123
COi\IPUTER AIDED BLAST FRAG:\IE!,\T ATION PREDICTION by George E. Exadaktylos Thesis submitted to the Faculty of the Virginia Pol}1cchnic Institutc and State Cniversity in partial fulfillment of the requirements for the degree of Masters of Science m :'\tining and \hnerals Engincering November, 1988 Blacksburg, Virginia

in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Embed Size (px)

Citation preview

Page 1: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

COi\IPUTER AIDED BLAST FRAG:\IE!,\T ATION PREDICTION

by

George E. Exadaktylos

Thesis submitted to the Faculty of the

Virginia Pol}1cchnic Institutc and State Cniversity

in partial fulfillment of the requirements for the degree of

Masters of Science

m

:'\tining and \hnerals Engincering

November, 1988

Blacksburg, Virginia

Page 2: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

LD Sto5~ V8S~ J968 fq33 ~.~

Page 3: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

COMPUTER AIDED BLAST FRAGMENTATION PREDICTION

by

George E. Exadaktylos

Dr. C. Haycocks, Chainnan

Mining and Minerals Engineering

(ABSTRACT)

The complex and non-linear nature of blast fracturing have restricted common blast design mostly

to empirical approaches. The code developed for this investigation avoids both empiricism and

large memory requirement in order to simulate the pattern of interacting radial fractures from an

array of shotholes, at various burdens and spacings, and in simultaneous and delayed modes. The

resultant pattern is analyzed and a fragment size distribution calculated.

The rules governing the distribution of radial cracks and the way in which they interact are based

on model scale experiments conducted by various investigators. Calculated fragment size- distrib­

ution agree with data from the field. Powder factor dependence of fragmentation results is also well

described by the model.

The effect of discontinuities on rock fragmentation by blasting is also incorporated into the model.

Discontinuities which are open and filled with air or soil-like material affect destructively the

transmission of strain waves and propagation of cracks in the rock mass. These discontinuities can

be incorporated into the simulation by inserting cracks to represent them. The cracks representing

discontinuities will then terminate the cracks produced by blasting where they intersect. On the

other hand, tight joints without filling material or with filling material but with a high bond strength

and acoustic impedance close to that of the medium do not affect in a negative way the transmission

of shock waves in the rock mass. A mathematical model was developed to treat these discontinu­

ities which was based on principles from Linear Elastic Fracture Mechanics theory and Kuznetsov's

equation which relates the mean fragment size obtained to the blast energy I hole size and rock

characteristics.

Page 4: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Acknowledgements

I would like to thank my dissertation advisor, Dr. Chris Haycocks, for his patience, friendship,

support and valuable advice during the course of my research.

Thanks are also extended to Dr. Michael Karmis for his friendship, support, and his helpful sug­

gestions, and to Dr. Gerry Luttrell for his valuable suggestions.

I extend much appreciation to Dr. I. Iconomopoulos, and Dr. C. Tsoutrelis of N.T.U. for the

opportunity they gave me to extend my studies at V.P.I ..

I would also like to thank my friends of the B.B. Club for providing me always with love and

friendship.

Finally, I wish to sincerely thank my parents and my brother Peter for their love, support, en­

couragement and understanding throughout my whole life. It is to them that I dedicate this work.

iii

Page 5: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Table of Contents

Abstract ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••.•••••.•.••••...•••......••..••••••••••••••••••••••.•. i i

Acknowlec:lgements ••••••••••••••••.•••••••••••••••••••••.••.••••••••••••••••••.•••••••••••••••••••••••••••••••••••..•.•••••••••••••••.••••••••. iii

Table of Contents •••..••.••••••••••••••••••••..••.•••.••••••••••.••••••.••••••••••••••••••••••.•.....•.•..•..•••.•.•..••••.....••..•..••.•..•..• iv

List of Illustrations .•••••.••••••••••••••••••••.•••.••••••••••••••••••••••••••..••••••••••••.••••••.•••••••.•••••.•••.....•••....•..•..•••....... vi

List of T abl~ ••..•••••••••••••••.•••••.•••••••••••••••••••••.••.•••.•••.•••••••.•••••••.•••••..••••••.•••••••••.••..••..•.•••..••.••..••..••.••... ix

Chapter I: Introouction •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••.••.. 1

Chapter 2: Methods of Study of Rock Fragmentation by Blasting ................................................... 5

Chapter 3: Description of the BLASFRAG Computer Mooel .......................................................... 8

3.1 Mechanism of Rock Fragmentation by Blasting ......................................................... 8

3.2 The Computer Model BI...ASFRAG .......................................................................... 10

3.3 Description of the Algorithms Used in the Model ..................................................... 14

3.3.1 Distribution of the Radial Cracks Around the Blasthole ............................. 14

3.3.2 Interaction Between Adjacent Blastholes ...................................................... 26

3.3.3 Inaccuracy in Drilling ..................................................................................... 27

3.3.4 Assessment of Fragmentation ........................................................................ 28

Chapter 4: Study of Fragmentation by Blasting Using the BLASFRAG Cooe .............................. 31

4.1 Comparison With Experimental Data ........................................................................ 31

4.1.1 Conclusions ................................................................................................... 49

4.2 Study of the Effect of Controllable Blast Parameters on Fragmentation Using the

BI...ASFRAG Model .................................................................................................... 52

4.2.1 Conclusions .................................................................................................... 67

Chapter 5: Effect of Discontinuities on Rock Fragmentation by Blasting ...................................... 69

iv

Page 6: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

5.1 Introduction ................................................................................................................. 69

5.2 Study of the Effect of Discontinuities on Fragmentation by Blasting Using the

BLASFRAG Model .................................................................................................... 76

5.3 A Fracture Mechanics Analysis of the Effect of Cracks on Rock Fragmentation by

Blasting ........................................................................................................................ 82

5.4 Conclusions ............................................................................................................... 1 02

Chapter 6: Conclusions and Reoommendations .............................................................................. 1 OS

Referellce5 .................. ~ ......•................................................. , ........................................................... 110

Vita ....................•...........•................................................................................................................. 113

v

Page 7: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

List of Illustrations

Figure 3 :.-1 Blast Triangle ............................................. :... 11

Figure3.2 General Flowchart of the BLASFRAG Code .......................... 13

Figure3. 3 Variables Incorporated in BLASFRAG Model ......................... 15

. Figure3. 4 Radial Cracks Produced by a Charge of Detonating PETN in Plexiglass (after

Johansson et al., 1970) .......................................... 16

Figure 3. 5 Simulated Cracking as in a Vertical Section Through the Charge ............ 18

Figure 3.6 Interaction Between Reflected Tensile Wave and Growing Crack System ...... 20

Figure 3 • 7 Stress Intensity Factors at the Tip of Center Crack Under Pressure p (after

Kobayashi, 1964 and Isida, 1971) .................................. 24

Figure3. 8 Derivation of Fragment Sizes Between Radial Cracks .................... 29

Figure4.1 Test Layout Design and Borehole Structure in Wu's (1984) Experiments ...... 32

Figure4.2 Blast Designs Used in the Reduced Scale Experiments (after Wu, 1984) ....... 34

Figure 4. 3 Comparison of Wu's (1984) Experimental Results for Spacing/Burden Ratio of 2.0

with Calculated Results for KIT Equal to 470 ......................... 36

Figure4.4 Comparison of Wu's (1984) Experimental Results for Spacing/Burden Ratio of 2.0

with Calculated Results for KIT Equal to 470 ......................... 37

Figure4.5 Comparison of Wu's (1984) Experimental Results for Spacing/Burden Ratio of 2.0

with Calculated Results for KIT Equal to 470 ......................... 38

Figttre4 • 6 Blast Geometry in Ash's (1973) Reduced Scale Experiments ............... 39

Figure4.7 Calibration of the BLASFRAG Model with Ash's (1973) Experimental Results . 40

Fi~. 8 Comparison of Ash's (1973) Experimental Results with Simulation Results for Si-

multaneous Blasting ............................................. 42

Figure!. • 9 Comparison of Ash's (1973) Experimental Results with Simulation Results for De-

List of ] lIustrations vi

Page 8: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

layed Blasting ......................... . . . . . . . . . . . . . . . . . . . . . . .. 43

Figure 4. l03last Design for ANO I SHOT 1 Full-Scale Experiment (Aimone, 1982) ...... 44

Figure 4. 1 mlast Design for ANO I SHOT 2 Full-Scale Experiment (Aimone, 1982) ...... 45

Figure 4. 1 a::alibration of the Crack Analysis Model with Fragmentation Distribution Resulted

from ANO I SHOT 1 Experiment ................................. 47

Figure 4. 1 :Crack Pattern Obtained From the Explosion Simulation of SHOT I ANO 1 Ex-

periment ..................................................... 48

Figure4. 14Actual and Predicted Fragmentation Distributions for the ANO I SHOT 2 Full-

Scale Blast ................................................... 50

Figurt:4 • 15 Crack Pattern Obtained From the Explosion Simulation of ANO I SHOT 2 Ex-

periment .................................................... 51

Figur~. 16 Dependence of Characteristic Fragment Size on Reduced Burden and Hole Pattern

for 50 mm holes ............................................... 54

Figure4 • 17Dependence of R-R Exponent n on Reduced Burden and Hole Pattern for' 50 mm

holes ....................................................... 55

Figure4. 1S Crack System for the Square Pattern with 80 mm holes and 0 mm Standard Devi-

ation in Drilling ............................................... 59

Figute4. 19 Crack System for the Square Pattern with 80 mm holes and 200 nun Standard De-

viation in Drilling .............................................. 60

Fi~. 20 Crack System for the Square Pattern with 80 mm holes and 300 mm Standard De-

viation in Drilling ......•....................................... 61

Fi~ .; 21 Effect of Error in Drilling on the Uniformity of Fragmentation ............. 62

Figtln"4. 22 Effect of Error in Drilling on the Characteristic Size of Fragmentation ........ 63

Figure4. 23 Effective Circles Around Holes for a Square Pattern a) No Deviation in Drilling,

and b) 300/0 of Burden Deviation in Drilling .......................... 64

Figure4. 24 Increased Radius of Effective Circles a) No Deviation in Drilling, and b) 300/0 of

Burden Deviationinrnilling ...................................... 65

Figures.1 Examples of Joint Initiated Fractures in Marlstone (after Fourney et. al., 1983) .. 71

FigureS. 2 Close-up Joint Initiated Crack in Limestone Quarry Bench Face (after Fourney et.

al., 1983) .................................................... 72

List or Illustrations vii

Page 9: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Figure S. 3Effect of Size of Hole Pattern on Oversize Produced After Blasting in Discontinuous

Rocks ...................................................... 74

Figure 5.4Blast Pattern with Large Spacing Between Holes in Discontinuous Rock ...... 77

Figure S. SBlast Pattern with Small Spacing Between Holes in Discontinuous Rock ...... 79

Figure S. 6Cumulative Fragment Size Distributions for the two Simulated Blasts ........ 80

Figure 5. 7Dependence of R-R Exponent n on Reduced Burden as it was Predicted by

BLASFRAG, KUZ-RAM, and FRACMA Models ..................... 92

Figure .5. 8Dependence of R-R Exponent n on Reduced Burden as it was Predicted by

BLASFRAG, KUZ-RAM, and FRACMA Models ..................... 93

Figure 5. 9Blocky Jointing of the Medium Represented by 1'bree Systems of Mutually Per-

pendicular Cracks (after Tomashev, 1973) ............................ 9S

FigureS. lODependence of the Percentage of Oversize Material, M, on Burden as it was Pre-

dicted by FRACMA and Tomashevs Model ......................... 100

FigureS. IlDependence of the Percentage of Oversize Material on Powder Factor as it was

Predicted by FRACMA Model ................................... 103

List of Illustrations viii

Page 10: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

List of Tables Table 1. Effect of the Nwnber of Free Faces Near a Blasthole on the Extension of Cracks

Due to Gas Pressure ............................................ 2S

Table 2. Extension of Cracks Due to Gas Pressure Depending on the Nwnber of Faces Near a Hole for AND I SHOT 2 ....................................... 46

Table 3. Gaxnma Function ............................................... 89

List of Tables ix

Page 11: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Chapter 1

Introduction

Explosives supply a major proportion of the energy required for the excavation and breakage of

rock. Infonnation on the degree of fragmentation and the distribution of fragment sizes within a

blasted rock mass is essential to the efficiency of waste rock removal in surface mining operations.

The fragments produced by blasting must be compatible in size with equipment used for removal.

Furthermore, displacement and distribution of the muckpile must provide easy access for removal.

The ultimate aim of any blasting investigation should be to predict the degree of fragmentation and

displacement produced by a given explosive charge in a given rock for a certain blast geometry and

initiation system. Once this has been achieved, blasts can be designed to provide the displacement,

degree of fragmentation and toe conditions, which give lowest total costs.

This study is focused on the prediction of fragmentation distribution resulting from a given bench

blast operation. This is not an easy task since theoretical developments to explain rock breakage

by blasting are hindered by the numerous variables influencing the phenomenon. More than

Chapter 1 1

Page 12: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

2

twenty factors appear to affect fragmentation in a blast (Da Gama, 1983), and those factors may

be sub-divided into several groups such as, explosive properties, blasting pattern characteristics,

charge loading parameters and rock mass properties.

The multiple and complicated influence of such parameters, some of which are usually unknown

in common blasts, makes the possibility of obtaining adequate theoretical models for predicting

fragmentation very unlikely.

A model capable of predicting fragmentation distribution from a given blasting operation must take

into account a number of variables, including:

• blasthole diameter

• blastl)ole pattern (Burden x Spacing)

• explosive type or types

• initiation pattern

• delay timing

There are also the uncontrollable parameters of rock strength and rock structure that must be

considered for any succesful blast design.

Developing a numerical model which takes into account these variables and provides predictions

of fragmentation distributions seems a reasonable idea since full-scale experimentation for empirical

predictions, is too expensiv~ and impractical.

Among the possible choices of modelling rock breakage by explosives using numerical methods are:

• finite difference codes

Chapter I

Page 13: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

3

• fmite element codes

• numerical simulation codes

The first two approaches can describe both the shock and stress wave propagation through the rock

and the nucleation and growth of cracks in the rock mass. However, small increment and com­

putation cell requirements of these advanced codes require uncommonly large computer memory

capacities and have thus far limited calculations to single blast holes.

The model developed for this investigation avoids both empiricism and large memory requirement.

This program simulates the pattern of interacting radial fractures from an array of blastholes at

various burdens and spacings, for both simultaneous and delayed modes. The crack pattern that

results from the simulation is then analyzed and the fragment size distribution is calculated.

The program, called BLASFRAG (Blast Fragmentation), also considers uncontrollable blast pa­

rameters such as the discontinuous nature of many rocks. The program, which runs on a micro­

computer, can be used to:

• Predict the effects of blasthole pattern size and shape, blasthole diameter, explosives selection,

delay timing and initiation sequence on the resulting fragmentation distribution

• Predict the effects of drilling inaccuracies on fragmentation distribution

• Design a blasting technique to provide a specified result, for example, a reduced fragmentation

size range

• Determine the effect of discontinuities in the rock mass on blast fragmentation distribution

Furthermore, a mathematical model was developed for studying the effect of pre-existing cracks in

the rock on rock fragmentation by blasting. This model was based on principles from Linear

Chapter I

Page 14: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

4

Elastic Fracture Mechanics theory and Kuznetsov's equation (Kuznetsov, 1973) which relates the

mean fragment size obtained to the blast energy, hole size and rock characteristics.

Chapter 1

Page 15: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Chapter 2

Methods of Study of Rock Fragmentation by Blasting

In general there are three methods by which fragmentation by explosives can be studied:

1. Using a full-scale blasting process as a model

2. U sing scale models

3. Using numerical models

The actual full-scale blasting operation is often too large for experimentation. For most small-scale

model blasting, sizing of 1000/0 of the blasted material with sieves for particle size detennination is

usually feasible. However, sieving is not possible with full-scale production blasts (except in some

cases of underground blasting in small stopes) although a photographic method can be used instead.

Photographic methods of evaluating fragmentations are apparently succesful (measurements of

sections through the muckpile) but still an accepted relation between the distribution measured by

photographic or image analysis and the actual particle size distribution (measured by sieving) has

Chapter 2 5

Page 16: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

6

to be found. In general, full-scale experimentation is expensive and time consuming, and only a

limited number of parameters can be varied.

Models from concrete, rock or photo elastic materials such as Plexiglass, have been used by many

workers to study rock fragmentation by explosives or fracturing and crack propagation problems

(Fourney et al., 1983; Bjamholt et al., 1983). However, scale models suffer from unavoidable as­

sumptions such as that:

1. cracking in materials like Perspex, Homalite-l00 or other photoelastic materials used as mod­

els, is similar to cracking in rock (Harries, 1977);

2. the effect of discontinuities on the fragmentation process in model blasts is similar to that in

full-scale blasts, and

3. the actual structure of the rock, as detennined by the existing discontinuities, cannot be simu­

lated in model scale blasts.

Many industrial explosives will not detonate reliably in small diameters so that PETN based ex­

plosives have to be used. This applies particularly to the experimentation and evaluation of

aluminised explosives where the aluminium requires a finite time to react (Porter, 1974).

Numerical modelling does not have the disantvantages of the above two methods. Dynamic fmite

difference and fmite element codes were developed which model both the shock and stress wave

propagation through the rock and the nucleation and growth of cracks in the affected rock mass

(McHugh, 1983; Margolin et al., 1983; Valliappan et al., 1983 and others). The consumate

practioners of this science are the owners of large computers like the Cray. While still a long way

from use in routine blast design, these approaches help direct experimental work in a cost-effective

way, and greatly improve our understanding of fundamental mechanisms.

Chapter :1

Page 17: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

7

An example of the more empirical models which can be used was given by Cunningham (1983).

His model incorporates Kuznetsov's work (Kuznetsov, 1973) on relating explosive energy, hole size

and rock characteristics to mean fragment size, and the Rosin-Rammler curves for assessing frag­

ment size distribution. This approach is used extensively by AECI for designing blasts and, pro­

viding the choise of values for the rock is correct, gives a fairly good match to data obtained in

actual tests.

Harries (1977), constructed a digital simulation model to study rock fragmentation due to blasting.

This model was the basis for further models that can be used effectively in routine blasting work

such as the SABREX program (Scientific Approach to Blasting Rock by Explosives), and Lownd's

FRAG model (1983). In these models various assumptions were made for the propagation of

cracks and these were programmed into a simulation model of the blasting area. It is this approach

that was taken in this research.

The basis of the model is due to Harries and has been described previously (Harries, 1977). The

model simulates each explosion by "drawing" the crack pattern (starburst) from each hole on a

horizontal plane section through the bench. However, additional variables are explicitly taken into

account in the BLASFRAG model, namely:

• the number of free faces near an exploding hole

• the simultaneous or delayed mode of explosion of adjacent holes

• the geometrical and physical properties of discontinuities , and

• the third dimension of rock fragments

Furthermore, in contrast to Lownds model (Lownds, 1983) the influence of rock and explosive

properties are explicit in the model.

Chapter 2

Page 18: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Chapter 3

Description of the BLASFRAG Computer Model

3.1 Mechanism of Rock Fragmentation by Blasting

Rock fracture resulting from explosives loaded in drill holes depend on the number of free faces,

the burden, the hole placement and rock geometry, the physical properties and loading density of

the explosive, the type of stemming, the rock structure and mechanical strength, and other factors.

Final fragmentation in a bench blasting operation can be attributed to a combination of:

1. crushing of the rock immediately around the explosive cavity;

2. initial radial fracturing due to tensile tangential stress component in the outgoing stress wave;

Chapter 3 8

Page 19: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

9

3. secondary radial fractures fonned at the surface. propagating inward, due to enhanced

tangential stress accompanying free surface displacement;

4. joining of inward propagating radial fractures with initially created outward radial fractures;

5. extension of the initial radial fractures by reflected radial tensile strain at oblique angles to the

surface;

6. tensile separation and shear of rock at planes of weakness in the rock mass;

7. separation of the rock due to reflected radial tensile strain (slabbing);

8. fracture and acceleration of fragments by strain energy release;

9. further fracture and acceleration of broken rock by late expanding gases; and

10. pre-existing discontinuities in the rock mas.

While none of these mechanisms can be ignored, explosive-generated radial fracture is crucial in

determining the overall fragmentation as Harries (1977) and Lownds (1983) showed using simu­

lation models.

This study describes a computer simulation model which calculates blast results providing infor­

mation on the fragmentation. The model is based on Harries' hypothesis (1977) that radial frac­

tures are primarily responsible for fragmentation in rock.

The model simulates the blasting process which is divided in three stages.

1. Upon the initiation of an explosive, the very rapid chemical reaction of this thermodynamically

unstable substance will result in the creation of extreme heat and high pressure gases. As the

rapidly expanding high pressure gases impact the surrounding rock mass, an intense. pressure

Chapter 3

Page 20: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

10

wave is emitted into the rock. The outgoing "precursor" wave sets up tangential stresses (hoop

stresses) that create radial fractures which propagate out from the region of the blasthole.

2. When the outgoing compressive wave impinges on a free face it reflects as a tensile wave. As

the tensile reflector propagates back toward the blasthole, it will interact with radial cracks

created by the outgoing compressive pulse and serve to significantly extend those cracks which

are most favorably orientated (Field and Ladegaard-Pedersen, 1971). This reflected wave will

have the greatest effect on those cracks to which it is tangential.

3. Under the influence of the high pressure gases, which ideally remain confmed within the

blasthole, the primary radial cracks are enlarged rapidly by the combined effect of tensile

stresses induced by radial compression and pneumatic wedging. As the burden begins to move,

the high compressive stresses within the rock unload generating more tensile stresses which

complete the fragmentation process.

Each of the above stages of the explosion for each blasthole is simulated by the BLASFRAG model

and the total radial fracture from an array of blastholes is modelled geometrically in a plane per ..

pendicular to the holes.

3.2 The Computer Model BLASFRAG

There are three elements which influence a blast result. The explosive, the rock and the blast ge­

ometry. The term "blast geometry" is widely used, to cover the elements that make up a blast, such .

as the type of blasting (e.g tunneling, benching, etc.), the initiation system, and the details of the

hole position and explosive charging. Each of the basic elements can be expanded (Figure 3.1) to

include more features as the science becomes more sophisticated and the need for more accurate

blast result prediction arises.

Chapter 3

Page 21: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

ROCK

* STRENGTH * STRUCTURE

Figure 3. 1 Blast Triangle

Chapter 3

* SHOCK

11

EXPLOSIVE

* GAS PRESSURE

BLAST GEOMETRY

* FREE -FACES * TIMING

Page 22: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

12

A general flowchart of the model is shown in Figure 3.2. The main program TESTBLA is con­

trolled by the MORSTOR program. The MORSTOR program sets up the conditions for the

simulated blasts and contains information pertaining to:

• rock mass properties, including geometrical characteristics of the discontinuities in the rock

mass;

• explosive properties, and

• the blast design.

The main program TESTBLA simulates each explosion by "drawing" the crack pattern (starburst)

from a given charge on a 2D array. All cracks originate at a hole, and propagate in straight lines

radially to the hole or origin. Each charge has its crack pattern drawn in turn, determined by the

firing order. If a particular crack meets a pre-existing crack, the fonner is terminated. However,

based on the experimental results of Shukla and Fourney (1985), the probability of one crack

crossing another was included.

Shukla and Fourney (1985), conducted an experimental investigation to study explosively driven

crack propagation across bonded and debonded interfaces. The data obtained showed the follow­

ing:

• The crack crosses the interface without deceleration if the bond strength is comparable to the

model material, and

• with the aid of stress wave loading and pressurization, cracks which intersect small existing

flaws may arrest briefly, but after a short time interval the loading is 'transferred to the flaws

and their tips initiate.

Chapter 3

Page 23: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

13

MORSTOR (Input File)

TESTBLA (Main Program)

I I ~

CRACKPAT FRAGME (Crack Pattern) (Assessment of Fragmentation)

FRAGDIS (Fragmentation Distribution)

Figure 3. 2 General Flowchart or the BLASFRAG Code

Chapter 3

Page 24: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

14

In the model, an initial 10% probability of crossing was adopted. However, any other value can

be specified in the MORSTOR fue.

The 2D array is initially an empty dimensioned matrix in the computer, and at simulated incre­

ments of time, is filled with the location of blastholes and cracks. When all charges have been

"fIred" the CRACKPA T program may plot a picture of the fmal crack pattern generated.

The blast design parameters necessary for the modelling are illustrated in Figure 3.3.

The assessment of the fragmentation of the blasted rock mass is done by the FRAGME program.

The user chooses points using the keyboard in a designated area of the matrix. Through each point

two lines, one horizontal and one vertical, are drawn to meet the nearest cracks which surround this

point. The size of the fragment is assumed to be the length of the shortest of the two lines.

Finally, a tally of sizes is kept in a file which is then sent to the FRAGDIS program which calcu­

lates fragmentation distribution. This information may be printed or plotted, on request.

3.3 Description of the Algorithms Used in the l\Ilodel

3.3.1 Distribution of Cracks Around the Blasthole

Basically I three zones of varying fracture intensity and deformation can be distinguished around a

contained explosion such as that shown in Figure 3.4; a strong-shock (bydrodynamic) zone; a

transitional, non-linear zone; and, the elastic region (Kutter et al., 1971). The non-linear zone

exhibits predominantly radial fracturing produced by the tangential component (hoop stresses) of

the compression wave and it is this zone which the model simulates.

Chapter 3

Page 25: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

-0-

B = Burden (as the holes are rued) S = Spacing (as the holes are fired) o = Next-row offset ta = Time delay between holes 8 and 9 D = Blasthole diameter

15

ERR..= Normally distributed error in hole position at)= Random angle 0<8.(211

Figure 3.3 Variables Incorporated in BLASFRAG Model

Chapter 3

(i> ..... --5----

o

Page 26: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

16

Figure 3.4 Radial Cracks Produced by a Charge of Detonating PETN in Plexiglass (after Johansson et . aI., 1970)

Chapter 3

Page 27: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

17

In this model (BLASFRAG) Harries' equation (Harries, 1977) was adopted for the description of

the radial crack pattern caused by the strain wave.

That is, the number of cracks, N, at a distance R from a blasthole of radius b, is given by:

K N= T(R/b) [3.1]

where T is the dynamic tensile breaking strain of the rock and, K is the strain at the blasthole wall

and is given by (Harries, 1977),

K = ___ (_I_-_v_)P-.;;e~ __

2(1 - v)p V; + 3(1 - v)YPe [3.2]

where P. is the explosion pressure, }' is the adiabatic exponent of the explosive (the energy released

by the explosion is determined by the explosion pressure and the adiabatic exponent which defmes

the path along which the explosive gases expand), p, y and V, are the density, Poisson's ratio and

longitudinal sound velocity, respectively, of the rock. This equation has been found to give results

which agree well with experimental measurements of the peak amplitude of the strain wave

(Harries, 1973).

If the parameters KIT and borehole radius b are known then equation [3.1] gives the number of

radial cracks at a distance R from the blasthole. The crack lengths are as calculated. but the ori­

entation of the cracks is such that the lengths of the arcs between adjacent cracks follow the log­

normal distribution. Grady (1981) found that the log-normal distribution described well the size

of fragments produced by dynamic loading of one-dimensional rings made from a brittle material.

The crack pattern shown in Figure 3.5, which is a section through the axis of the borehole, has been

drawn using this assumption. Also, the radial crack pattern has been laid down by assuming that

the crack distribution through a section of a cylindrical blasthole perpendicular to the axis, is the

same as a vertical section through the centre of a crater.

Chapter 3

Page 28: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

18

Figure 3.5 Simulated Cracking as in a Vertical Section Through the Charge

Chapter 3

Page 29: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

19

Fonnula [3.1] was adopted assuming that the rock is fractured by tensile stresses during an explo­

sion which is the case of blasting in a rock mass with free faces (Langefors, 1967), and the dynamic

strength of rock in tension is best described by the dynamic tensile breaking strain of the rock. This

strength parameter of the rock is very difficult to be measured so the model has to be calibrated fust

with known fragmentation results in order to fmd the KIT ratio, a method which is explained in a

later section of this research. When the ratio KIT is found then the parameter T can be calculated

because K is already known from equation [3.2].

Harries (1973) has shown that the practica1limit of the strain wave action is the distance to which

seven cracks created by the strain field would be expected to extend. That is, substituting N = 7

to equation [3.1] the extent of the strain induced cracks (RIb) can be found if the ratio KIT is

known. In Figure 3.5 the extent of strain wave induced cracks is represented by the radius of the

greater circle around the blasthole on which the seven cracks terminate.

The outward propagation of the strain wave from the blasthole is not the only mechanism which

extends the radial cracks. A second mechanism which contributes significantly to the extension of

some of the radial cracks is the interaction between the reflected tensile wave at a free face of the

rock and the growing crack system (Figure 3.6).

Field and Ladegaard-Pedersen (1968) investigated using a series of model scale tests in plexiglass,

the interaction between the growing radial crack system and the tensile wave originating at the free

surface as a result of the reflection of the initial shock wave. The tensile wave increases the tensile

stress intensity at the tip of those cracks which are parallel to the curved wave front (Figure 3.6).

Griffith's crack theory as extended by Roberts (1954) shows that the velocity of crack propagation

is 0.38 of the longitudinal sound velocity which is the velocity at which the radial compressive strain

wave and the reflected tensile wave will propagate. Consequently, those cracks facing the free face

and travelling at an angle 300 ± 200 are further extended by the reflected tensile wave. In the model

it is assumed that the reflected tensile wave doubles the length of these cracks.

Chapter 3

Page 30: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

20

FREE SURFACE

" / /"

Figure 3.6 Interaction Between Reflected Tensile Wave and Growing Crack System

Chapter 3

Page 31: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

21

Further extension of the cracks facing the free surface and the onset of large-scale acceleration of

the burden takes place at a later time as a result of high pressure gases streaming into these cracks

at the speed of sound. This process of crack extension due to gas action continues until the gases

can vent directly to the atmosphere through the free face or through the borehole as the stemming

is ejected. The onset of large-scale acceleration of the burden coincides with the arrival at the free

face of the large cracks singled out by the interaction with the returning tensile wave as described

by Field and Ladegaard-Pedersen (1968). The time from the detonation of the explosive until the

cracks reach the free surface (to) is determined by the crack velocity c.

For 900 breakout angle,

where B is the burden.

2B to =-c- [3.3]

The above fonnula was adopted in this model to calculate the time at which the gas pressure action

begins, and with the crack velocity c specified in the MORSTOR fue.

The extension of the cracks due to gas pressure depends on the amount of energy contained in the

expanding gases, the number and lengths of pre-existing cracks, the number of free faces near the

hole, the distance of these surfaces from the blasthole and other factors.

Kutter and Fairhurst (1971), introduced the tenn "equivalent cavity ft which is the size of the hole

which, under the same stress field, produces in the region beyond the radial fractures the same stress

field as the pressurized, radially-fractured borehole. Using this model they studied the effect of the

number of radial cracks and the influence of a free face on the development of gas extension frac-

tures.

They found that a different stress intensity would be expected at the tips of radial cracks with dif­

ferent lengths (smaller cracks will experience smaller stress intensity than longer cracks) and the

Chapter 3

Page 32: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

22

distance of the free surface from the "equivalent cavity" influences the hoop stresses around it.

That is, the closer the free surface to the "equivalent cavity" the higher is the stress intensity that

the radial cracks pointing to the free face will experience.

It seems reasonable that the number of free surfaces close to the "equivalent cavity" will also in­

fluence the stress field around the extending radial cracks due to gas pressure. That is, a crack close

to more than one free surfaces will experience higher stress intensity than another crack with the

same internal pressure and close to one free surface. This will be demonstrated with an example

taken from Linear Elastic Fracture Mechanics.

Let us assume that a center crack in a plate is internally loaded with pressure p. The Stress Intensity

Factor (SIF) lin this case is given by the formula (Kobayashi et aI., 1984):

KI = p;;a F(a/h, h/h) [3.4]

where,

K/ is the SIF in mode I loading (tension),

p is the internal pressure exerted at the walls of the crack,

2h, 2b are the height and the width of the strip, respectively,

2a is the crack length, and

F (a/b,h/b) is the configuration correction factor2

1 SIF defines the magnitude of the crack tip stress field singularity.

2 Configuration correction factor accounts for the effects of boundaries near the tip of the crack.

Chapter 3

Page 33: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

23

The correction factor can be found from the diagram shown in Figure 3.7 which have been derived

by Kobayashi (1964) and Isida (1971). In the case of the crack tip A close to one boundary or

hlb -to 00 and alb ~ 0.5 from the diagram of Figure 3.7,

F(O.S, + (0) ~ 1.19

In the case of the crack tip A close to three free surfaces or hlb ~ 0.5 and alb ~ 0.5 we fmd from

the diagram of Figure 3.7 that,

F(O.S,O.S) ~ 2.0.

That is, the SIF at the crack tip in case of one free face close to the tip of the crack is nearly 600/0

of the SIF when the crack tip is near to three boundaries.

This simple example demonstrates the effect of the number of free surfaces close to the radial cracks

on the resistance of propagating these cracks with gas pressure.

In the model the extension of the cracks due to gas action was taken as a constant for a given

number of free faces near the blasthole and proportional to their original lengths due to strain wave.

Also the effect of reduction of the gas pressure action in extending cracks when adjacent holes ex­

plode simultaneously, was taken into account in the model (due to premature venting through the

face and reduction of gas pressure, thereby reducing the forces propelling the burden forwards).

After a calibration of the model with known fragmentation results from the field and unknown the

amount of gas-extended cracks Table 3.1 was constructed (a process which described in a later

section of this study). Table 3.1 shows the amount of fracturing resulting from the expanding gases

as a function of the number of free faces near the blasthole and whether it explodes simultaneously

with adjacent holes or not.

Chapter 3

Page 34: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

24

2.0 t----t----f-----,---.---f--"f'- -+-1r-----12.0

- '.8 t-----+-----+--./

-.A ~ .s; ,.6 1.6

...

~ 0 ......, LL

t 1.4- I.it

I. 2 t-----~.;.-;.~~'I___:"L_~--t----_+_---__4 ,_ 2

t.oL......~~::r::~L-...l._...L_L-L_-L-_L---1 1.0 0.8 t·O 0.2

Figure 3. 7 Stress Intensity Factors at the Tip of Center Crack Under Pressure p (after Kobayashi, 1964 and Isid&, 1971)

Chapter 3

Page 35: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

25

Table Effect or the Number or Free Faces Near a Blasthole on the Extension or Cracks Due to Gas

3.1 Pressure

# of Faces Mode of Firing Crack Extension

1 delayed 1.7 1 simultaneous 1.5 2 or 3 simultaneous 2.0 2 or 3 delayed 2.5

Chapter 3

Page 36: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

26

F rom this table it can be seen that the extension of the radial cracks close to one free face is nearly

700/0 of the amount of extension when the cracks are close to more than one free faces. That is,

extension suffers a 300/0 reduction which is approximately equal to the amount of reduction found

for the SIF's. Considering the equivalence between the stress intensity factor and the energy release

rate during a given amount of crack extension, the values of crack extensions shown in Table 3.1

are indirectly confinned by the theory.

3.3.2 Interaction Between Adjacent Blastholes

It has been shown that the crack pattern (orientation and lengths of radial cracks, given the KIT

ratio, the number of free faces near the hole and the rock properties) can be readily calculated for

a single isolated charge.

Bench blasting, is obviously not a series of independent craters. The blastholes must interact and

are placed close enough together to create a smooth face between the holes after blasting. This

interaction can also be influenced by the order in which the holes are frred. It has already men­

tioned how the number of free faces near a blasthole can influence the amount of fracturing due to

gas pressure action. It is obvious that the number of free faces near a hole depends on the mode

of initiation of the blastholes.

In order to model this interaction, the crack pattern expected for a single isolated hole has been

placed around each hole and the interaction of the crack pattern is described by the following rules:

• when the holes are ufired" simultaneously the cracks are terminated where they meet;

• when the holes are "fired" sequentially the cracks from the hole being "fIred" are terminated

where they meet pre-existing cracks. However, model-scale experiments of Shukla and

Chapter 3

Page 37: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

27

Fourney (1985), indicated that some probability of one crack crossing the other had to be in·

cluded. A 100/0 probability of crossing between cracks was found to give good agreement be­

tween experimental and calculated from the model results in a variety of rock and blasting

conditions. Lownds (1983), in his simulations found a probability of 30% of crossing of cracks

for bench blasting in Kimberlite.

• When adjacent holes "fire" simultaneously, fractures within ± 20° of the line joining the holes

are extended by 50%.

• When adjacent holes "fire" instantaneously, those fractures travelling away from the free face

at an angle> 20° are truncated at a length equal to the half of the spacing (Lownds, 1983).

This is because backwards growth of cracks ceases soon after the burden has been freed by a

line of cracks joining the holes. Back-cracks of length not more than 1/2 of the spacing have

been observed in model scale blasting (Lownds, 1976).

All the above rules which govern the distribution of radial fractures and the way in which they

interact are based on model-scale experiments conducted by various investigators in the past

(Harries et al., 1977; Lownds et al., 1976).

In modelling multi-hole blasting from an array of blastholes, simulation of the propagation of

cracks over the plane of the blasted area is done incrementally so as to mimic the real time de­

pendence of hole firing and crack growth.

3.3.3 Inaccuracy in Drilling

When a drilling pattern is designed, allowance must be made for the fact that faulty collaring (em),

faulty allignment (em per m) and faults from additional deviations inside the rock will occur

Chapter 3

Page 38: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

28

(Langefors, 1967). This will give a pattern at the bottom of the holes which may differ considerably

from that planned.

Inaccuracy in hole position was modelled by allowing each hole to be placed within a distance ERR

of its correct position. Vector ERR has random angle between 0 and 2 TC and normally distributed

length (Figure 3.3).

3.3.4 Assessment of Fragmentation

The assessment of the fragmentation of the blasted rock mass is done by the FRAGME program.

When all charges have been "fired" the picture of the cracked plane of the rock is kept by

FRAGME program. This picture is magnified and the user chooses points via the keyboard in a

designated area of the matrix. Through each point two lines t one horizontal and one vertical, are

drawn to meet the nearest fractures which are around this point. The size of the fragment is as­

sumed to be the length of the shortest of the two lines (Figure 3.8). This is a reasonable assumption

because long and thin pieces expected to be generated from the radial crack pattern.

The weight of each fragment is calculated by assuming that the maximum thickness of the fragment

is equal to the minimum width of the face of the fragment (Winzer et al., 1983). Also, it is assumed

that all the fragments have equal specific gravity.

Previous investigators (Harries et al., 1977 ; Lownds, 1983) make use of a subroutine which. gen­

erates random points inside the "blasted area" and at each point selected, the size of the biggest

fragment which includes that point is deduced. However, in the case of large fragments in a blasted

area the probability of more than one point to fall inside these fragments is high, which leads to

an appreciable reduction of the repeatibility of the results.

Chapter 3

Page 39: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

y

o

29

x

characteristic dimension = min (Lx,Ly) third dimension of the fragment (thickness)

max Lz = min (Lx,Ly)

Figure 3. 8 Derivation of Fragment Sizes Between Radial Cracks

Chapter 3

Page 40: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

30

An inherent assumption in this model is that each fragment observed in the plane being modelled

occurs with the same frequency in planes lower and higher in the bench.

Finally, a rue of sizes and weights of fragments is fed to the FRAGDIS program which calculates

the fragmentation distribution which can be printed, or plotted, on request. In most of the cases

studied, the Rosin-Rammler curve which is defmed below, gave good agreement with calculated

fragmentation distributions.

The Rosin-Rammler curve is dermed by the following equation:

[3.5]

where P(x) js the proportion of material passing through a screen of size x, x is the screen size, Xc

is the characteristic size, or size of screen from which 63.9 % of the mass is passing, and n is the

index of unifonnity of fragmentation distribution. Index Un" determines the shape of the curve and

commonly varies between 0.8 and 2.4 (Cunningham, 1983). High values indicate uniform sizing,

while low values result in higher proportions of both fmes and oversize.

Chapter 3

Page 41: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Chapter 4

Study of Fragmentation by Blasting Using tIle

BLASFRA G Code

4.1 Comparison With Experimental Data

Wu (1984) has perfonned reduced scale blasts (approximately 1/20 ofnonnal) at a dolomite quarry

with the purpose of investigating the effect of blasting cap scatter on the degree of fragmentation

and ground vibration resulting from a blast designed for simultaneous initiation.

The spacing to burden ratio was 2: 1 with the blasting geometry shown in Figure 4.1.

Chapter 4 31

Page 42: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

L 1 LB PC

L J .-

SECTION A-A BURDEN:

DISTANCE TO CORNER: SPACING:

BOREHOLE DEPTH:

BENCH HEIGHT:

CHARGE LENGTH:

STE MMING:

SUBORILLING:

BOREHOLE DIAMETER: CHARGE DIAMETER:

32

WATER

B = 151N. S.:: 21 IN. (1.48)

S = 30 IN. (28)

LB = 501N.

L :: 45 IN. (38)

PC :: 401N.

T = 10 IN. (2/3 B)

J = SIN. (1/38)

o :: I I/(SIN.

Oe : 1/21N.

Figure 4. 1 Test Layout Design and Borehole Structure in Wu's (1984) Experiments

Chapter 4

Page 43: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

33

Contolled experiments were perfonned to simulate scatter with selected blasthole fuing sequences

simulating alternating initiation, progressive initiation and reverse order initiation (Figure 4.2).

Each blast design used had its own characteristics such as:

• in simultaneous blasting, early fracturing between adjacent holes causes premature release of

the high pressure gases, therefore, reducing the effect of pressure in breaking the burden-rock.

This early cracking is in response to the interaction of stresses between holes when the charges

are fued at exactly the same time.

• In alternating firing of blastholes, the fust hole that fues has a relatively tight condition (one

free face), with the other two holes having 3 and 2 free faces respectively (assuming full crack

development of the crack pattern around the hole which explodes fust).

• Progressive pattern establishes a combination of both the greatest number of free faces at the

time of firing and the best blasthole-to-burden balance of all initiation patterns, assuming that

the delay time is sufficient for full development of the crack pattern around the previous hole.

• Of all the patterns, alternative and reverse order initiation resulted in an unfavorable burden

rock configuration for the final hole to fire, which results in a poor distribution of explosive

energy.

As a result of the different characteristics of each initiation sequence, different fragmentation results

were obtained. These results were most influenced by the number of free faces corresponding to

each hole at the time this hole was exploded. In order to fmd the degree of extension of the radial

cracks due to gas pressure which corresponds to a given number of free surfaces near the blasthole

and to the mode of initiation of this hole, model results compared with Wu's experimental results.

Calibration of the model results with experimental results was done first for the simultaneous case.

Assuming an extension of 1.5 times and 2.0 times of the strain wave induced cracks due to gas

Chapter 4

Page 44: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

34

.. lrM.*4 ----0------0------0

~... II( II( ,., CQ ""'..J we J "~~ "" ~ SIMULTANEOUS INITIATION

(0)

2 2

ALTERNATING INITIATION (b)

2 3

PROGRESSIVE INITIATION (c)

3 2

REVERSE ORDER INITIATION (d)

Figure 4.2 Blast Designs Used in the Reduced Scale Experiments (after Wu, 1984)

Chapter 4

Page 45: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

35

pressure for the holes with one free face and two free faces respectively, ratio K/Twas varied until

agreement was found between the calculated and experimental distribution curves. The comparison

of theoretical and experimental results for a KIT equal to 470 is shown in Figure 4.3.

In the case of alternating fIring sequence the middle hole explodes fust without loss of pressure due

to simultaneous fuing with adjacent holes and with one free face near it. The other two holes ex·

plode with more than one free face in a delayed mode. Values of amounts of fracture extension

due to gas pressure of 1.7 and 2.5 for the holes with one and more than one free faces respectively,

gave good agreement between calculated and experimental results as it is shown in Figure 4.4 (for

the same KIT ratio corresponding to the same specific consumption of explosives).

Mter detennining the extension of the radial cracks due to gas pressure for the cases examined

above and constructing Table 3.1, the model was examined in terms of the progressive initiation

sequence. Figure 4.5 shows the close agreement of simulation and experimental results for the

progressive initiation case with a spacing to burden ratio of 2.0 and the same value of KIT.

The next step was to validate further the model with Ash's (1973) experimental results. Ash (1973)

and Dick (1973) performed a series of blasting experiments at a reduced scale in a dolomite quarry

with the purpose of investigating the effect of discontinuities on rock fragmentation due to blasting.

The spacing to burden ratio was varied from 1: 1, 1.27: 1, 1.5: 1,2: 1, and the blast geometry is shown

in Figure 4.6. For each spacing to burden ratio instantaneous and delay fIring was used. The effect

of discontinuities in the rock mass was also studied by blasting at different sites and in different di·

rections.

The parameter K/Twas varied in order to calibrate the model with the experimental results for si­

multaneous firing and a spacing to burden ratio equal to 2: I. For this case good agreement be ..

tween calculated and experimental results was found for KIT equal to 650. The comparison of

model results and experimental results is shown in Figure 4.7. Using this value for KIT and the

extension of radial cracks as tabulated in Table 3.1 the following cases were examined:

Chapter 4

Page 46: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

1 •

•• .-,...

f •• &. lO-a

J 40"

30-

20-

10 ..

0

0

36

---- EXPERIMENT

------ PREDICTION SPACING I BURDEN

RATIO - 2/1 SIMULTANEOUS FIRING

10 • ".......-(l1li)

J

Figure 4.3 Comparison of Wu's (1984) Experimental Results for Spaeing/Burden Ratio of 2.0 with Calculated Results for Krr Equal to 470

Chapter 4

Page 47: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

37

100

• ----- EXPERIMENT .. PREDICTION

70 SPACING I BURDEN RATIO • 211

f 10 ALTERNATIVE FIRING (5 IllS delay)

• SO

I <10

3D .,. ...

20 ... '"

10

0 0 10 20

........... C-.)

Figure 4.4 Comparison of Wu's (1984) Experimental Results for Spacing/Burden Ratio of 2.0 with Calculated Results for KfT Equal to 470

Chapter 4

Page 48: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Fig\tte 4.5

Chapter 4

f • J

38

I.,---------------------------------------------------~ 10

10

10

40

10

EXPERIMENT PREDICTION

SPACING I BURDEN RATIO • '2/1

PROGRESSIVE FIRING

O~----~----~------~----~----_T----~~----~----~ • 10

Comparison of Wu's (1984) Experimental Results for Spacing/Burden Ratio of 2.0 with Calculated Results for KfT Equal to 470

Page 49: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

39

[:A ----...- -J- ---- -O---f~

SECTION A-A

~ B

PC

B

A

BURDEN: BOREHOLE DEPTH: BENCH HEIGHT: CHARGE LENGTH: STEMMING: SUBDRILLING: HOLE DIAMETER: CHARGE DIAMETER:

B=22 in. LB=30 in. L=30 in. PC=15 in. T=15 in. J=O in. D=7/8 in. De=1/2 in.

PROGRESSIVE INITIATION OF THE HOLES WITH DELAY TIMING=25 ms EXPLOSIVE USED: Ammonia Dynamite

(60 % Strength)

Figure 4.6 Blast Geometry in Ash's (1973) Reduced Scale Experiments

Chapter 4

Page 50: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

f • J

Figure 4.7

Chapter 4

40

t.,---------------------------------------------------~ .. 70

10

10

40

20

10

EXPERIMENT PREDICTION

SPACING I BURDEN • 2/1 SIMULTANEOUS FIRING

0~----~-----r----~----~------~----~----~-----4 • "

Calibration of the BLASFRAG Model with Ash's (1973) Experimental Results

Page 51: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

41

• Simultaneous fIring with spacing to burden ratio equal to 1.5: 1;

• simultaneous fIring with spacing to burden ratio equal to 1.27: 1 ;

• delay fIring with spacing to burden ratio equal to 2: 1, and

• delay fuing with spacing to burden ratio equal to 1.27: 1.

Figure 4.8 a and b shows the close agreement of simulation and experimental results for simul­

taneous firing of holes, and Figure 4.9 a and b shows the close agreement for the case of delay frring

for two spacing to burden ratios.

Further validation of the BLASFRAG code was carried out using Aimone's (1982) fragmentation

data from multiple-row and full-scale blast experiments in shale. Aimone's study measured the

fragmentation resulting from modifications of blast designs in order to optimize particle sizes.

Validation of the model was done by fltSt calibrating simulation and experimental results, that is

fmding the KIT ratio, for the square blast design ANO I SHOT 1 (Figure 4.10) and then examining

the prediction of the model for the SHOT 2 en echelon blast design (Figure 4.11) using the same

K/Tratio.

The above two blast designs were chosen to examine the prediction capabilities of the BLASFRAG

code because an improvement in fragment size distribution was observed by changing the pattern

from square to en echelon pattern.

In order to compare simulation and experimental results for SHOT 1 (square pattern) ratio KIT

was varied until agreement was found between calculated and actual fragmentation distributions.

Figure 4.12 shows the agreement obtained with KIT equal to 550. and Figure 4.13 shows the crack

pattern obtained from the CRACKPA T program.

Chapter 4

Page 52: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

,. 10

10

7'0

J 10

10 • J 40

3IG

20

10

0

(a)

100

10

10

7'0

J 10

10 • J ..

• • 10

0

(b)

0 10

0 so

.42

----~ EXPERIMENT PREDICTION

SPACING I BURDEN = 1.5/1 SIMULTANEOUS FIRI~G

20

......... -C.,.)

• ........... -C->

30

EXPERIHENT PREDICTION

SPACING I BURDEN 1.27/1 SIMULT~~EOUS FIRING

Figure 4.8 Comparison of Ash's (1973) Experimental Results with Simulation Results for Simultaneous Blasting

Chapter 4

Page 53: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

100

10

10

70

f 10

ao lit

J 40

30

20

10

0 0

(a)

100

10

10

70

f 10

10 lit

I 40

30

20

10

• • (b)

43

10

EXPERIMENT PREDICTION

SPACING / BURDEN = 1.27/1 DELAY FIRING

.",.'" _ ... ;.4fti ..,. ... ~ ..... "". .. '" .-"

.",.' .... ,fIIIIIIII'"" ~ .. , .".'

-' ... .0 , ..... ",,' I ' ",,' , , ......... , , ....... ' , ...... , , ....... ....... , , ... , ,

I I EXPERIMENT " 'if' II 'if' PREDICTION I .,

' , -,

'I " SPACING I BURDEN ~ 2/1 'L, -, I DELAY FIRING

l. , 7/

7/'

;'1' , " ~:JJ

10 .. .10

.......... -<eM) 40

Figure 4.9 Comparison of Ash's (1973) Experimental Results with Simulation Results for Delayed Blasting

Chapter 4

Page 54: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Geologic Section and hole loading

qo liN. WflO __ +.L-_

1."'. :;etAl'&

44

JI __

Blast Design

I'our lIcMta - II) Nuln - J Dlla)'1t

~ )( ~Iooltra& 1.1_ 01 d,d.y comlltctor

1n aillhecollch.

}.tS • S'IIJt

ItO ,;Jt. \ Ili'IGIIA nile roRD >---0--0----0--0-----(;- . - - 0----0--

\ 0.16.

SII:rs'IUHK , 0.61 • ~IAU: --o.ltS k& CA::'''T 1'fI11tKH

0.)1) • CDlL-··-·;----'~--...... c---O:&i.:Jw.LL .... , mID IlOl.&

Blast Design CharacteristiC'S Hole Diameter = 17.2 em Number of Holes = 43 (15 in the simulation) Number of Rows = 4 (3 in the simulation) Hole Depth = 8.23 m Burden = 4.57 m Spacing = 4.57 m Powder Factor = 0.31 kg/m3 Explosive Used = Bulk ANFO Number of Free Faces Near Each Hole = 1 Mode of Initiation = Simultaneous for the Holes in the Same Row Amount of Crack Extension Due to Gas Pressure = 1.5

Figure 4 .. 10 Blast Design for Al'JO I SHOT 1 Full-Scale Experiment (Aimone, 1982)

Chapter 4

Page 55: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Geologic Section add hole loading

45

Slast Design Sh: IoN. - 1t 1101 •• - 18 D.l.a,.

z~ o Shoot.lnS U.e of hole 1n .1111eecond. If ... __ _

1000 900 600 ~ JOO €>----o--o- --o---(J

800 700 450 lj()() ~oo 0------0--- --·-0-- ----0- -- -.0 - -~ - -- ... - ... ~ .. - ...-:-,

Hole ~ .. -~.--. J~ ___ ~ 1~ _J !~ --~ .... ~£ ,.!,9 ~8 \k 19 J 100

8.66. ~AL&

o.!jO • COAL

Blast Design Characteristics Burden = 4.57 m Spacing = 5.18 m Hole Depth = 9.45 m Number of Holes = 34 (20 in the simulation) ~umber of Rows = 6 (4 in the simulation)

0---0-- -0-- o----o .. L-o . 1 Ii 2' 4 1 3 12 11 " 1SO ;0 15b tOO ?~ 50 10---9--8-- ---7-- g- ,-.0

175 125 0- ---0--

Number of Free Faces Near Each Hole and Amount of Crack Extension Due to Gas Pressure are shown in Table 4.1

All the other variables remained the same with those of SHOT 1

Figure 4.11 Blast Design for ANO I SHOT 2 Full-Scale Experiment (Aimone, 1982)

Chapter 4

Page 56: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Chapter 4

46

Table 4.1 Extension o( Cracks Due to Gas Pressure Depending on the Number of Faces Near a Hole for ANO I SHOT 2

Hole # # of Faces Crack Extension

1 1 1.7 2 2 2.5 3 2 2.5 4 2 2.5 5 2 2.5 6 1 1.7 7 2 2.5 8 2 2.5 9 2 2.5 10 1 1.7 11 1 1.7 12 2 2.S 13 3 2.5 14 3 2.5 15 1 2.5 16 1 1.7 17 1 1.7 18 1 1.7 19 2 2.5 20 1 1.7

Page 57: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

CUMllI ati ve Fl'equency (x)

47

COMPuted and Actual Fl'agMentation Distl'ihutions

199

9.9

/~ ..... ~

~" ,,'

"

...••. EXPERIMENT PREDICTION (CALIBRATED)

SPACING/BURDEN RATIO - 1/1 DELAY FIRING

DELAY BETWEEN ROWS - 9ms

Fl'agMent size (CM)

299

Figure 4.12 Calibration of the Crack AnaJysis Model with Fragmentation Distribution Resulted from Al'lO I SHOT 1 Experiment

Chapter 4

Page 58: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

48

MULTI-HOLE BLAST PATTERN (SQUARE) DELAY BETWEEN ROWS = 9 ms KIT RATIO EQUAL TO 550

Figure 4.13 Crack Pattern Obtained From the Explosion Simulation or SHOT I ANO I Experiment

Chapter 4

Page 59: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

49

Using the value for KIT found from the calibration and the variables corresponding to the "en

echelon" blast pattern (Figure 4.11 and Table 4.1) a comparison was made between the model

prediction and actual fragmentation distribution. Figure 4.15 shows the crack pattern obtained

from the simulated blast, and Figure 4.14 shows the close matching of actual and simulation frag­

mentation distributions.

4.1.1 Conclusions

The analysis which have been made so far leads to the following conclusions:

1. Fragmentation results obtained from the model depend on the ftring sequence ~f the holes.

This is because timing sequence determines the number of free faces near each hole and

whether this hole explodes simultaneously with adjacent holes or not. Therefore, timing se­

quence determines the extension the radial cracks will experience during the gas pressure

action. Thus, mode of initiation of a given blast pattern controls the degree of fracturing of

the blasted rock mass and hence the degree of fragmentation.

2. Calibration of the model is generally easy using as variables the KIT ratio and the probability

of crossings between radial cracks. Fragmentation results are also sensible to the value of the

third dimension of the fragments which is site specific as it is determined by the structure of

the rock (distribution of micro and macro-cracks inside the rock mass). It was felt that this

variable should be at the disposal of the modeller. It can be determined from inspection of

fragments in a muckpile after a blasting operation at a given site.

3. For proper blast designs cracks should overlap from hole to hole. Crack patterns obtained

from the simulations indicate:

Chapter 4

Page 60: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

CUMulative Fl'equency (/.~

50

COMPltted and Actual Fl'agMentation Distl'ihutions

lQQ • .t...----illl* .... I '''f

, .. 111 "7or-T

/ I

i~ ••••••• EXPERIMENT PREDICTION --

SPACING I BURDEN RATto - 1. ll/1 Elf EOiELON PATTERN DE1..A Y 8ETVEEN HOLES • 25 ms

9.9 299.9

FragMent size (eM)

Figure 4.14 Actual and Predicted Fragmentation Distributions for the ANO I SHOT 2 Full-Scale Blast

Chapter 4

Page 61: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

51

MULTI-HOLE BLAST PATTERN (EN ECHELON) DELAY BETWEEN BLASTHOLES = 25 rns

KIT RATIO EQUAL TO 550

Figure 4. 15 Crack Pattern Obtained From the Explosion Simulation of ANO I SHOT 2 Experiment

Chapter. 4

Page 62: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

52

• Areas of intense fracturing of the rock and areas where large fragments, isolated between radial

cracks, are expected to be found.

• The extent and intensity of cracking induced in the rock behind the blast, and can thus be a

valuable tool for assessing the effects of various blasting designs not only on fragmentation but

on slope stability, too.

4.2 Study of the Effect of Controllable Blast Parameters on Fragmentation

Using the BLASFRAG Model

The following analysis studies the effect of interaction between several blast design variables on

fragmentation results. These variables are:

• powder factor;

• drilling pattern;

• borehole diameter, and

• drilling inaccuracy.

Fragmentation results described by the mean fragment size alone are inadequate and a full de­

scription of the whole size range is needed. It was realized that the Rosin-Rammler curve (equation

[3.5]) had been generally recognized as giving a reasonable description of fragmentation in blasted

rock (Faddeenkov, 1975; Cunningham, 1983; Hames and Hengst, 1977, and others). To defme

the Rosin-Rammler curve two paramaters are needed, namely, the characteristic fragment size, Xc

and the exponent n which characterizes the root-mean-square deviation from the mean or in other

Chapter 4

Page 63: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

53

words the unifonnity of crushing. If n > 1 then the characteristic fragment size, Xc, is approximately

equal to the mean fragment size ( 50 % passing).

First, with the borehole diameter equal to 50 mm, the effect of hole pattern and powder factor on

fragmentation variables Xc and n was studied. The two patterns examined were the square and

staggered pattern with a spacing to burden ratio equal to 1: 1, and row-by-row ruing sequence of

blastholes with delay time between rows equal to 5 ms per meter of burden. In most of the cases

described below, twenty holes were used in the simulation and the fragment size distribution as­

sembled from 300 fragments and fitted to Rosin-Rammler curve.

Keeeping the amount of explosive per borehole the same in each simulated blast, powder factor

varied by changing the volume of rock broken per hole. This was done by using a variable called

Reduced Burden and which was introduced by Lownds (1983).

Reduced Burden, B', is deflIled as:

B' = (B x S)0,s/D [4.1]

where B, S, and D are the bUrden, spacing and borehole diameter respectively.

Reduced Burden in the simulations was varied from 20 (high usage of explosives) to 80 borehole

diameters (low usage of explosives).

For the two blasting patterns studied, calculated characteristic fragment size, Xc, and index of uni­

fonnity n at various reduced burdens, obtained from the simulations, are shown in Figures 4.16 and

4.17.

In the case of characteristic fragment size versus Reduced Burden shown in Figure 4.16 predictions

from semi-empirical Kuznetsov's equation (Kuznetsov, 1973) were superimposed for the two

drilling patterns.

Chapter 4

Page 64: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

54

200~ ________________________________ ~~ ________ ~

110

E II

u .~ 40 1: • ~ II o '" o &. U

15

8

10

C Square Pattern + 1:1 ,Staggered Pattern

.Ll, 12 Kuznetsov's Lines with A=12.5 and 9.9

20 25 30 40 50 60 Reduced Buraen. in borehole diameters

70

Figure 4.16 Dependence of Characteristic Fragment Size on Reduced Burden and Hole Pattern for SO mm holes

Chapter 4

100

Page 65: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

55

+

+

1.8 -1 :c

C 1.7 ....; +

Q C 0 1.6 --a. x Q;I

X 1.5 -1 r

1:: j

1.4 ..., 0 Square Pattern

I r

+ Staggered Pattern +

1..3 .J

! Regression Lines , ---

1.2 ....,

1.1

10 15 20 25 .30 .35 40 45 50 55 60 65 7~ 75 80 85 9:)

Recuced Buraen, in borehole aigmetc""

Figure 4. 17 Dependence or R-R Exponent n on Reduced Burden and Hole Pattern for SO mm holes

Chapter 4

Page 66: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

56

Kuznetsov (1973) used the following semi-empirical equation to predict the mean fragment size t

[4.2]

where x is the mean fragment size (50 % passing) in centimeters,

A is the rock factor,

A = 7 for medium hard rocks

A = 10 for hard but highly fissured rocks

A = 13 for very hard, weakly fissured rocks

Vo is the volume of rock broken per hole (cubic meters), taken as Burden x Spacing x Bench Height,

and

Q is the weight of TNT in kilograms equivalent in energy to the explosive charge in one borehole

= 0.87 kg per kg of ANFO.

The following form of the above equation was used by Lownds (1983):

[4.3]

where p is the density of the explosive, A is the relative loading density of the explosive in the

borehole ( if A = 1.0 then the explosive occupies the whole volume of the borehole ), and

2 Q = O.87nD Lp~

4 [4.4]

where L is the shothole length (in meters).

When typical numbers are inserted into equation [4.3] for example,

Chapter 4

Page 67: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

57

p = 800kglmJ

L1 = 0.40

L=4.5m

while A = 12.5 for the square pattern case and A = 9.9 for the staggered pattern case, it is shown

in Figure 4.16 that the predicted behavior of characteristic fragment size with reduced burden using

the BLASFRAG code agrees very well with Kuznetsov's equation.

Also from Figure 4.16 it can be seen that the staggered pattern gives lower characteristic fragment

size compared to the square pattern because of the better distribution of explosives in the rock mass

for the fonner case (Lownds, 1976).

The dependence of R -R exponent " n If, which expresses the degree of unifonnity of the fragmented

material, on the reduced burden is shown in Figure 4.17. From this figure, the decrease of un"

with increasing reduced burden can be seen. That is to say, fragmentation becomes less unifonn

at low usage of explosives. In addition, the more unifonn distribution of holes in the 1: 1 staggered

pattern (Lownds, 1976) gave more unifonn fragmentation (higher value of n) than the 1: 1 square

pattern. Another interesting observation that comes from Figure 4.17 is that the two regression

lines for the staggered and square pattern meet at approximately the same point (n = 2.3) on the

vertical axis for zero reduced burden. This was expected since for very high powder factors the

unifonnity of the blasted material must be the same for the two patterns.

The next step was to study the effect of borehole diameter and drilling inaccuracy on the parameters

of the Rosin-Rammler distribution. The following blast designs were examined:

• staggered pattern with spacing/burden ratio equal to 1.5: 1, and with 50 nun holes;

• staggered pattern with spacing,lburden ratio equal to 1.5: 1, and with 80 nun holes;

Chapter 4

Page 68: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

58

• square pattern with spacing/burden ratio equal to I: If and with 50 mm holes; and,

• square pattern with spacing/burden ratio equal to 1: 1, and with 80 mm holes.

For all the patterns row-by-row fIring was simulated with 5 ms per meter of burden delay. For the

square pattern with 80 nun holes the gradual change in the crack pattern symmetry as the inaccu­

racy in drilling increases can be seen in Figures 4.18, 4.19 and 4.20. As a result of this asymmetry

a decrease of the R-R exponent U n U was expected. In Figure 4.21 the trend of" n n to decrease

as the standard deviation in drilling increases can be seen. The behavior of Un " with inaccuracy

in drilling was the same as found by Lownds in his simulations (Lownds, 1983), namely, increasing

inaccuracy in hole position results in a significant decrease of degree of unifonnity of the blasted

material. From Figures 4.21 and 4.22 it can be seen that greater borehole diameters of blastholes

or in other words higher specific consumption of explosives gives better and more uniform frag­

mentation (lower Xc and higher n).

On the other hand, as can be seen from Figure 4.22, increasing inaccuracy in hole position had little

effect on the characteristic fragment size, except for the case of square pattern with SO mm holes.

It seems that when the amount of explosive per hole is such that the radius of affected rock mass

from the explosion is small, drilling misallignment not only gives non-uniform fragments but also

bad fragmentation (lower characteristic size). This observation will be demonstrated by the fol­

lowing simple example.

When holes are fired independently, there will effectivelly be a cylinder of broken rock mass around

each hole after ruing (Lownds, 1976). In a horizontal section through the bench, each cylinder can

be represented as a circle. For fracture of the whole rock mass during blasting every point in the

section must be within at least one of these circles.

For example, in Figure 4.23a, a square drilling pattern with effective ciicles around the holes is

shown. A 30 % of the burden deviation in drilling resulted in the pattern shown in Figure 4.23b.

Chapter 4

Page 69: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Figure 4.18

Chapter 4

59

Crack System for the Square Pattern with 80 mm holes and 0 mm Standard Deviation in Drilling

Page 70: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Figure 4.19

Chapter 4

60

Crack System for the Square Pattern with 80 mm holes and 200 mm Standard Deviation in Drilling

Page 71: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

61

Figure 4. 20 Crack System ror the Square Pattern with 80 mm holes and 300 mm Standard Deviation in Drilling

Chapter 4

Page 72: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

62

2 • .5

2.4

2.J

2.2

2.1

2

:e: 1.9 : .. 1.8 c • 1.7 c: 0 a. 1.6 .. •

a:: 1.5 I

a:: 1.4

1..3

1.2

1.1

0.9

0.8

0 50 100 150 200 250 JOO

StandQrd O.vioUon in Drilling. mm

+ 1.5: 1 Staggered Pattern with 50 mm holes, BxS = 3.375 m2 A 1.5:1 Staggered Pattern with 80 mm holes, BxS = 3.375 m2 a 1: I Square Pattern with 50 m.m holes, BxS = 2.25 m2 o 1:1 Square Pattern with 80 m.m holes, Bxs = 2.25 m2

Figure 4.21 Effect of Error in Drilling on the Uniformity of Fragmentation

Chapter 4

0350 400 450 500

Page 73: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

63

60

55

E 50 u .... C N

Vi ., 45 c • E CP 0 40 <> \.

I&-

~ • 1: .35 • .. "" u 0 + \. 0

JO .r:. -+-0 A

25

20

0 50 100 150 200 250 0300

Stondord Deviotion in OrfUing. mm

+ 1.5:1 Staggered Pattern with 50 nun holes. BxS = 3.375 m2 A 1.5:1 Staggered Pattern with 80 nun holes, BxS = 3.375 m2 " 1:1 Square Pattern with 50 nun holes, BxS = 2.25 m2 • 1: 1 Square Pattern with 80 mm holes. BxS = 2.25 m2

J50

Figure 4.22 Effect of Error in Drilling on the Characteristic Size of Fragmentation

Chapter 4

<>

-+-

400 450 500

Page 74: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

64

a)

b)

~ Rock mass unaffected from blasting

Figure 4.23 Effective Circles Around Holes for a Square Pattern a) No Deviation in Drilling, and b) 30". of Burden Deviation in Drilling

Chapter 4

Page 75: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

65

a)

b)

~ Rock mass unaffected from blasting

Figure 4.24 Increased Radius of Effective Circles a) No Deviation in Drilling, and b) 300/. of Burden Deviation in Drilling

Chapter 4

Page 76: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

66

It can be seen from this figure that a large proportion of the area intended to be fractured remained

unaffected from radial cracks emanating from the holes. lIDs resulted in a larger characteristic

fragment size compared to the case with no drilling inaccuracy, and also in a non-uniform frag­

mentation because of the obvious asymetry of the crack system (non-uniform distribution of holes).

A 33 % increase in the radius of the effective circles around the blastholes (by increasing the amount

of explosives per hole) and with no faulty drilling is shown in Figure 4.24a, while a 30% of the

burden deviation in drilling is shown in Figure 4.24b.

From Figure 4.24b it can be observed that with this radius of effective circles there is no area un­

affected by the explosives action (every point in the section falls within at least one of the circles).

That is, the mean fragment is expected to remain the same, but the uniformity of fragmentation

will decrease because of the non-uniform distribution of holes on that section.

The above simple example demonstrates qualitatively what was found quantitavely from the crack

analysis model.

Chapter 4

Page 77: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

67

4.2.1 Conclusions

The analysis of the effect of controllable blast parameters on fragmentation using the BLASFRAG

model lead to the following conclusions:

1. For the effect of powder factor on fragmentation it was found:

• the predicted behavior of characteristic fragment size (63.9 % passing) with powder factor

match well with that predicted by Kuznetsov's equation;

• a decrease of the uniformity of fragmentation was found with decreasing powder factor.

The same dependence was also found by Lownds (1983).

2. The drilling pattern had the following effects on fragmentation:

• staggered pattern gave lower characteristic fragment size compared to the square pattern

for the same powder factor, because of the better distribution of explosives in the rock

mass in the former case.

• In addition, $.ggered pattern gave more uniform distribution (higher value of the R -R

exponent "n" ).

• The same trends of the two patterns, as far as. the characteristic fragment size and R -R

exponent "n" are concerned, were found also in the case of faulty drilling of the blastholes.

3. From the simulations it was found that greater borehole diameters gave better and more uni­

form fragmentation for a given blast pattern.

Chapter 4

Page 78: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

68

4. Inaccuracy in drilling had a negative effect on uniformity of fragmentation. However, no effect

on the characteristic fragment size was observed, except in the case of low usage of explosives

where the characteristic fragment size was found to increase as the deviation in drilling was

increasing.

Chapter 4

Page 79: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Chapter 5

Effect of Discontinllities on Rock Fragmentation by

Blasting

5.1 Introduction

Among the geological discontinuities, joints are the most common in many rock types. These.are

defined as planes of weakness within a rock mass along which there has been no visible movement.

There will be a difference in transmission of the stress waves through the joints depending on

whether the joint is tight, open or filled (Obert and Duvall, 1950; Kolsky, 1953 and Goldsmith,

Chapter S 69

Page 80: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

70

1967). Tight joints do not affect the transmission of stress waves whereas the open and filled joints

introduce an acoustic impendance mismatch and reflect the stress waves. If the reflected wave is

sufficiently strong, internal spalling takes place. The radial cracks which the strain wave would have

fOlllled in a continuous rock are prematurely intelTUpted by the joint.

Various investigators have studied the effect of discontinuities on rock breakage by explosives. A

brief review of their results is presented below:

• Hagan (1983), in full-scale bench blasts found that any increase in the mean spacing between

joints and/or bedding plane partings demands that a greater degree of new breakage is created

in the blast. An increase in the degree of fissuring usually encourage the use of greater burdens,

blasthole spacings and collar (or stemming) lengths and correspondingly lower energy factors.

• Fourney (1983) in his model scale experiments has found a joint initiated fragmentation

mechanism (Figures 5.1 and 5.2). Thus ,for a layered medium this mechanism of joint initiated

cracking yields a much smaller average fragment size that would be obtained in a homogeneous

media. This reduction in fragment size is at least 1.5 times.

• Grady and Kipp (1985) observed, during dynamic loading of rock specimens, fractures to ac­

tivate from the surfaces and edges of previous cracks.

• DaGama (1983) has found in full-scale bench blasts, that less energy is required to fragment a

discontinuous rock than a homogeneous rock and used Bond's third law of comminution to

estimate this energy reduction.

• Shukla and Fourney (1985) conducted an experimental investigation to study explosively

driven crack propagation across bonded and debonded interfaces. Dynamic photoelasticity

was employed to provide whole field data during the dynamic event. The data obtained

showed that:

Chapter 5

Page 81: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Figure 5.1

Chapter 5

71

Examples or Joint Initiated Fractures in Marlstone (after Fourney et. aI., 1983)

Page 82: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Figure 5.2

Chapter 5

, ,-JOINT , , ,

72

, , ,

Close-up Joint Initiated Crack in Limestone Quarry Bench Face (after Fourney et .. aJ., 1983)

Page 83: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

73

1. The crack crosses the inteIface (discontinuity) without deceleration if the bond strength

is comparable to the model material;

2. with the aid of stress wave loading and pressurization cracks which intersect small existing

flaws may arrest briefly, but after a short time interval the loading is transfelTed to the

flaws and their tips initiate;

3. the crack will not cross an interface if the bond strength is weak because most of the en­

ergy is utilized in debonding rather than propagating a crack, unless a frictional mechanism

exists to aid the transfer of forces across the interface;

4. initial compression normal to the inteIface can help crack propagation across a completely

debonded interface.

There are many other studies in this area and the main conclusion to be drawn from these studies

is that the effect of discontinuities on blast results is dictated mainly by the bond strength and the

characteristics of the filling material of the discontinuities. That is, open discontinuities filled with

air or soil-like material or joints with low bond strength, stop prematurely the radial cracks gener­

ated by the explosion, and tend to isolate large blocks of rock in the burden (Figure 5.3 (a) and (b».

The larger the blast pattern, the more likely these blocks are to be thrown unbroken into the

muckpile (Figure 5.3 a), reducing the degree of uniformity and increasing the mean fragment size

of the blasted material.

On the other hand, tight joints without filling material or with filling material but with a high bond

strength and acoustic impedance comparable to the strength of the rock mass, they do not affect

in a negative way the transmission of shock waves and may serve as initiation sites for new fractures

(Fourney, 1983).

Chapter S

Page 84: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

74

o

Figu):e 5. 3 Eft'eel of Size of "ole pattern 011 Oversi..., produced After Blasting in DiscontinUOUS Rocks Chapter 5

Page 85: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

7S

The effect of discontinuities on the fragmentation distribution is incorporated in the .model in the

following way:

1. Pronounced discontinuities in the rock mass which are open and filled with air or other soil­

like material and with low bond strength can be incorporated into the simulation by inserting

cracks to represent them. The cracks representing these discontinuities will then terminate the

cracks produced by blasting where they intersect. These cracks are inserted into the

MORSTOR program.

2. These discontinuities which are closed and tight or filled with material with an acoustic

impedance close to that of the surrounding medium, are treated using an Energy Balance ap­

proach and Linear Elastic Fracture Mechanics principles.

Chapter S

Page 86: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

76

5.2 Study of the Effect of Discontinuities on Rock Fragmentation by Blasting

Using the BLASFRAG Code

Using high speed photography observations (Winzer et al., 1979) it was determined that structure

is normally the most critical factor defming the initial fragment size distribution resulting from a

blasting operation of specified spacing and burden. The orientation, spacing and physical charac­

teristics (aperture, weathering, recementing, etc.) of joints and bedding planes control the atten­

uation of stress waves, provide sites for initiation of new cracks, and provide failure surfaces

themselves. The location of boreholes does exert considerable influence over the ultimate frag­

mentation because of the influence of joints and bedding planes.

In general, the fewer open joints between the free face and the boreholes, the lower the probability

of producing oversize fragments from this region. In quarries where the dominant joint set runs

parallel to the face, burdens need to be reduced, but spacings can be increased with overall im­

provement in fragmentation.

The larger the blast pattern. the higher the probability that blocks of intact material isolated by

pre-existing discontinuities, will be thrown unbroken on the muckpile. The BLASFRAG code can

be effectivelly used for studying the effects of these discontinuities on the resulting fragmentation

distribution for a given blast design.

In the BLASFRAG model discontinuities can be described as existing cracks. These discontinuities

which are found and mapped at a bench which is going to be blasted can be inserted in the

MORSTOR program. The cracks representing the discontinuities will then terminate the cracks

produced by blasting where they intersect. Figure 5.4 represents' a situation, simulated by the

BLASFRAG model, which can be encountered in a typical bench blast operation.

Chapter 5

Page 87: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

77

------ ... -------_! " ~__. --.. Ill - ',' ,... --- ,:

-,+" ---' ---- j

: ---.. --... -.... ,,- ----, :' ; --- ----- / ,/ ----.;.'- . ---' ----.1.-.. i :' ,-) ; ---- - ---'-...'':'' '- ---!...'-,. ---- .....

.' --.- ---------.--..... -~T-------L- --

.. --'_... I ' -

__.r: --!r' ____ -)-./.i 7~l---1---~:_ (,I - / ---~_ -~

./ --___ . 4 m,/ I ---__ i .. t- , I -- f _ ! I --~-_:' / ---J...---.j. { t--_ I ) --

! ---~--- I I / j---- J .;.~_ c -/7"------.i:~ / --) i __ I -__ I -,I.. ,

: - ..... - ... ,-- { .I ---.i.. I --__. l

- 4m

Figure 5.4 Blast Pattern with Large Spacing Between Holes in Discontinuous Rock

ChapterS

Page 88: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

78

Two sets of discontinuities cross the rock mass which is to be blasted. A 4m x 4m square pattern

with 200 mm diameter of blastholes was simulated in this case. It can be noted from Figure 5.4 that

some of the blocks are not penetrated by a blasthole giving a very bad distribution of explosives in

the rock mass.

In order to compare the fragmentation results from this hole pattern with another with more closely

placed blastholes and of the same Reduced Burden (or powder factor), a 2m x 2m square pattern

having holes with diameter equal to 100 mm was simulated (Figure 5.5).

From Figure 5.S the better distribution of the blastholes in the discontinuous rock mass for the

smaller pattern can be seen. That is, in this case fewer blocks are not penetrated by blastholes than

in the case of the large blasthole pattern. It is obvious that another blasthole pattern can be used

in such a way that every block of rock isolated by discontinuities is penetrated by a blasthole.

Simulation of blasting by the BLASFRAG code was done for these two cases assuming a hole­

by-hole firing with 30 ms delay between holes.

Plots of the cumulative weight % passing vs. size obtained from the simulated blasts are presented

in Figure 5.6. The size of 63.9 % passing and Rosin-Rammler exponent "n" after fitting the two

distributions to the Rosin-Rammler curve are included in this diagram.

The shift of the fragmentation distribution toward greater sizes for the 4m x 4m blast pattern was

caused by the bad distribution of explosives in the rock mass. Large fragments isolated by pre­

existing discontinuities remained unaffected from the explosive action in this case, resulting in a

significant shift in the position of the fragmentation curve. The maximum fragment size obtained

from the large pattern was about 300 mm and approximately equal to the size of the largest block

which was not penetrated by a blasthole.

The 2m x 2m pattern with 100 mm diameter of blastholes gave a better and more unifonn distrib­

ution with exactly the same powder factor or input energy of explosives. That is, the unifonn dis-

Chapter 5

Page 89: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

79

I -------t-- / ,i /------r----r I ---

- i 6 ll!2,m ~/ /0 I 0

/ f--_ L' I

/ (-----. . -- / -~_ / ~ / ~ ! 0--.1.._9 ---I--.. ~ 2 • ~;' I -------

{-. j I t / ---------L I I

~ / 0 !""----c) I r / --L ! -------I-.. / -----------L i-I / I --_ ./ 2 m -----+_..

0:' 0 / -O----t-- 4, / ----0

c)

Figure 5.5 Blast Pattern with SmaJl Spacing Between Holes in Discontinuous Rock

Chapter 5

Page 90: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

199

Mass J. Passi ng

80

Xc • 90.44 em n .. 1.71

9 309

Figure 5.6 Cumulative Fragment Size Distributions for the two Simulated Blasts

Chapter 5

Page 91: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

8.1

tribution of the charges throughout the rock is one condition for intensification of fragmentation

of large·block rock masses. As was shown from the simulations, this problem can be solved by

means of small-diameter boreholes and reducing the size of the borehole network.

The example presented above demonstrates the way the BLASFRAG code can be used for de­

signing the optimum blast pattern for rock masses with open joints filled with air or soil-like ma­

terial.

However, in many cases the effect of discontinuities on fragmentation cannot be studied using this

model. This is because, in many cases encountered in bench blasting operations, discontinuities

interact with the stress waves produced by blasting, to modify the nature of the pulses transmitted

through the rock, and provide sites for initiation of new cracks. As a result of these complicated

phenomena of interaction of stress waves with pre-existing cracks inside the rock, a much different

picture of the effect of discontinuities on rock fragmentation by blasting than studied with the crack

analysis model, is expected.

A model which is based on energy and fracture mechanics concepts is developed in the next section

to study in a simple but effective way these phenomena and give predictions of the whole frag­

mentation distribution resulting from blasting in discontinuous rocks.

Chapter 5

Page 92: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

82

5.3 Fracture lVlechanics Analysis of the Effect of Cracks on Rock

Fragmentation by Blasting

The fragmentation process of flawed and jointed materials due to explosive detonations is very

complex and makes a rigorous computational treatment difficult. However, useful simplifications

can often be made without compromising important physical processes. A model which is based

on principles from Linear Elastic Fracture Mechanics (LEFM) theory and data from bench blasting

processes was developed, to describe dynamic fracturing of discontinuous rock masses. The model

provides predictions for the whole fragmentation distribution provided the correct values for the

parameters which describe the discontinuous rock mass are used and the fragmentation follows the

Rosin-Rammler curve. The reason for employing the Rosin-Rammler curve in the model IS be­

cause this curve gives a reasonable description of fragmentation of blasted rock (Fadeenkov, 1975;

Cunningham, 1983; Harries and Hengst, 1977, and others).

For the prediction of the fragmentation curve in a blasting operation the two parameters of the

Rosin-Rammler curve have to be found, namely the characteristic fragment size (63.90/0 passing)

and the exponent "nu in equation [3.5].

Wbile Kuznetsov's equation can be effectivey used for the prediction of the mean fragment size

(500/0 passing) or the characteristic fragment size, there is no equation which predicts the exponent

n, except Cunningham's empirical equation (Cunningham, 1983). However, Cunningham's

equation has serious restrictions in its application and does not take into account the effect of dis­

continuities on fragmentation. Therefore, an equation is needed which predicts the exponent "n"

and takes into account the structure of the rock mass.

Kuznetsov (1973) gave another interpretation of the meaning of parameter "n" in the following

way:

Chapter S

Page 93: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

83

Assuming that all fragments fonned by the blast are geometrically similar, then a fragment with

characteristic dimension XI has a surface area S and a volume V, given respectively by

where K, and K, are constant coefficients.

Then, the total surface area of all the fragments is

Joo Ks Joo dp Vo Ks 1

S= Sdm= Vo- -=--r(l--) o Kv 0 x Xc Kv n

where dm is the number of fragments with sizes between X and x + dx t

dV dp= Vo •

[5.1]

Vo is the rock volume (cubic meters) broken per blasthole, taken as Burden X Spacing x Bench

Height,

x, is the characteristic fragment size (63.90/0 passing) with x, ~ x when n> 1 (x = mean fragment

size or 500/0 passing), and

r(l _1.) = looe-til/ltdt is the Gamma function. n 0

This equation can be rewritten in the following way:

1 Kv S r(l--)=--x n Ks Vo

[5.2]

Chapter S

Page 94: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

84

Therefore, knowing the mean fragment size, the shape of the fragments and the specific surface area

(per unit volume) produced during blasting, the exponent n can be estimated using equation

[5.2].

In the past many equations have been proposed for the prediction of the mean fragment size, x, in

a given blasting operation. However, in the model developed here, Kuznetsov's equation (equation

[4.3] ) is proposed for the prediction of the mean fragment size, since this equation includes the

rock strength parameter, A, which can be related with the density of pre-existing discontinuities in

the rock mass.

Since the tenn i. in equation [5.2] is related with the shape of the fragments, it can easily be found , from inspection of the muckpile after blasting. The remaining factor, ~ , expressing the new sur­

o

face area of cracks per unit volume of rock created during the blasting, can be found using principles

from Linear Elastic Fracture Mechanics theory.

During a breakage process, energy is consumed to create new surfaces of cracks inside the rock mass

and this energy is proportional to the new surface area generated. 1bis energy which is also called

surface energy can be found from the following expression:

[5.3]

where E, is the surface energy (Joules),

R is the specific fracture surface energy or specific work per unit area swept by the crack tip (Joulesj

nzl). R is a measure of crack growth resistance and is characteristic of the material (Ouchterlony,

1980), and

S is the new surface area of cracks generated during fracture (in nzl).

Chapter S

Page 95: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

85

To originate fracture in the material, energy will have to be expended in creating stress in tension

or compression within the rock volume. This energy is proportional to the volume of the material

and is called rock volume stress energy.

Assuming that the material behaves linearly elastically during loading, the volume energy can be

found from the following equation:

1 2 Ev=-.!L Vo 2 E

where E, is the volUme stress energy (Joules),

[5.4]

(1 is the threshold stress for activation and growth of cracks for a given mode of loading (Newton/

ml), and

Va is the volume of the stressed material (ml).

The ratio of surface to volume energy was found to be inversely proportional to the specimen size

and greatly dependent on the mode of loading (Persson, 1983). Furthermore, this ratio was found

to be related with the density of pre-existing cracks inside the material in the form of an exponential

law (Exadaktylos, 1987).

The size, mode o~ loading and density of cracks dependence of this ratio, can be expressed by the

following equation:

[5.5]

where c is a constant depending on the mode of loading, increasing as the compressive nature of

loading increases (Persson, 1983),

r",c is the size of the microcracking zone ahead of the crack tip (in meters). The size of this zone,

Chapter 5

Page 96: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

86

and the degree and nature of material defonnation in it is material dependent (Ouchterlony, 1980),

L is the characteristic size (in meters) of the material under loading. In the case of blasting this

characteristic dimension can be taken equal to the burden, B.

f is the specific surface area of discontinuities per unit volume in the material (ml/m3), and

IX is a positive proportionality constant expressing the intensity of the effect of pre-existing cracks

on the fracture of the material.

It can be seen from equation [5.5] that as the density of discontinuities increases, the ratio of surface

to volume energy increases exponentialy with a rate, IX, depending on the mode of application of

load and the mechanical properties of the material.

For rock fragmentation by blasting, a value of the constant c equal to 50 gives good agreement

between the predicted from equation [5.5] and measured in the field ratio of surface to volume

energy (Persson, 1983).

Therefore, for rock breaking by explosives, the ratio of surface to volume energy is given by the

following expression:

where B is the burden (in meters).

'me -I' Ell: -SO-e":l r.wy- 0 [5.6]

The ratio of new surface area generated during blasting, S, to the volume of the rock mass, Vo, can

be found from equations [5.3], [5.4] , and [5.6] as follows:

S 5 'me a.f. I a2

-= O-e (--) Vo DR 2 E

[5.7]

Chapter S

Page 97: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

87

Quantity R, entering in equation [5.7], can be expressed by the following equation:

2 R=bu /2£ [5.8]

where coefficient b, with a linear dimension, takes into account the intensity and rate of loading (or

strain rate), the structure of the rock, and the nature of brittle or elastoplastic breaking of the rock

mass.

Equation [5.8] describes the energy criterion for fracture, according to Griffiths theory, with b being

the minimum length of pre-existing cracks inside the material which will activated and grow by the

application of a given load u.

It is clear that as the intensity of the load increases the minimum length of cracks which will activate

and grow decreases, to keep the specific work of fracture, R, constant I.

Substituting the quantity R as it given by equation [5.8] into [5.7] we get:

SIVo = 50 "me erJ./ bB

[5.9]

Substituting, the expression for the ratio of new surface area to the volume of the rock, as it given

by equation [5.9] , and Kuznetsov's equation as it given by equation [4.3], into equation [5.2] ,

we finally get:

[5.10]

where k is equal to the spacing/burden ratio, and the rock parameter A in Kuznetsov's· equation

was inserted into equation [5.10] as A(f) since it depends on the density of pre-existing disconti-

nuities in the rock mass.

1 It is assumed that a certain distribution of microcracks exists inside the material

Chapter S

Page 98: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

88

Equation [5.10] is the final fonn of the equation which predicts the index of unifonnity n and is

based on LEFM principles, Kuznetsov's equation and Rosin-Rammler law of distribution of frag­

ments. From equation [5.10] it can be seen that the R·R exponent n is a material specific quantity

since it depends on material properties such as rm(;, b, IX, f, and A(f). Using a simple computer

program based on an approximate fonnula which gives values of the Gamma function and the

corresponding values of exponent "n", Table 5.1 was constructed. The range of n in this table

covers the most probable values which may be encountered in real blast situations.

The model developed here, called FRACMA (Fracture Mechanics Analysis) gives predictions for

the whole fragment distribution resulting from a given blasting operation in either homogeneous or

discontinuous rock masses, provided:

• the fragmentation distribution can be described by the Rosin-Rammler curve;

• the relation of the rock parameter A with the density of discontinuities in the rock is known,

and

• parameters rIM' b, f, and Ge, which characterize the rock mass are known.

Parameter rIM can be expressed in tenns of the Young's Modulus E, the specific work of fracture

R, and material's tensile strength at' rIM can also, approximately, be expressed in teons of the

fracture toughness K,c of the material:

[5.11]

The relation of the rock parameter A with the density of discontinuities in the rock mass, f, can be

found experimentally, by blasting in different sites with different density of discontinuities and

measuring the mean fragment size.

Chapter 5

Page 99: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

89

Table 5.1 Gamma Function

1 r(l-n) n

00 1 98.06 1.01 32.33 1.03 19.20 1.05 13.58 1.07 10.47 1.10 8.49 1.12 7.13 1.15 5.37 1.20 4.78 1.23 4.30 1.26 3.91 1.30 3.57 1.33 3.30 1.37 3.06 1.41 2.95 1.43 2.76 1.47 2.59 1.51 2.44 1.56 2.31 1.61 2.19 1.66 2.08 1.72 1.99 1.78 1.90 1.85 1.82 1.92 1.77 2.00 1.68 2.08 1.62 2.17 1.56 2.27 1.51 2.38 1.47 2.50 1.42 2.63 1.38 2.77

Chapter 5

Page 100: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

90

The size of the minimum crack length, b, which activate and grow during blasting, can be found

from blasts in homogeneous rock (IX = 0) by measuring the surface area of fragments per unit vol­

ume of rock and using equation [5.9].

The fmal step is the estimation of parameter IX which appears in the exponential and gives a measure

of the intensity of the effect of discontinuities in rock fragmentation by blasting. The surface area

of fragments per unit volume obtained after blasting in discontinuous rock and equation [5.9] can

lead to the estimation of this variable.

Validation of the FRACMA model can be done with results from the BLASFRAG crack analysis

model for a given blasting operation.

For this reason, the dependence of Rosin-Rammler exponent "n" on Powder Factor or Reduced

Burden for the square and staggered pattern predicted in Section 4.2 using the BLASFRAG model,

was compared with the prediction of equation [5.10].

In this case the rock was considered to be homogeneous, therefore parameter (l in equation [5.10]

is equal to zero, and the rock factor A is independent of f. Assuming that the shape of fragments

is cubic, the factor K.IK, is equal to 1/6, and taking the size of the process zone rmc to be equal to

0.008 m t the only parameter unknown in equation [5.10] is b.

This parameter can be found from a reference blast in the homogeneous rock, by measuring the

specific surface area of fragments per unit volume, and then using equation [5.9].

A simulated explosion in a square pattern from the BLASFRAG model, with burden equal to 1

m, was chosen as reference blast. The specific surface area of fragments produced after the explo­

sion, together with equation [5.9], were used to obtain a value for the parameter b. In this case,

b was found to be equal to 9.4 mm. That is, cracks inside the rock with lengths greater or equal

to 9.4 mm will activate and grow during the time of application of the dynamic load induced by

Chapter 5

Page 101: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

91

blasting (for the assumed values of the parameters which are related to the blast design and rock

mass properties).

Since, all the parameters of equation [5.10] are known, the comparison can be made. Predictions

for Un" using equation [5.10] together with those of the BLASFRAG model and Cunningham's

KUZ-RAM model (Cunningham, 1983) for the square and staggered pattern, are shown in Figures

5.7 and 5.8 respectively.

Kuz-Ram model uses the following equation for the prediction of "n":

n = (2.2 - 14B/<1)(I- WIB)(1 + (A - 1)/2)L/H

where, B is the Burden (m)

d is the Hole Diameter (mm)

W is the Standard Deviation in drilling (m)

A is the Spacing to Burden ratio

L is the Charge Length above grade level (m)

H is the Bench Height (m)

If a staggered drilling pattern is employed, "n" is increased by 10 0/0.

[5.12]

When numbers of the blast variables are inserted into equation [5.12] , then it takes the following

simple fonn:

n = 2.2 - 0.28B [5.13]

for the square pattern, and

n = 1.1(2.2 - 0.28B) [5.14]

for the staggered pattern, since W = 0, A = L/H = I and d = 50 mm.

Chapter S

Page 102: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

.. c v c: o 0.. )(

v :r .

1.1

20 25 .30 .35

92

Square Pattern

40 45

+ BLASFRAG prediction ___ KUZ-RAM prediction

o FRACMA prediction

so 55 60 65 70

Reduced 8-.Jraen. in borehole ::ometer:J

75

Figure 5. 7 Dependence or R-R Exponent n on Reduced Burden as it was Predicted by BLASFRAG, KUZ-RAM, and FRACMA Models

Chapter 5

Page 103: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

2.4-

2 • .3

2.2

2. ,

2

:C 1.9

.... 1.8 c: 0 c c Q.

1.7 l( .,

1.6 rr !

1.5 rr

1.4

1.3

1.2

1.1

I

-!

I r

-f

-i I ..... i I

~ ! I

I

I ......

i

~

93

Staoqered Pat~ern -' --

+ BLASFRAG prediction __ _ KUi3-RAM prediction

a FRACMA prediction

-t----r---.----.........,..----,----r---..,..----...-"---.--------,-------,.-----.---- -""-"--'

20 25 JO J5 40 45 so 55 6:) 65 75

Figure 5.8 Dependence or R-R Exponent n on Reduced Burden as it was Predicted by BLASFRAG, KUZ-RAM, and FRACMA Models

Chapter 5

Page 104: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

94

The comparison of index "n" predicted by the BLASFRAG or KUZ-RAM models, with the

computed "n" from equation [5.10] • gave a 0.11 maximum difference for the case of the square

pattern, and 0.28 maximum difference for the case of the staggered pattern.

The reasonable accordance between predictions from the models validates the fracture analysis

model at least in the case of homogeneous without discontinuities rock. However, a comparison

of the model with a discontinuum solution which has been shown to give reasonable .predictions

is needed for further verification. At this point, Tomashev's discontinuum model (Tomashev, 1973)

was chosen for the comparison, because the predictions of this mathematical model has been

proved to give close mathing with field results' of bench blasting in rocks with block-type

structure.

Tomashcv proposed a mathematical solution to the problem of regulating the yield of oversize

fragments in blasting of fissured rocks with a block-type structure. This solution was based on a

combined consideration of the system of charges and the system of cracks, and the blocky jointing

of the medium was represented by three systems of mutually perpendicular cracks as shown in

Figure 5.9.

This mathematical model of blasting damage in a jointed medium was based on the well-known fact

of localization of blasting cracks within the structural units of the rock with crack fonnation foci.

Tomashev's model describes the dependence of the oversize part of the structural units which are

not broken by the blast, on the blast design parameters, the standard fragment size, and the degree

of jointing of the medium.

The solution which gives the relative yield of oversize fragments by volume (expressed as a fraction),

M, has the following fonn:

Chapter 5

Page 105: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Figure 5.9

Chapter 5

95

--1

t --- 2 -J w, 1ZmI'

Af "I 6

Blocky Jointing of the Medium Represented by Three Systems of Mutually Perpendicular Cracks (after Tomashev, 1973)

Page 106: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

96

3

DfOO

L Jidx - (JOO 2:... jjdx + fH 2:... 1+ R + x fjdx) s 6, H 63 s 63 L

1=1 M= [5.15]

where 6, are the mean thicknesses of the layers in the directions of the axes of Xi (in meters)

s is the dimension of an oversize fragment (in meters)

R is the radius of the zone of crushing of the charge (in meters)

~ is the distance between boreholes in the direction of X, axis (in meters)

L is the length of the borehole (in meters)

1 is the length of the charges in the borehole (in meters)

/; is the distribution law of the spacing between joints in a set (where i = 1,2,3 corresponds to the

systems of cracks), and

A =a,-2R H=L-I-R?:.s

for negative values of H we must put H = s.

Equation [5.15] can be written in the following fonn:

[5.16]

Chapter S

Page 107: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

97

where M M is the relative content of oversize fractions of structural units in the rock, and q,3' q,l ,

and q,1 are the respective factors in the subtrahend in equation [5.15J.

This model was compared with actual blasting results in jointed rocks. Field data (Danchev, 1970)

included grain-size composition of the structural units, and the results of experimental blasts which

established the dependence of the yield of oversize on the network of blastholes, the diameter of the

holes, and the specific explosive consumption.

Blast design parameters in the experiments varied in such a way that A > 1.5 m and H > 1.5 m,

therefore the frrst integral in equation [5.15] was equal to zero and hence

[5.17]

where in the experimental blasts MM = 0.43, s = 0.9 m, L varied from 13.0 to 11.2 m, I varied from

S.6 to 10.5 m, R = 9r, where r is the charge radius which varied from 42.5 to 55 mm, and the in-

dependent variable a was varied from 3.5 m to 2.4 m.

The objective of the blast experiments was the determination of the influence of the network

spacing on the yield of oversize. For the purpose of the comparison of the FRACMA model with

Tomashev's model and experimental data, equation [5.10J transformed in the following form:

where

Chapter S

x = A(j) L O.8Q-O.633 B1.6 100

[5.1SJ

[5.19]

Page 108: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

98

which is Kuznetsov's equation with the only difference that the rock parameter A depends on the

persistence, f, of discontinuities in the rock mass. In the experimental blasts Q was approximately

equal to 61 kg.

For the dependence of the rock factor A on persistence of discontinuities for a rock mass that has

block-type structure the following expression was adopted:

F. A (Fso) = A ( -2Q.. )d

B [5.20]

where F'so is the mean block size (50 % passing) isolated by discontinuities in the rock mass (in

meters)

d is a positive exponent, and

A is the rock factor for the homogeneous rock mass, i.e. when F'so = B

In most of the cases of discontinuous rock masses with block-type structure the sizes of the struc­

tural units follow the normal distribution which can be approximated fairly well by the Rosin­

Rammler curve with n ~ 3.3.

If this is the case, then

Ks IlKs 1 f=SIVo~---r(l--)= 1.28(-)-

K., Fso 3.3 K., Fso [5.21]

using equation [5.2] and the known dependence f = S J Va.

For the comparison of FRACMA model with Tomashev's model and actual experimental results,

the following numbers for the unknown variables in equations [5.18] and [5.19] were assumed:

A = 19

Chapter S

Page 109: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

99

d = 0.3

1%=0.16

rmt:= b= 0.008m

K.,/K, = 1/6 for both discontinuous rock and fragmented by blasting rock (cubical fragments)

At this point, the range of the rock factor A given by Kuznetsov (A = 7 to 13) is expanded to in­

clude higher and lower values depending on the nature of the blasting process.

Therefore, the two equations of the FRACMA model, equation [5.18] and [5.19], giving the ex-

ponent "n" and the mean fragment size x respectively, are simplified to the following forms:

and,

x = 0.1079 ( 0.846 )0.3 B1.6 B

[5.22]

[5.23]

where Fso = 0.846 m, if for the structural units the dimension of an oversize fragment, s, is equal

to 0.9 m t the percentage of oversize Mit( is equal to 43 % and the R-R exponent n is equal to 3.3.

Now, the only independent variable appearing in equations [5.22] and [5.23], is the dimension of

the hole network, B, therefore the comparison between the predictions of the models and exper­

imental data can be made. The dependent variable which is compared, is the percentage, M, of

oversize corresponding to fragments with dimensions larger than 0.9 m.

Having the mean fragment size x as it given from equation [5.23], the characteristic fragment size

can be found from the equation which comes from the Rosin-Rammler law:

Chapter 5

Page 110: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

-S • 0 A -• • .... • .. • .. 0-

• • • • ~

Figure 5.10

Chapter S

100

30

28 fJ/ 28

() Experimental Data 24

0 FRACMA Model 22 + Tomashev's Model

20

18 8 +

18

1"

12 +

10 */1.1

• c

/ 8

" 2

0

2 2.2 2.4 2.8 2.8 3 3.2 3." 3.8 3.8

......... ID

Dependence of the Percentage of Oversize Material, M, on Burden as it was Predicted by FRACMA and Tomashevi Model

103

Page 111: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

with n estimated from equation [5.22].

101

x x=---C 0.6931/ 11

[5.24]

Then, quantity M = R (0.9) (where R(x) is the proportion of the material retained on the screen

with size x) can be found from the following expression:

R(0.9) = (exp[ exp(n In 0.9 - n In xc)])-t [5.25]

which was derived from the R .. R equation

[5.26]

with the term P(x) in equation [3.5] substituted by 1 - R(x).

Using this algorithm for estimating the dependence of the percentage of oversize material on bur­

den, the comparison with Tomashev's mode predictions and actual field data can be made.

Predictions of M using the FRACMA model together with these of Tomashev's model and field

data for different burdens, are shown in Figure 5.10.

From this Figure the close matching of the FRACMA predictions with field data and Tomashev's

predictions, can be seen.

Next, let us compare the theoretical and actual dependences of the yield of oversize on the specific

explosives consumption.

In the field tests the specific explosives consumption was varied by varying B, 1, and L. Using the

average values for 1 and L in the field tests, that is, 9m and 12.4m respectively, the burden, B, can

be written in terms of the specific explosives consumption, q, as follows:

Chapter S

Page 112: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

102

[5.27]

Then, parameters:i, and r(l- ~ ) can be found from equations [5.23] , [5.22] if B is substituted

by q, according to equation [5.27] with all the other variables remain the same.

A graph of the predicted mass percent oversize versus the powder factor is shown in Figure 5.11 in

which the actual data are shown by points. From this Figure the agreement of the actual and

theoretical results can be seen.

Thus, FRACMA model of blasting in discontinuous rocks is in reasonable accordance with the

practical results and can be used in analyzing bench blasting results for improving its efficiency.

5.4 Conclusions

In this chapter the effect of discontinuities in rock fragmentation by explosives was studied. The

analysis showed that, depending on the characteristics of the discontinuities, this problem can be

attacked either by the BLASFRAG code or the FRACMA crack analysis model.

1. BLASFRAG code can be effectivelly used for the analysis of fragmentation by blasting, in

those cases where discontinuities in the rock mass act as barriers to the propagation of stress

waves and radial cracks. These discontinuities are open, filled either with air or other soil-like

material, and characterized by a low acoustic impedance compared to that of the surrounding

medium.

2. BLASFRAG code can' be used in these cases to:

Chapter 5

Page 113: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

103

-d

.0

'6 -a at '0 0 A - 25 • • .... • ..

20 • .. 0

• • 16 • II :II

10

'[ 0 0

]

• ~[

0

0

l ....... '# ~C ( 0

"t 1 ............. 0 « 6

~[

~" -........~[

~ --5

o D •• D.' 0.1 1

P ...... ractor. Iq/m3

Figure 5.11 Dependence of the Percentage of Oversize Material on Powder Factor as it was Predicted by FRACMA Model

Chapter 5

1.2

Page 114: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

104

• Design a blasting technique which gives a good fragmentation of the rock mass and a re­

duced amount of oversize material in the muckpile.

• Predict the effects of borehole network size and shape, blasthole diameter, explosives se­

lection and mode of initiation on the fragmentation distribution.

However, BLASFRAG code cannot be used in those cases where the characteristics of dis­

continuities are such that cracks induced by blasting propagate across them, and stress waves

are transmitted through them.

In these cases, the radius of affected rock mass by blasting is much larger than in cases where

a network of open discontinuities exist in the medium. These discontinuities are characterized

by a high bond strength, an acoustic impendance close to that of the surrounding medium, and

small fissure width.

3. A model which is based on principles from Linear Elastic Fracture Mechanics theory and

Kuznetsov's equation, was developed for analyzing the dynamic fracturing of rock masses with

discontinuities of these characteristics. The model, called FRACMA, gives predictions for the

whole fragmentation distribution provided the correct values for the parameters which describe

the discontinuous rock mass are used and the fragmentation follows the Rosin-Rammler curve.

4. FRACMA model was compared with the BLASFRAG simulation model and Cunningham's

KUZ .. RAM model, in case of blasting of homogeneous rocks, and gave very close agreement.

The model was also found to be in reasonable accordance with Tomashev's discontinuum

model and with actual field data from blasting in discontinuous rock masses.

Thus, depending on the nature of jointing of the rock mass, BLASFRAG or FRACMA models

can be used to analyze the results of bench blasting to improve its efficiency and to solve other

problems in regulating the fragment size of the blasted rock by varying the blasting parameters.

Chapter S

Page 115: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Chapter 6

Conclusions and Recommendations

The analysis of bench blasting fragmentation, and the critical evaluation of the events which

make-up the fragmentation process of the rock mass under the action of explosives, resulted in the

development of a simulation m!Jdel and a mathematical model for predicting fragmentation curves

from a given blast operation in homogeneous or discontinuous rock masses.

The first model, called BLASFRAG, simulates the pattern of interacting radial fractures from an

array of blastholes incrementally so as to mimic the real time dependence of hole fuing and crack

growth. The rules governing the distribution of radial cracks and the way in which they interact

are based on model scale experiments conducted by various investigators in the past. Discontinu­

ities in the rock mass can be incorporated into the simulation by inserting cracks to represent them.

In this model, Hames' (1973) failure criterion was adopted, that is rock breaks if the strain induced

in the rocK by the explosion exceeds its dynamic breaking tensile strength. This strength parameter

of the rock can be evaluated by analyzing known fragmentation results from reference blasts.

Chapter 6 105

Page 116: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

106

The ability of BLASFRAG model to fit known fragmentation distributions was tested on several

case studies. Powder factor dependence of fragmentation results was also well described by the

model.

The BLASFRAG program is designed to provide a means for testing variations to blasting patterns

without conducting an extensive series of test blasts, and has the following characteristics:

1. It runs on a microcomputer which is usually available in an engineer's office

2. It is not time consuming

3. It is simple

Furthermore, a mathematical model, called FRACMA, was deVeloped for analyzing the dynamic

fracturing of discontinuous rock masses. This model was based on principles from Linear Elastic

Fracture Mechanics theory and Kuznetsov's equation which relates the mean fragment size ob­

tained to the blast energy, hole size and rock characteristics.

Analysis of known fragmentation results, showed that FRACMA model is a promising tool for

predicting fragmentation distributions from blasting in discontinuous rocks, provided the correct

values for the parameters incorporated in the model are used.

BLASFRAG and FRACMA models can be used to:

1. Predict the effects of blasthole pattern size and shape, blasthole diameter, explosives selection,

delay timing, and initiation sequence on the resulting fragmentation distribution;

2. predict the effects of drilling inaccuracies on fragmentation distribution;

3. design a blasting technique to provide a specified result, for example, a reduced fragmentation

size range, and

Chapter 6

Page 117: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

107

4. determine the effect of discontinuities in the rock mass on blast fragmentation distribution.

The main advantage of using this hybrid model (BLASFRAG and FRACMA) compared to other

models available in the literature, is that the effect of discontinuities in rock fragmentation by

blasting can be studied for improving the efficiency of the blasting process.

In addition, one of the reasons that BLASFRAG model gives very close agreement with field data

over a range of spacings and blast timings, is that it takes into account the dependence of the

amount of extension of radial cracks due to gas pressure on the number of free faces near the ex­

ploding holes.

Site specific characteristics, like:

• Geometrical and physical properties of discontinuities;

• third dimension of fragments;

• velocity of crack propagation, and

• probability of crossings between radial cracks,

can also be inserted as inputs in the model, for a closer approximation of the actual fragmentation

results.

Furthermore, it is recommended that additional research in the following areas may establish a

more comprehensive model for predicting fragmentation distributions.

• BLASFRAG crack analysis model is restricted to two dimensions. Modem blasting tech­

niques make use of variable loading density of explosive along the blasthole for better usage

of explosives. In these cases a three dimensional simulation of the region around the blasthole

Chapter 6

Page 118: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

108

is required. Alternatively, simulations of plan view sections of the pattern would yield a good

approximation of the three dimensional behavior.

• An alternative fracture criterion has to be found which can be easily applied in rock fragmen­

tation by blasting. This criterion must also take into account the distribution of pre-existing

microcracks in the rock mass. Griffith's criterion with the Specific Surface Energy for creating

new surfaces, seems an attractive option since not only connects the amount and the distrib­

ution of explosion energy with the degree of fragmentation of the rock, but also is much easy

to be obtained in the laboratory as compared with the dynamic tensile strength.

• Under certain favorable geologic conditions (relatively short distance of muckpiles from the

faces, and a fairly high efficiency of explosive excavation) the cheapest method of moving the

overburden is the explosive casting method. In this mining method the degree of fragmenta­

tion achieved is an important economic factor. If the degree of fragmentation obtained from

explosive casting is to be predicted, a special subroutine in the crack analysis model must be

included which takes into account the further enhancement of fragmentation due to collision

of fragments and their falling on a hard surface.

• A high-speed camera should be used to monitor model or full-scale blasts in order to study the

mechanism of crack initiation, propagation, and interaction in multiple-hole bench blasting.

• A series of tests should be conducted to study the crack pattern development under gas pres­

sure action from single-hole blasts with various burden-rock configurations.

• A series of full-scale blast tests should be conducted to study the effect of the density of dis­

continuities on the mean fragment size and uniformity of fragmentation.

• Furthennore, field oriented studies may be taken up with high speed photography techniques

for a better understanding of the effect of discontinuities on rock fragmentation by blasting.

It is hoped that, by this way the understanding of fragmentation can be improved in near fu-

Chapter 6

Page 119: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

109

ture, for effective selection of face orientation, burdens, spacings, time delays, etc. required,

with respect to weakness planes present in rock mass.

Chapter 6

Page 120: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

REFERENCES

1. Aimone, T.C. (1982), "Three-Dimensional Wave Propagation Model of Full-Scale Rock Fragmentation", Ph. D. Dissertation, Northwestern University.

2. Ash, R.L. (1973), "The Influence of Geological Discontinuities on Rock Blasting", Ph. D. Dissertation, Univ. Minnesota, 289 p.

3. Bjamholt, G. and Skalare H., "Instrumental Model Scale Blasting in Concrete'" First Inter­national Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 799·814.

4. Cunningham, C. (1983), uThe KUZ-RAM Model For Prediction of Fragmentation From Blasting It , First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 439-453.

5. Da Gama, D. (1983), "Use of Comminution Theory to Predict Fragmentation of Jointed Rock Masses SUbjected to Blasting", First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 565-579.

6. Danchev, P.S., Rozhdenstrennyi V.N. and Zainullin K.M. (1970), in Blasting 69/26 [in Rursian], Nedra, Moscow.

7. Dick, R.A., Fletcher L.R. and D'Andrea D.V. (1973), "A Study of Fragmentation From Bench Blasting in Limestone on a Reduced Scale", U.S. Bureau of 1\lines R.I. 7704, 24 p.

8. Exadaktylos, G.E. (1987), "Energy Considerations of Marble Fracture Under Various Loading Modes". To be published.

9. Fadeenkov, N.M. (1975), "Applicability of the Rosin-Rammler Law to the Analysis of the Grain-Size Composition of a Heap of Blasted Rock", Soviet Mining Science, Vol. 1 0, pp. 685-688.

10. Field, EJ. and Ladegaard-Pedersen A. (1971), "The Importance of the Reflected Stress Wave in Rock Blasting", Int. J. Rock Mech. Min. Sci., Vol. 8, pp. 213-226.

11. Fourney, L.W., Barker B.D. and Holloway C.D. (1983), "Fragmentation in Jointed Rock Material", First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 505-531.

12. Goldsmith, W. (1967), "Pulse Propagation in Rocks", Proceedings, 8th Symposium on Rock Mechanics, New York, pp. 528-537.

13. Grady, D.E. (1981), "Fragmentation of Solids Under Impulsive Loading", Journal of Geophysical Research, Vol. 86, No. B2, February 10, pp. 1047-1054.

14. Grady, D.E. and Kipp M.E. (1985), "Mechanisms of Dynamic Fragmentation Factors Gov­erning Fragment Size", Mechanics of Materials 4, pp. 311-320.

IS. Harries, G. (1973), "A Mathematical Model of Cratering and Blasting", National Symposium on Rock Fragmentation, Adelaide, Australia, pp. 41 .. 54.

REFERENCES 110

Page 121: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

111

16. Harries, G. and Hengst B. (1977), "The Use of Computer to Describe Blasting", 15th APCOM Symposium, Brisbane, Australia, pp. 317 .. 324.

17. Isida, M. (1971), "Effect of Width and Length on Stress Intensity Factors of Internally Cracked Plates Under Various Boundary Conditions'" International Journal of Fracture Mechanics, Vol. 7, p. 301.

18. Kobayashi, S.A., Cherepy D.R. and Kinsel W.C. (1984), "A Numerical Procedure for Esti­mating the Stress Intensity Factor of a Crack in a Finite Plate" t Trans. ASME, Ser. D., Journal of Basic Engineering, Vol. 86, p. 681.

19. Kolsky, H. (1953), "Stress Waves in Solids", Dover Publications, Inc. New York, 213 p.

20. Kutter, H.K. and Fairhurst C. (1971), "On the Fracture Process in Blasting", Int. J. Rock Meeh. Min. Sci., Vol. 8, pp. 181 .. 202.

2!. Kuznetsov, V.M. (1973), "The Mean Diameter of Fragments Formed by Blasting Rock'\ Soviet Mining Science, Vol. 9, pp. 144-148.

22. Langefors, U. and Kihlstrom B. (1967), "The Modem Technique of Rock Blasting", Wiley, New York.

23. Lownds, C.M. and Seligmann C.P. (1976), "Primary Fracture From an Array of Shotholes", Journal of the South African Institute of Mining and Metallurgy, Vol. 76, pp. 307-310.

24. Lownds, C.M. (1983), "Computer Modelling of Fragmentation From an Array of Shotholes", First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 455-468.

25. Margolin, L.G. and Adams T.F. (1983), "Numerical Simulation of Fracture", First Interna­tional Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 347 .. 360.

26. McHugh, S. (1983), "Computational Simulations of Dynamically Induced Fracture and Fragmentation", First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 407 .. 418.

27. Obert, L. and Duvall W.1. (1950), "Generation and Agitation of Strain \Vaves in Rock - Part I", U.S. Bureau of Mines RI 4583, 31p.

28. Ouchterlony, F. (1980), "Review of Fracture Toughness Testing of Rock", SweDeFo Report OS 1980:15.

29. Persson, Per-Anders (1983), "Energy in Rock Fragmentation", First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 777-788.

30. Porter, D.O. (1974), "Use of Rock Fragmentation to Evaluate Explosives in Blasting", Mining Congress Journal, Vol. 60, No.1, pp. 41-43.

31. Roberts, J.S. and Wells A.A. (1954), "The Velocity of Brittle Fracture", Engineering, Vol. 178, pp. 820-821.

32. Shukla, A. and Fourney W.L. (1985), "Explosively Driven Crack Propagation Across an Interface", Int. J. Rock Mech. l\lin. Sci., Vol. 22, No.6, pp. 443-451.

33. Tomashev, G.S. (1973), "A Mathematical-Probabilistic Model of Blasting Damage in a Fissured Block-Structured Medium", Soviet Mining Science, No.6, pp. 50-55.

34. Valliappan, S., Lee tK., Murti V., Ang K.K. and Ross A.H. (1983), "Numerical Modelling of Rock Fragmentation", First International SympoSium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp. 375-391.

35. Winzer, S.R., Montenyohl V.T. and Ritter A. (1979), "High-Speed Cinematography of Pro­duction Blasting Operations", Mining Congress Journal, October, pp. 46-61.

REFERENCES

Page 122: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

112

36. Winzer, S.R., Douglas A.A. and Ritter P.A. (1983), "Rock Fragmentation by Explosives", First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, August, pp.225·249.

37. Wu, W. (1984), "The Effect of Simulated Detonator Scatter on Rock Fragmentation and Ground Vibrations in Single-Row Bench Blasting" I Master Thesis, University of Missouri­Rolla.

REFERENCES

Page 123: in effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled

Vita

George Exadaktylos was born in Athens, Greece on December 20, 1961. He graduated from the

13th High School of Athens in June of 1979, and in September of the same year he enrolled in the

National Technical University of Athens. He graduated in January 1985, with a degree in Mining

and Metallurgical Engineering. Since then, he worked as a research associate in the Department

of Mining Engineering at National Technical University of Athens. In September 1987 he was

awarded a research assistanship to attend graduate school in the Department of Mining and Min·

erals Engineering at Virginia Tech. He expects to complete the requirements for the Master Degree

in November, 1988.

113