32
Impedance Matching RF Electronics Spring, 2020 Robert R. Krchnavek Rowan University

Impedance Matching - Rowan University

  • Upload
    others

  • View
    20

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Impedance Matching - Rowan University

Impedance MatchingRF Electronics Spring, 2020

Robert R. Krchnavek Rowan University

Page 2: Impedance Matching - Rowan University

Objectives

• Be able to design an L-section matching network.

• Understand the importance of T and Pi matching networks.

• Understand distributed parameter matching networks.

• Be able to design biasing networks.

Page 3: Impedance Matching - Rowan University

Matching Networks• Matching networks are often used to achieve maximum

power transfer.

• Matching networks are also used for

• minimizing noise influence.

• maximizing power handling capabilities.

• linearizing the frequency response.

• In general, matching networks simply provide impedance transformation.

Page 4: Impedance Matching - Rowan University

L-Section Matching Networks Two-Component Networks

L2

L1

ZS

ZL

ZS

ZL

ZS

ZL

ZS

ZL

C

L

C

C C

ZS

ZL

L

L2

L1

L L

ZS

ZL

C2

C1

C2

C1

ZS

ZL

ZS

ZL

• Analytical solution

• Smith Chart solution

Page 5: Impedance Matching - Rowan University

L-Section Matching Networks

ZT = RT + ȷXT ZA = RA + ȷXA

ZM = RA − ȷXA

ZM = ZT ∥ȷXC + ȷXL

Zin = RT − ȷXT

Zin = (ZA + ȷXL) ∥ȷXC

Zin

Page 6: Impedance Matching - Rowan University

L-Section Matching Networks

• Analytical method

• precise but slow.

• best used with the aid of a computer.

• Graphical method (Smith Chart)

• quick.

• not precise.

• yields a visual indication of the design space.

Page 7: Impedance Matching - Rowan University

L-Section Matching Networks Analytical Solution

ZT = RT + ȷXT = 50 + ȷ25 Ω

ZA = RA + ȷXA = 25 − ȷ50 Ω

For maximum transfer of power, ZM = ZA

Page 8: Impedance Matching - Rowan University

L-Section Matching Networks Analytical Solution

ZM = ZT k1

|!C+ |!L = Z

A

ZM = (RT + |XT ) k1

|!C+ |!L = RA |XA = Z

A

Separate into real and imaginary parts and solve for L and C.

Page 9: Impedance Matching - Rowan University

L-Section Matching Networks Smith Chart Solution

ZT = RT + ȷXT = 50 + ȷ25 Ω

zT =ZT

Z0

=50 + ȷ25

50= 1 + ȷ0.5

ZA = RA + ȷXA = 25 − ȷ50 Ω

zA =ZA

Z0

=25 − ȷ50

50= 0.5 − ȷ1

Page 10: Impedance Matching - Rowan University

L-Section Matching Networks Smith Chart Solution

Page 11: Impedance Matching - Rowan University

L-Section Matching Networks Smith Chart Solution – General Approach• Find the normalized source and load impedance.

• Plot constant R and G circles that pass through zS. Use dashed lines or a unique color.

• Plot constant R and G circles that pass through zL*. Use solid lines or a different color.

• Find the intersection points between the dashed and solid lines. These are unique solutions to the matching problem.

• Find the normalized values of reactances and susceptances by tracing a path from zS to intersection point, to zL*.

• Determine actual values of L and C.

Page 12: Impedance Matching - Rowan University

L-Section Matching Networks Smith Chart Solution – Specific Example

zT =ZT

Z0

=50 + ȷ25

50= 1 + ȷ0.5

zA =ZA

Z0

=25 − ȷ50

50= 0.5 − ȷ1

• Find the normalized source and load impedance.

Page 13: Impedance Matching - Rowan University

L-Section Matching Networks Smith Chart Solution – Specific Example

• Plot constant R and G circles that pass through zS. Use dashed lines or a unique color. More specifically, if the first component is a shunt component, plot a constant G circle. If it is a series component, plot a constant R circle. For this example, zS is zT.

Page 14: Impedance Matching - Rowan University

RADIALLY SCALED PARAMETERS

TOWARD LOAD —> <— TOWARD GENERATOR1.11.21.41.61.822.5345102040100

SWR 1∞

12345681015203040dBS 1∞

1234571015 ATTEN. [dB]

1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 S.W. L

OSS COEFF

1 ∞

0 1 2 3 4 5 6 7 8 9 10 12 14 20 30

RTN. LOSS [dB] ∞

0.010.050.10.20.30.40.50.60.70.80.91

RFL. COEFF, P0

0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 RFL. LOSS

[dB]

∞0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 S.W. P

EAK (CONST

. P)

0 ∞

0.10.20.30.40.50.60.70.80.91

RFL. COEFF, E or I 0 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TRANSM. C

OEFF, P

1

CENTER1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TRANSM

. COEFF, E

or I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ORIGIN

0.10.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.70.7

0.70.8

0.8

0.80.9

0.9

0.9

1.01.0

1.0

1.21.2

1.2

1.41.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

90-9

085

-85

80-8

0

75-7

5

70-7

0

65-6

5

60-6

0

55-55

50-50

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.20.2

0.21

0.210.22

0.220.23

0.230.24

0.240.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

00

AN

GLE

OF

TRAN

SMISS

ON

CO

EFFICIEN

T IN D

EGREES

AN

GLE

OF REFLEC

TION

CO

EFFC

IENT IN

DEG

REES

—>

WA

VEL

ENG

THS

TOW

ARD

GEN

ERA

TOR

—>

<— W

AVE

LEN

GTH

S TO

WA

RDLO

AD

<—

IND

UCT

IVE

REA

CTAN

CE C

OMPO

NENT (+jX/Zo), O

R CAPACITIVE SUSCEPTANCE (+jB/Yo)

EACTANCE COMPONENT (-jX/Zo),

ORIN

DUCTIVE

SUSC

EPTA

NCE

(-jB

Yo)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

SMITH CHART FORM ZY-01-N

NAME TITLE

Microwave Circuit Design - EE523 - Fall 2000

DWG. NO.

DATE

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

R VE I TI CAPAC

Page 15: Impedance Matching - Rowan University

RADIALLY SCALED PARAMETERS

TOWARD LOAD —> <— TOWARD GENERATOR1.11.21.41.61.822.5345102040100

SWR 1∞

12345681015203040dBS 1∞

1234571015 ATTEN. [dB]

1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 S.W. L

OSS COEFF

1 ∞

0 1 2 3 4 5 6 7 8 9 10 12 14 20 30

RTN. LOSS [dB] ∞

0.010.050.10.20.30.40.50.60.70.80.91

RFL. COEFF, P0

0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 RFL. LOSS

[dB]

∞0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 S.W. P

EAK (CONST

. P)

0 ∞

0.10.20.30.40.50.60.70.80.91

RFL. COEFF, E or I 0 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TRANSM. C

OEFF, P

1

CENTER1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TRANSM

. COEFF, E

or I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ORIGIN

0.10.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.70.7

0.70.8

0.8

0.80.9

0.9

0.9

1.01.0

1.0

1.21.2

1.2

1.41.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

90-9

085

-85

80-8

0

75-7

5

70-7

0

65-6

5

60-6

0

55-55

50-50

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.20.2

0.21

0.210.22

0.220.23

0.230.24

0.240.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

00

AN

GLE

OF

TRAN

SMISS

ON

CO

EFFICIEN

T IN D

EGREES

AN

GLE

OF REFLEC

TION

CO

EFFC

IENT IN

DEG

REES

—>

WA

VEL

ENG

THS

TOW

ARD

GEN

ERA

TOR

—>

<— W

AVE

LEN

GTH

S TO

WA

RDLO

AD

<—

IND

UCT

IVE

REA

CTAN

CE C

OMPO

NENT (+jX/Zo), O

R CAPACITIVE SUSCEPTANCE (+jB/Yo)

EACTANCE COMPONENT (-jX/Zo),

ORIN

DUCTIVE

SUSC

EPTA

NCE

(-jB

Yo)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

SMITH CHART FORM ZY-01-N

NAME TITLE

Microwave Circuit Design - EE523 - Fall 2000

DWG. NO.

DATE

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

R VE I TI CAPAC

Page 16: Impedance Matching - Rowan University

RADIALLY SCALED PARAMETERS

TOWARD LOAD —> <— TOWARD GENERATOR1.11.21.41.61.822.5345102040100

SWR 1∞

12345681015203040dBS 1∞

1234571015 ATTEN. [dB]

1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 S.W. L

OSS COEFF

1 ∞

0 1 2 3 4 5 6 7 8 9 10 12 14 20 30

RTN. LOSS [dB] ∞

0.010.050.10.20.30.40.50.60.70.80.91

RFL. COEFF, P0

0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 RFL. LOSS

[dB]

∞0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 S.W. P

EAK (CONST

. P)

0 ∞

0.10.20.30.40.50.60.70.80.91

RFL. COEFF, E or I 0 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TRANSM. C

OEFF, P

1

CENTER1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TRANSM

. COEFF, E

or I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ORIGIN

0.10.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.70.7

0.70.8

0.8

0.80.9

0.9

0.9

1.01.0

1.0

1.21.2

1.2

1.41.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

90-9

085

-85

80-8

0

75-7

5

70-7

0

65-6

5

60-6

0

55-55

50-50

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.20.2

0.21

0.210.22

0.220.23

0.230.24

0.240.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

00

AN

GLE

OF

TRAN

SMISS

ON

CO

EFFICIEN

T IN D

EGREES

AN

GLE

OF REFLEC

TION

CO

EFFC

IENT IN

DEG

REES

—>

WA

VEL

ENG

THS

TOW

ARD

GEN

ERA

TOR

—>

<— W

AVE

LEN

GTH

S TO

WA

RDLO

AD

<—

IND

UCT

IVE

REA

CTAN

CE C

OMPO

NENT (+jX/Zo), O

R CAPACITIVE SUSCEPTANCE (+jB/Yo)

EACTANCE COMPONENT (-jX/Zo),

ORIN

DUCTIVE

SUSC

EPTA

NCE

(-jB

Yo)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

SMITH CHART FORM ZY-01-N

NAME TITLE

Microwave Circuit Design - EE523 - Fall 2000

DWG. NO.

DATE

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

R VE I TI CAPAC

Page 17: Impedance Matching - Rowan University

L-Section Matching Networks Smith Chart Solution – Specific Example

• Plot constant R and G circles that pass through zL*. Use solid lines or a different color. More specifically, if the component near the load is a series element, plot a constant R circle. In this example, zL* is zA*.

Page 18: Impedance Matching - Rowan University

RADIALLY SCALED PARAMETERS

TOWARD LOAD —> <— TOWARD GENERATOR1.11.21.41.61.822.5345102040100

SWR 1∞

12345681015203040dBS 1∞

1234571015 ATTEN. [dB]

1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 S.W. L

OSS COEFF

1 ∞

0 1 2 3 4 5 6 7 8 9 10 12 14 20 30

RTN. LOSS [dB] ∞

0.010.050.10.20.30.40.50.60.70.80.91

RFL. COEFF, P0

0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 RFL. LOSS

[dB]

∞0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 S.W. P

EAK (CONST

. P)

0 ∞

0.10.20.30.40.50.60.70.80.91

RFL. COEFF, E or I 0 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TRANSM. C

OEFF, P

1

CENTER1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TRANSM

. COEFF, E

or I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ORIGIN

0.10.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.70.7

0.70.8

0.8

0.80.9

0.9

0.9

1.01.0

1.0

1.21.2

1.2

1.41.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

90-9

085

-85

80-8

0

75-7

5

70-7

0

65-6

5

60-6

0

55-55

50-50

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.20.2

0.21

0.210.22

0.220.23

0.230.24

0.240.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

00

AN

GLE

OF

TRAN

SMISS

ON

CO

EFFICIEN

T IN D

EGREES

AN

GLE

OF REFLEC

TION

CO

EFFC

IENT IN

DEG

REES

—>

WA

VEL

ENG

THS

TOW

ARD

GEN

ERA

TOR

—>

<— W

AVE

LEN

GTH

S TO

WA

RDLO

AD

<—

IND

UCT

IVE

REA

CTAN

CE C

OMPO

NENT (+jX/Zo), O

R CAPACITIVE SUSCEPTANCE (+jB/Yo)

EACTANCE COMPONENT (-jX/Zo),

ORIN

DUCTIVE

SUSC

EPTA

NCE

(-jB

Yo)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

SMITH CHART FORM ZY-01-N

NAME TITLE

Microwave Circuit Design - EE523 - Fall 2000

DWG. NO.

DATE

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

R VE I TI CAPAC

Page 19: Impedance Matching - Rowan University

L-Section Matching Networks Smith Chart Solution – Specific Example

• Find the intersection points between the dashed and solid lines. These are unique solutions to the matching problem.

Page 20: Impedance Matching - Rowan University

RADIALLY SCALED PARAMETERS

TOWARD LOAD —> <— TOWARD GENERATOR1.11.21.41.61.822.5345102040100

SWR 1∞

12345681015203040dBS 1∞

1234571015 ATTEN. [dB]

1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 S.W. L

OSS COEFF

1 ∞

0 1 2 3 4 5 6 7 8 9 10 12 14 20 30

RTN. LOSS [dB] ∞

0.010.050.10.20.30.40.50.60.70.80.91

RFL. COEFF, P0

0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 RFL. LOSS

[dB]

∞0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 S.W. P

EAK (CONST

. P)

0 ∞

0.10.20.30.40.50.60.70.80.91

RFL. COEFF, E or I 0 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TRANSM. C

OEFF, P

1

CENTER1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TRANSM

. COEFF, E

or I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ORIGIN

0.10.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.70.7

0.70.8

0.8

0.80.9

0.9

0.9

1.01.0

1.0

1.21.2

1.2

1.41.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

90-9

085

-85

80-8

0

75-7

5

70-7

0

65-6

5

60-6

0

55-55

50-50

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.20.2

0.21

0.210.22

0.220.23

0.230.24

0.240.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

00

AN

GLE

OF

TRAN

SMISS

ON

CO

EFFICIEN

T IN D

EGREES

AN

GLE

OF REFLEC

TION

CO

EFFC

IENT IN

DEG

REES

—>

WA

VEL

ENG

THS

TOW

ARD

GEN

ERA

TOR

—>

<— W

AVE

LEN

GTH

S TO

WA

RDLO

AD

<—

IND

UCT

IVE

REA

CTAN

CE C

OMPO

NENT (+jX/Zo), O

R CAPACITIVE SUSCEPTANCE (+jB/Yo)

EACTANCE COMPONENT (-jX/Zo),

ORIN

DUCTIVE

SUSC

EPTA

NCE

(-jB

Yo)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

SMITH CHART FORM ZY-01-N

NAME TITLE

Microwave Circuit Design - EE523 - Fall 2000

DWG. NO.

DATE

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

R VE I TI CAPAC

Page 21: Impedance Matching - Rowan University

RADIALLY SCALED PARAMETERS

TOWARD LOAD —> <— TOWARD GENERATOR1.11.21.41.61.822.5345102040100

SWR 1∞

12345681015203040dBS 1∞

1234571015 ATTEN. [dB]

1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 S.W. L

OSS COEFF

1 ∞

0 1 2 3 4 5 6 7 8 9 10 12 14 20 30

RTN. LOSS [dB] ∞

0.010.050.10.20.30.40.50.60.70.80.91

RFL. COEFF, P0

0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 RFL. LOSS

[dB]

∞0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 S.W. P

EAK (CONST

. P)

0 ∞

0.10.20.30.40.50.60.70.80.91

RFL. COEFF, E or I 0 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TRANSM. C

OEFF, P

1

CENTER1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TRANSM

. COEFF, E

or I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ORIGIN

0.10.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.70.7

0.70.8

0.8

0.80.9

0.9

0.9

1.01.0

1.0

1.21.2

1.2

1.41.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

90-9

085

-85

80-8

0

75-7

5

70-7

0

65-6

5

60-6

0

55-55

50-50

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.20.2

0.21

0.210.22

0.220.23

0.230.24

0.240.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

00

AN

GLE

OF

TRAN

SMISS

ON

CO

EFFICIEN

T IN D

EGREES

AN

GLE

OF REFLEC

TION

CO

EFFC

IENT IN

DEG

REES

—>

WA

VEL

ENG

THS

TOW

ARD

GEN

ERA

TOR

—>

<— W

AVE

LEN

GTH

S TO

WA

RDLO

AD

<—

IND

UCT

IVE

REA

CTAN

CE C

OMPO

NENT (+jX/Zo), O

R CAPACITIVE SUSCEPTANCE (+jB/Yo)

EACTANCE COMPONENT (-jX/Zo),

ORIN

DUCTIVE

SUSC

EPTA

NCE

(-jB

Yo)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

SMITH CHART FORM ZY-01-N

NAME TITLE

Microwave Circuit Design - EE523 - Fall 2000

DWG. NO.

DATE

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

R VE I TI CAPAC

Page 22: Impedance Matching - Rowan University
Page 23: Impedance Matching - Rowan University

Forbidden Regions, Frequency Response, and Q

• Not every matching condition will allow all 8 L-type matching networks.

• Although the L-type matching network is matched at one frequency, the frequency response of the different networks varies.

• The loaded Q for each matching network will also, in general, vary.

Page 24: Impedance Matching - Rowan University

Forbidden Regions ZS = Z0 = 50 Ω

Page 25: Impedance Matching - Rowan University

RADIALLY SCALED PARAMETERS

TOWARD LOAD —> <— TOWARD GENERATOR1.11.21.41.61.822.5345102040100

SWR 1∞

12345681015203040dBS 1∞

1234571015 ATTEN. [dB]

1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 S.W. L

OSS COEFF

1 ∞

0 1 2 3 4 5 6 7 8 9 10 12 14 20 30

RTN. LOSS [dB] ∞

0.010.050.10.20.30.40.50.60.70.80.91

RFL. COEFF, P0

0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 RFL. LOSS

[dB]

∞0

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 S.W. P

EAK (CONST

. P)

0 ∞

0.10.20.30.40.50.60.70.80.91

RFL. COEFF, E or I 0 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TRANSM. C

OEFF, P

1

CENTER1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TRANSM

. COEFF, E

or I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ORIGIN

0.10.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.70.7

0.70.8

0.8

0.80.9

0.9

0.9

1.01.0

1.0

1.21.2

1.2

1.41.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.50.5

0.5

0.60.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.61.6

1.6

1.81.8

1.8

2.02.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.01.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

90-9

085

-85

80-8

0

75-7

5

70-7

0

65-6

5

60-6

0

55-55

50-50

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.20.2

0.21

0.210.22

0.220.23

0.230.24

0.240.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

00

AN

GLE

OF

TRAN

SMISS

ON

CO

EFFICIEN

T IN D

EGREES

AN

GLE

OF REFLEC

TION

CO

EFFC

IENT IN

DEG

REES

—>

WA

VEL

ENG

THS

TOW

ARD

GEN

ERA

TOR

—>

<— W

AVE

LEN

GTH

S TO

WA

RDLO

AD

<—

IND

UCT

IVE

REA

CTAN

CE C

OMPO

NENT (+jX/Zo), O

R CAPACITIVE SUSCEPTANCE (+jB/Yo)

EACTANCE COMPONENT (-jX/Zo),

ORIN

DUCTIVE

SUSC

EPTA

NCE

(-jB

Yo)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

SMITH CHART FORM ZY-01-N

NAME TITLE

Microwave Circuit Design - EE523 - Fall 2000

DWG. NO.

DATE

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

R VE I TI CAPAC

Page 26: Impedance Matching - Rowan University

T and Pi Matching Networks

• T and Pi matching networks have an additional element compared to an L matching network.

• The additional element allows more control over the Q of the network.

• Can be used to control the bandwidth of the matching network.

Page 27: Impedance Matching - Rowan University

Microstrip Matching Networks

• At higher frequencies, distributed element networks are used to achieve matching.

• Single-stub and double-stub matching networks.

• Mid-GHz range one often uses transmission lines + discrete capacitors.

Page 28: Impedance Matching - Rowan University

Mixed Design Matching Network

• Assume a characteristic impedance for the transmission lines of 50Ω.

• Smith Chart solution -> normalize everything to 50 Ω.

• Traversing the length of the series transmission line elements results in a rotation on the Smith Chart on a constant radius circle.

Convert a load impedance of ZL=30+j10 Ω to an input impedance of Zin=60+j80 Ω

Page 29: Impedance Matching - Rowan University
Page 30: Impedance Matching - Rowan University

Mixed Design Matching Network

• In general, these networks are very sensitive to precise placement of the discrete capacitor.

Convert a load impedance of ZL=30+j10 Ω to an input impedance of Zin=60+j80 Ω

Completed design:

Page 31: Impedance Matching - Rowan University

Fully Distributed-Element Matching Networks

• Single-stub tuning. See undergraduate notes for Engineering Electromagnetics. Also see textbook. Easily done on a Smith Chart.

• When a tunable matching network is required, double-stub tuning has an advantage over single-stub tuning because only the length of the stub and not its position needs to be varied.

Page 32: Impedance Matching - Rowan University

Summary

• Impedance matching is necessary to maximize transfer of power from one stage to the next in an RF system.

• Two-component L-section matching has up to 8 different configurations. However, not all 8 are available in any given matching problem.

• The different L-types have different frequency response.

• T or Pi matching networks have an additional degree of freedom to control bandwidth of the matching network.

• At higher frequencies, matching may include C and X-lines. At still higher frequencies, X-lines with stubs.