrangementsGene rearrangements Gene mutationsGene mutationsChromosomal translocationsChromosomal translocations

Early Detection Diagnostics Prognostics New Therapeutics 248

Next Generation Pathologist

SNP arrayaCGH NGS

EpigenomeEpigenome

Page 249: Impact of Personalized Medicine for the Practice of Hematopathology

Thank you for participating!Please complete the course evaluation before you leave.

249