57
in the Periodic Table Reading: Gray: (2-2) to (2-4) and (2-9) OGN: (3.1), (15.8) and (15.9)

in the Periodic Table - Information Management …chem1/Lecture Notes pdfs/Series 4...• Arrangement of the Periodic Table of Elements • Trends in Atomic Size • Trends in Ionization

Embed Size (px)

Citation preview

in the

Periodic TableReading: Gray: (2-2) to (2-4) and (2-9)

OGN: (3.1), (15.8) and (15.9)

Now We Can Understand

• Arrangement of the Periodic Table of Elements• Trends in Atomic Size• Trends in Ionization Energy• Trends in Electron Affinity• Trends in Electronegativity• Various Types of Chemical Bonds• Combining Ratios of Oxides and Hydrides• Shapes of Molecules

Invented the periodic table in 1869. Also in that year, he published his book, "Principles of Chemistry." His book compared the atomic

weights and the properties of elements that were not known back then.

1906: One vote away from winning a Nobel PrizeDied in 1907

Dmitri Mendeleev

St. Petersburg University

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

20

40

60

80

Solid-State Molar Volumes ( )3D3D

Molar volume

( )cm3

mol

Cs

Ba

HHe

RnSrY

Lu

Sc Ti V CrZrHf Ta W

Nb MoRe Os Ir Pt Au Hg Tl Pb Bi Po

RbK

Ca

NaMg

Al Si P S Cl ArLi

Be

Tc Ru Rh Pd Ag Cd In Sn Sb Te IXe

Mn Fe Co Zn GaNi Cu Ge As Se BrKr

BONC F Ne

At

In 1875, Lothar Meyer deduces a periodic trend

* E(eV)0

-13.616

-13.69

-13.64

-13.61

(vacuum energy)

1s

2s 2p

3s 3p

4s 4p 4f4d

3d

Energy of One Electron in a H atom

* E = -kn2

where k=13.6 eV;n is the principal quantum number

On Average, Zeff < ZHow Much Less Zeff < Z Determines Atomic Properties

Multiple-Electron Atoms

None of the e- eclipsed: Zeff = Z

One e- eclipsed: Zeff = Z - 1

+ +

++

+ +

++

z

x x

r2R21s

2s

r2R21s

2p

An electron in the 2p orbital penetratessomewhat into the 1s orbital

Shieldingr2R2

r2R2 = probability offinding an electronon the sphere of radius r

1s2p 2s

r

Shielding

But a 2s electron penetrates the 1sorbital better than a 2p electron

r2R2

r2R2 = probability offinding an electronon the sphere of radius r

1s2p 2s

r

Shielding

A 3s electron penetrates the 1sorbital better than a 3p electron

r2R2

r

1s 3d 3p3s

Penetration:3s > 3p > 3d

Shielding

A 4s electron penetrates the 1sorbital better than a 4p electron

r2R2

rPenetration:4s > 4p > 4d > 4f

1s 4f 4d4s

4p

Another View of 2s vs 2p Shielding

1s

2pshielded electron density

1s2s

2s Penetrates More into 1s Than Does 2p2s is Therefore Lower in E Than 2p

1s

2s 2p

3s3p

5s

4p 3d

Energy of Multi-Electron Atoms

4s

E

(e t c.)0

due to shielding, orbitalswith the same principalquantum number(n) do NOThave the same energies

1s

2s

3s

4s

5s

2p

3p

4p

5p

3d

4d

5d

4f

5f

Mnemonic for Filling Order

hence the filling order is:1s, 2s, 2p, 3s,3p, 4s, 3d, etc.

1s

2s2p

3s3p

5s

4p3d4s

E 1. H (1s)1

2. He (1s)2

3. Li (1s)2(2s)1

4. Be (1s)2(2s)2

e t c.0

5. B (1s)2(2s)2(2p)1

6. C (1s)2(2s)2(2p)2

7. N (1s)2(2s)2(2p)3

8. O (1s)2(2s)2(2p)4

9. F (1s)2(2s)2(2p)5

10. Ne (1s)2(2s)2(2p)6

elementshellelectrons in shellvalence electrons

(underlined)

2p- orbital

e t c.

Valence Electrons

Valence Electrons:electrons in the outermost shell (in other words, the setof electrons with highestprincipal quantum number)

↑ ↑ ↑↑ ↑ ↑↑↓ ↑ ↑↑↓ ↑↓ ↑↑↓ ↑↓ ↑↓

Orbital Filling EnergiesExample:

lowest energy for 3 electrons in p orbital

↑ ↑ ↑

↑↓ ↑

↑ ↑ ↓

energy increases when a second electron is putin same orbital

energy also increases when spins are mixed in orbitals

1s2s3s4s5s6s7s

1s2p3p4p5p6p

3d4d5d6d

4f5f

Organization of Periodic Chart

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

Rn

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Exceptions to Filling Order

23. V (4s)2(3d)3

24. Cr (4s)1(3d)5

25. Mn (4s)2(3d)5

40. Zr (5s)2(4d)2

41. Nb (5s)1(4d)4

42. Mo (5s)1(4d)5

Exceptions occur because electrons don’t like to pair up in orbitals; so the highlighted atoms have lower energy.

↑↓ 4s 3d

2s 2p3s

4s 3d3p

4p

↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑

HLiNaKRbCsFr

BeMgCaS rB aRa

ScYLaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rI

A t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Element GroupsAlkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

HLiNaKRbCsFr

BeMgCaS rB aRa

ScYLaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rI

A t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Alkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

Hydrogen:From Greek: Hydro-genes: “Water forming”

HLiNaKRbCsFr

BeMgCaS rB aRa

ScYLaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rI

A t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Alkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

Iodine: violet crystalsFrom Greek “iodes”: “violet”

HLiNaKRbCsFr

BeMgCaS rB aRa

ScYLaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rI

A t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Alkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

CarbonFrom Latin“carbo”: “charcoal”

HLiNaKRbCsFr

BeMgCaS rB aRa

ScYLaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rI

A t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Alkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

CalciumFrom Latin“calx”: “limestone”

HLiNaKRbCsFr

BeMgCaS rB aRa

ScYLaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rI

A t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Alkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

Iron: FeFrom Latin“iron”: “ferrum”

HLiNaKRbCsFr

BeMgCaS rB aRa

ScYLaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rI

A t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Alkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

Gold: AuFrom Latin“aurum”: “shining dawn”

HLiNaKRbCsFr

BeMgCaS rB aRa

ScYLaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rI

A t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Alkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

Lead: PbFrom Latin“plumbum”: “heavy”

HLiNaKRbCsFr

BeMgCaS rB aRa

ScY

LaAc

T iZ rHf

VNbTa

C rMoW

M nTcRe

FeR uO s

CoR hI r

N iPdP t

CuA gA u

ZnCdH g

BA lGaI nT l

CS iGeSnPb

NPAsSbB i

OSSeTePo

FC lB rIA t

HeNeA rKrXeRn

C e Pr Nd Pm Sm E u Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm B k C f E s Fm Md No Lr

Alkali metals

Transition metals

Alkali earths Halogens

Inert or Noble gases

LanthanidesActinides

Cobalt: CoFrom German“kobold”: “goblin or evil spirits”

Unwanted metal in what were thought to be copper ores

Effective Nuclear Charge

e-

p

e-

p

e-

H H-

e- p

H

p

He

p

(Zeff = 1.0)

(Zeff ≈ 0.7)

(Zeff = 1.0)

(Zeff ≈ 1.8)

e- e-

e-

e-H H-

H He

(Zeff = 1.0)

(Zeff ≈ 0.7)

(Zeff = 1.0)

(Zef f ≈ 1.8)

Atomic Size and Ionization Energy

Bigger

Smaller

e-

p p

e-p

e- ppe-

Trends in Zeffe-

p

H (Zeff =1.0)

1s

e-

Be (Zeff ≈2.0 in n=2)

pe-

p p e-

1sp Smaller

Again

e-

2s

e- p

He

pe-

(Zeff ≈1.8)

Smaller1s

pp p

1s

2s

e-

e- e-

Li (Zeff ≈1.2 in n=2)

Bigger

Sc

Y

La

Ac

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

RnCe Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Atomic Sizes

LiBe

Na

Z=11

Zeff ≈1.0 (n=3)

Z=3

Zeff ≈1.2 (n=2) Zeff ≈2.0 (n=2)

Bigger

Bigger

Z=4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

20

40

60

80

Solid-State Molar Volumes ( )3D3D

Molar volume

( )cm3

mol

Cs

Ba

HHe

RnSrY

Lu

Sc Ti V CrZrHf Ta W

Nb MoRe Os Ir Pt Au Hg Tl Pb Bi Po

RbK

Ca

NaMg

Al Si P S Cl ArLi

Be

Tc Ru Rh Pd Ag Cd In Sn Sb Te IXe

Mn Fe Co Zn GaNi Cu Ge As Se BrKr

BONC F Ne

At

Atomic Radius: A Closer LookH

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

RnCe Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

(relative atomic sizes)(expected size)

HeH Li Be B C

↑↓

1s: ↑↓

↑↓

↑↓

↑↓

2s: ↑

↑↓

↑↓

↑↓

2p:

Closed 2s shell;r Smaller than expected

2p more fully screened than 2sr Bigger than Expected

Exceptions to Atomic Radius TrendSc

Y

La

Ac

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

RnCe Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

B C N O F Ne

(relative atomic sizes) (expected sizes)

1s:2s:2p:

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Half-filled p Shellr Smaller Than Expected

Extra Repulsion in 2p setr Bigger Than Expected

Ionization Energies

Larger

Smaller Atoms Harder to Remove Electrons

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

RnHf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At RnCe Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm B k Cf Es Fm Md No Lr

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Cs La

Ac

Cs

Sc

Y

Larger

e-

p

H

e- p

He

p

e-

(Zeff =1.0) (Zeff ≈1.8)

Smaller rHigher I.E.

1s 1s

0

EH

He

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

500

1000

1500

2000

2500

First Ionization Energy ( )3D3D

1st IE

( )kJmol

Details of Ionization Energies

Smaller r = Higher I.E.

H

He

Li

Be

B

C

N

O

F

Ne2p vs 2s shielding

2p pairing penalty

Ionization Energy (kJ/mol)

500

1000

1500

2000

2500

Atomic Number0 1 2 3 4 5 6 7 8 9 10 11

Radius decreases for isoelectronic atoms asPositive charge increases ( )

Discontinuity at K+ due to d-orbitals (increased Zeff)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80

Atomic Number

Ionic Radii

Li+

Na+K+

Rb+Cs+

Be2+Al3+

Ti4+ Zr4+ Hf4+

N3-

P3- As3-Sb3-

Ionic

Radius

Å

Lanthanide Contraction

Responsible for many features of TM’s that followLanthanides in periodic table

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Series1

Ionic

Radius

Å

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu (M3+)

All are 5s25p64fn-1

Electron Affinity

Energy Released By Addition of an Electron to the Element

e-

p

e-

p

e-

H

+ e-

H-

E.A.of H

By Definition, E.A is Positive when Energy is Released(Opposite the thermodynamic definition!)

E = –77 kJ/mol E.A. = 77 kJ/mol

Electron Affinity vs. Ionization Energy

E.A.of H

I.E. of H-

(+) Electron Affinity of Element X (+) Ionization Energy of Anion X-

=

e-

p

H

+ e- p

e-

H-

e-

Electron Affinity

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

RnHf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At RnCe Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm B k Cf Es Fm Md No Lr

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Cs La

Ac

Cs

Sc

Y

He

Ne

Ar

Kr

Xe

RnRn

Larger

Larger

O

F

Ne

+

+

+

EA

142

kJ/mol

333

-29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Electron Affinity ( )3D3D

E.A.

( )kJmol

Note: Black elements have negative EA’s

Electron Affinity vs.Ionization Energy

Electron Affinity• Can be either + or - in sign• No atom has a positive 2nd E.A.

Ionization Energy• Always Positive• 2nd I.E.s are always > 1st I.E.’s

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm B k Cf Es Fm Md No Lr

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Cs La

Ac

Cs

Sc

Y

Electronegativity

Electronegativity Generally Follows I.E. Trend

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

RnHf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

EN = I.E. + E.A.

2

Larger

Larger

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

0.51

1.5

2

2.5

3

3.5

4

Electronegativity ( )3D3D

(ArbitraryPauling units)

Electronegativity, I.E., and E.A.

• In a bond, the distribution of electrons is determined by how much each atom pulls on its own as well as the other atom’s electrons. So electronegativity = I.E. + E.A.

Table Salt• Na has low E.A. and I.E.• Cl has high E.A. and I.E.• Electronegativity = (I.E. + E.A.)/2

Cl is more electronegative than Na.

Example:

Na Cl

e- - - -- --

+

++

++

+

EN ENsmall big

Some Representative Electronegativities

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

RnHf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At RnCe Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm B k Cf Es Fm Md No Lr

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Cs La

Ac

Cs

Sc

Y

Electronegativities:

Be = 1.6 C = 2.6

F = 4.0

Na = 0.9 As = 2.2

Fr = 0.7

• Fluorine has the highestelectronegativity, Francium has the lowest E.N.

Larger

Larger

Types of Chemical Bonds

Ionic Bonding

Na• + Cl• [Na]+ [ Cl]-

Na has Low I.E., low E.A. Lower EN; loses e-

Cl has High I.E., high E.A. Higher EN; gains e-

Li• + H• [Li]+ [ H]-

Li has Low I.E., low E.A. Lower EN; loses e-

H has High I.E., high E.A. Higher EN; gains e-

Types of Chemical Bonds

Covalent BondingCl + Cl Cl Cl = Cl—ClH + Br H Br = H—BrElectrons Shared ≈ Equally

Hydrogen Bonding: Cl—H...OH2

Van der Waals Bonding: Ar...HCl

Now We Can Understand

• Arrangement of the Periodic Table of Elements• Trends in Atomic Size• Trends in Ionization Energy• Trends in Electron Affinity• Trends in Electronegativity• Various Types of Chemical Bonds• Combining Ratios of Oxides and Hydrides• Shapes of Molecules

Periodic Trends in Bonding

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

Rn

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Stoichiometry of Binary Hydrides

LiH BeH2

NaH MgH2

BH3 CH4 NH3 H2O HFAlH3 SiH4 PH3 H2S HCl

H- H+

Periodic Trends in Bonding

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

Rn

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Stoichiometry of Binary Oxides

HaXb for Hydrides; Oa/2Xb (Usually) for Oxides

Li2O BeONa2O MgO

B2O3 CO2 N2O5 O2 OF2

Al2O3 SiO2 P2O5 SO3 OCl2

Al normally inert due to formation of tough surface coating of Al2O3Al metal burns in air and if hot enough, will form Al2O3 continuously from H2O

H.M.S. SheffieldFalklands War of 1982

Na2O(s) + H2O 2 Na+(aq) + 2 OH-(aq)BaO(s) + H2O Ba2+(aq) + 2 OH-(aq)

MnO(s) + 2H+ Mn2+(aq) + H2ONiO(s) + 2H+ Ni2+(aq) + H2O

SO3(s) + H2O H+(aq) + HSO4-(aq)

P4O10(s) + 6H2O 4 H+(aq) + 4H2 �O PO3-(aq)

• Basic oxides have pushed too much electron densityOnto O, and it loses it by reacting with H2O (liberating OH-)• Acidic oxides have less electron density than theycan accomodate, and so grab more O from H2O (liberating H+)

Basic

Basic

Acidic

Acid/Base Properties of Oxides

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

Rn

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Acidity increases going up and to right

Li2O BeONa2O MgO

B2O3 CO2 N2O5 O2 OF2

Al2O3 SiO2 P2O5 SO3 OCl2

Basic

Acid/Base Properties of Oxides

in the

Periodic Table

End

Reading: Gray: (2-2) to (2-4) and (2-9)OGN: (3.1), (15.8) and (15.9)